首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
trkB is a tyrosine protein kinase gene highly related to trk, a proto-oncogene that encodes a receptor for nerve growth factor (NGF) and neurotrophin-3 (NT-3). trkB expression is confined to structures of the central and peripheral nervous systems, suggesting it also encodes a receptor for neurotrophic factors. Here we show that brain-derived neurotrophic factor (BDNF) and NT-3, but not NGF, can induce rapid phosphorylation on tyrosine of gp145trkB, one of the receptors encoded by trkB. BDNF and NT-3 can induce DNA synthesis in quiescent NIH 3T3 cells that express gp145trkB. Cotransfection of plasmids encoding gp145trkB and BDNF or NT-3 leads to transformation of recipient NIH 3T3 cells. In these assays, BDNF elicits a response at least two orders of magnitude higher than NT-3. Finally, 125I-NT-3 binds to NIH 3T3 cells expressing gp145trkB; binding can be competed by NT-3 and BDNF but not by NGF. These findings indicate that gp145trkB may function as a neurotrophic receptor for BDNF and NT-3.  相似文献   

2.
The trk proto-oncogene encodes a receptor for nerve growth factor.   总被引:127,自引:0,他引:127  
R Klein  S Q Jing  V Nanduri  E O'Rourke  M Barbacid 《Cell》1991,65(1):189-197
Two classes of receptors with distinct affinities for nerve growth factor (NGF) have been identified. The low affinity receptor (Kd approximately 10(-9) to 10(-8) M) is a cysteine-rich glycoprotein encoded by the previously characterized LNGFR gene. The structural nature of the high affinity receptor (Kd approximately 10(-11) to 10(-10) M) has yet to be established. In this study we show that the product of the human trk proto-oncogene (gp140trk) binds NGF with high affinity. Moreover, NGF could be chemically cross-linked to the endogenous gp140trk present in rat PC12 pheochromocytoma cells as well as to gp140trk ectopically expressed in mouse fibroblasts and in insect Sf9 cells. High affinity binding of NGF to gp140trk can occur in the absence of low affinity LNGFR receptors, at least in nonneural cells. Addition of NGF to PC12 cells elicits rapid phosphorylation of gp140trk on tyrosine residues and stimulates its tyrosine kinase activity. These results indicate that gp140trk is a functional NGF receptor that mediates at least some of the signal transduction processes initiated by this neurotrophic factor.  相似文献   

3.
Neurotrophic factors are essential for neuronal survival and function. Recent data have demonstrated that the product of the tyrosine kinase trk proto-oncogene binds NGF and is a component of the high affinity NGF receptor. Analysis of the trkB gene product, gp145trkB, in NIH 3T3 cells indicates that this tyrosine kinase receptor is rapidly phosphorylated on tyrosine residues upon exposure to the NGF-related neurotrophic factors BDNF and NT-3. Furthermore, gp145trkB specifically binds BDNF and NT-3 in NIH 3T3 cells and in hippocampal cells, but does not bind NGF. Thus, the trk family of receptors are likely to be important signal transducers of NGF-related trophic signals in the formation and maintenance of neuronal circuits.  相似文献   

4.
We investigated the involvement of phosphatidylinositol 3-kinase (PtdIns 3-kinase) in the initiation of signal transduction by nerve growth factor (NGF) in the rat pheochromocytoma PC12 cell line. PtdIns 3-kinase catalyzes the formation of phosphoinositides with phosphate in the D-3 position of the inositol ring and previously has been found to associate with other activated protein tyrosine kinases, including growth factor receptor tyrosine kinases. Anti-phosphotyrosine immunoprecipitates had PtdIns 3-kinase activity that reached a maximum (9 times the basal activity) after a 5-min exposure of PC12 cells to NGF (100 ng/ml). Since NGF activates the tyrosine kinase activity of gp140trk, the protein product of the trk proto-oncogene, we also examined the association of PtdIns 3-kinase with gp140trk. Anti-gp140trk immunoprecipitates from NGF-stimulated PC12 cells had increased PtdIns 3-kinase activity compared to that of unstimulated cells, and larger increases were detected in cells overexpressing gp140trk, indicating that PtdIns 3-kinase associates with gp140trk. NGF produced large increases in [32P]phosphatidylinositol 3,4-bisphosphate and [32P]phosphatidylinositol 3,4,5-trisphosphate in PC12 cells labeled with [32P]orthophosphate, indicating an increase in PtdIns 3-kinase activity in intact cells. Using an anti-85-kDa PtdIns 3-kinase subunit antibody, we found that NGF promoted the tyrosine phosphorylation of an 85-kDa protein and two proteins close to 110 kDa. These studies demonstrate that NGF activates PtdIns 3-kinase and promotes its association with gp140trk and also show that NGF promotes the tyrosine phosphorylation of the 85-kDa subunit of PtdIns 3-kinase. Thus, PtdIns 3-kinase activation appears to be involved in differentiation as well as mitogenic responses.  相似文献   

5.
The trk tyrosine kinase proto-oncogene product gp140prototrk binds nerve growth factor (NGF) and is rapidly and selectively activated by this neurotrophic factor. To determine whether gp140prototrk is involved in transducing a functional NGF signal, PC12 cell mutants (PC12nnr) deficient in high affinity NGF binding and unresponsive to NGF were used. Northern analysis revealed that these mutant cells have greatly reduced levels of trk expression. PC12nnr cultures were transiently transfected with expression vectors encoding the full-length rat trk cDNA and assessed for responsiveness to NGF. Expression of exogenous trk rescued the capacity for NGF-promoted neurite outgrowth, cellular hypertrophy, and serum-free survival by these cells. These results indicate that gp140prototrk is necessary for functional NGF signal transduction.  相似文献   

6.
7.
S Jing  P Tapley  M Barbacid 《Neuron》1992,9(6):1067-1079
We have investigated the molecular nature of the high affinity nerve growth factor (NGF) receptors by using cell lines expressing gp75LNGFR and gp140trk. Our results suggest that gp75LNGFR and gp140trk interact with NGF independently and that only gp140trk mediates NGF signaling. NGF binds to gp140trk with picomolar affinity and induces its phosphorylation on tyrosine residues regardless of the presence of gp75LNGFR. NGF-gp140trk complexes display the slow dissociation rate and rapid internalization characteristics of high affinity NGF receptors. Cross-linking studies reveal the existence of gp75LNGFR and gp140trk homodimers. However, we were unable to detect gp75LNGFR-gp140trk heterodimers. Coexpression in COS cells of wild-type and kinase deficient mutants reveals that gp140trk receptors can undergo intermolecular phosphorylation, indicating the formation of functional homodimers. Moreover, these kinase deficient mutants inhibit NGF-induced signaling through wild-type gp140trk receptors. These results indicate that the functional high affinity NGF receptors consist of gp140trk homodimeric (or oligomeric) complexes.  相似文献   

8.
To investigate the role of the gp140trk receptor tyrosine kinase in nerve growth factor (NGF)-induced differentiation, we have overexpressed gp140trk in the NGF-responsive PC12 cell line. Here we demonstrate that overexpression of gp140trk results in marked changes in NGF-induced differentiation. Whereas PC12 cells elaborated neurites after 2 days of continuous exposure to NGF, PC12 cells overexpressing gp140trk by 20-fold(trk-PC12) began this process within hours. Compared with wild-type PC12 cells, trk-PC12 exhibited an increase in both high and low affinity NGF-binding sites. Furthermore, trk-PC12 cells displayed an enhanced level of NGF-dependent gp140trk autophosphorylation, and this activity was sustained for many hours following ligand binding. The tyrosine phosphorylation or activity of several cellular proteins, such as PLC-gamma 1, PI-3 kinase, and Erk1 and the expression of the mRNA for the late response gene transin were also sustained as a consequence of gp140trk overexpression. The data indicate that overexpression of gp140trk in PC12 cells markedly accelerates NGF-induced differentiation pathways, possibly through the elevation of gp140trk tyrosine kinase activity.  相似文献   

9.
Nerve growth factor (NGF), like many other growth factors and hormones, binds to two different receptor molecules on responsive cells. The product of the proto-oncogene trk, p140trk, is a tyrosine kinase receptor that has been identified as a signal-transducing receptor for NGF, while the role of the low affinity NGF receptor, p75NGFR, in signal transduction is less clear. The crystal structure of NGF has recently been determined, although structures involved in receptor binding and biological activity are unknown. Here we show that Lys-32, Lys-34, and Lys-95 form a positively charged interface involved in binding to p75NGFR. Simultaneous modification of Lys-32 with either of the two other lysines resulted in loss of binding to p75NGFR. Despite the lack of binding to p75NGFR, these mutants retained binding to p140trk and biological activity, demonstrating a functional dissociation between the two NGF receptors.  相似文献   

10.
Molecular analysis of the human trk oncogene, a transforming gene isolated from a colon carcinoma biopsy, revealed the existence of a novel member of the tyrosine kinase gene family. This locus, which we now designate the trk proto-oncogene, codes for a protein of 790 amino acid residues that has several features characteristic of cell surface receptors. They include (i) a 32-amino-acid-long putative signal peptide, (ii) an amino-terminal moiety (residues 33 to 407) rich in consensus sites for N-glycosylation, (iii) a transmembrane domain, (iv) a kinase catalytic region highly related to that of other tyrosine kinases, and (v) a very short (15 residue) carboxy-terminal tail. Residues 1 to 392 were absent in the trk oncogene, as they were replaced by tropomyosin sequences. However, no other differences were found between the transforming and nontransforming trk alleles (residues 392 to 790), suggesting that no additional mutations are required to activate the transforming potential of this gene. The human trk proto-oncogene codes for a 140,000-dalton glycoprotein, designated gp140proto-trk. However, its primary translational product is a 110,000-dalton glycoprotein which becomes immediately glycosylated, presumably during its translocation into the endoplasmic reticulum. This molecule, designated gp110proto-trk, is further glycosylated to yield the mature form, gp140proto-trk. Both gp110proto-trk and gp140proto-trk proteins possess in vitro kinase activity specific for tyrosine residues. Finally, iodination of intact NIH 3T3 cells expressing trk proto-oncogene products indicated that only the mature form, gp140proto-trk, cross the plasma membrane, becoming exposed to the outside of the cell. These results indicate that the product of the human trk locus is a novel tyrosine kinase cell surface receptor for an as yet unknown ligand.  相似文献   

11.
神经生长因子家族及其受体研究进展   总被引:9,自引:0,他引:9  
过去几年在神经营养因子、受体和神经元细胞程序性死亡的研究领域中取得了几项引人注目的进展:(1)神经生长因子(NGF)基因家族的其他一些成员包括脑源性神经营养因子(BDNF)、神经营养素-3(NT-3)、神经营养素-4(NT-4)、神经营养素-5(NT-5)的发现;(2)神经生长因子三维结构及功能和进化之关系的阐明;(3)定性了两种神经生长因子受体P75^NGFR和原癌基因p140^trkA以及相关  相似文献   

12.
Survival and maintenance of vertebrate neurons are influenced by neurotrophic factors which mediate their signal by binding to specific cell surface receptors. We determined the binding sites of human neurotrophin-3 (NT-3) to its receptors trkC and gp75 by mutational analysis and compared them to the analogous interactions of nerve growth factor (NGF) with trkA and gp75. The trkC binding site extends around the central beta-strand bundle and in contrast to NGF does not make use of non-conserved loops and the six N-terminal residues. The gp75 epitope is dominated by loop residues and the C-terminus of NT-3. A novel rapid biological screening procedure allowed the identification of NT-3 mutants that are able to signal efficiently through the non-preferred receptors trkA and trkB, which are specific for NGF and BDNF respectively. Mutation of only seven residues in NT-3 resulted in a human neurotrophin variant which bound to all receptors of the trk family with high affinity and efficiently supported the survival of NGF-, BDNF- and NT-3-dependent neurons. Our results suggest that the specificity among neurotrophic factors is not solely encoded in sequence diversity, but rather in the way each neurotrophin interacts with its preferred receptor.  相似文献   

13.
An involvement of protein tyrosine kinase in the transduction of the signals initiated by nerve growth factor (NGF) was investigated. A tyrosine kinase inhibitor, herbimycin, inhibited neurite outgrowth of rat pheochromocytoma PC12 cells induced by NGF but not that by dibutyryl-cAMP. Herbimycin and genistein blocked NGF-dependent activation of ras p21 whose essential function in neuronal differentiation has been reported. These observations suggested that tyrosine kinase activity is involved in the signaling pathways. K-252a, by contrast, inhibited NGF-induced but not EGF-dependent activation of ras p21. Tyrosine kinase activity of gp140trk, a constituent of NGF receptor, is activated by NGF for much a longer period compared to the activation of EGF receptor autokinase activity by EGF. We further demonstrated that autophosphorylation of gp140trk is selectively inhibited by K-252a.  相似文献   

14.
Nerve growth factor (NGF) appears to act as a neurotrophic factor for basal forebrain and caudate-putamen cholinergic neurons. The mechanism by which NGF transduces its signal in these neurons is yet to be defined. Recent data indicate that the product of the trk gene, p140trk, is a critical component of the NGF receptor. Herein, we show that p140trk mRNA is highly restricted in its distribution in the adult rat forebrain, that it is present in cholinergic neurons, and that most if not all cholinergic neurons contain p140trk mRNA. Furthermore, induction of trk expression by NGF suggests that neurotrophin-mediated up-regulation of their receptor tyrosine kinases is an important feature of their actions and that neurotrophins may regulate the activity of responsive neurons through increasing the level of their receptors.  相似文献   

15.
16.
The cellular actions of nerve growth factor (NGF) involve regulation of protein phosphorylation. In PC-12 pheochromocytoma cells, exposure of [125I]NGF followed by crosslinking indicates that the ligand binds to two discreet receptors, the previously described 75 kd protein, as well as the trk proto-oncogene product pp140c-trk. Competition experiments reveal that of the two, pp 140c-trk binds to NGF with higher affinity. Following exposure to NGF, pp140c-trk undergoes a rapid autophosphorylation on tyrosine residues, and concomitantly phosphorylates and associates with phospholipase C gamma 1 (PLC gamma 1), through interaction with its src homology domains. The binding of NGF to pp140c-trk with high affinity, the NGF-dependent homology domains. The binding of NGF to pp140c-trk with high affinity, the NGF-dependent activation of its tyrosine kinase activity and the specific association with the effector molecule, PLC gamma 1, suggests that this is the biologically relevant signaling receptor for NGF.  相似文献   

17.
Several reports have established that the action of neurotrophins is not restricted to the nervous system but can affect a broad range of non-neuronal cells. Nerve growth factor (NGF) is present in adult testis and has been suggested as a potential regulator of meiosis in rat seminiferous epithelium. Here we present an extensive immunohistochemical study on neurotrophins and their receptors (p75 and trk) in the developing mouse testis and epididymis, and in fetal human testis. During the early steps of testicular and epididymal organization in the mouse, strong p75 immunoreactivity is detectable in the gonadal ridge in the mesenchyme that is excluded from the evolving testicular cords, and in the mesenchymal cells of the mesonephros. Later in organogenesis, most of the p75-positive interstitial cells of the testis coexpress neurotrophin-3 (NT-3) and the truncated trk B receptor in a developmentally regulated pattern. Our Western blot data confirm the expression of these molecules. These findings suggest that neurotrophin receptors play a role in early inductive events during critical periods of testicular and epididymal development. During fetal and postnatal histogenesis, an increasing number of NT-3- and p75-positive mesenchymal cells start to express alpha-smooth muscle isoactin, suggesting a role for the so-called neurotrophic system in the differentiation of testicular myoid cells and epididymal smooth muscle cells. In the testis of an 18-wk gestational-age human fetus, immunohistochemical analysis has shown intense immunoreactivity of mesenchymal cells to antibodies for neurotrophin receptors p75, trk A, and trk C, and their ligands NGF and NT-3. In addition, we found that in the human fetal testis, the interstitial cells that are differentiating into peritubular myoid cells are associated with a dense network of nerve fibers. Our data suggest that neurotrophins and their receptors are involved in a multifunctional system that regulates cell differentiation and innervation in the developing testis and epididymis.  相似文献   

18.
Malignant activation of the human trk proto-oncogene, a member of the tyrosine protein kinase receptor family, has been implicated in the development of certain human cancers, including colon and thyroid papillary carcinomas. trk oncogenes have also been identified in cultured cells transfected with various DNAs. In this study, we report the characterization of three in vitro-generated trk oncogenes, trk2, trk4, and trk5 (R. Oskam, F. Coulier, M. Ernst, D. Martin-Zanca, and M. Barbacid, Proc. Natl. Acad. Sci. USA 85:2964-2968, 1988), in an effort to understand the spectrum of mutational events that can activate the human trk gene. Nucleotide sequence analysis of cDNA clones of trk2 and trk4 revealed that these oncogenes were generated by a head-to-tail arrangement of two trk tyrosine protein kinase domains connected by a purine-rich region. These oncogenes code for cytoplasmic molecules of 67,000 (p67trk2) and 69,000 (p69trk4) daltons. In contrast, the product of the trk5 oncogene, gp95trk5, is a cell surface glycoprotein of 95,000 daltons. This oncogene was generated by a 153-base-pair in-frame deletion within sequences coding for the extracellular domain of the trk receptor. This activating deletion encompasses a triplet coding for one of the nine cysteine residues that the trk receptor shares with the product of the highly related trkB tyrosine protein kinase gene. Introduction of a single point mutation (TGT----AGT) in this codon resulted in a novel trk oncogene whose product, gp140S345, differs from the nontransforming trk proto-oncogene receptor in a single amino acid residue, Ser-345 instead of Cys-345. These results illustrate that multiple molecular mechanisms, including point mutation, internal deletion, and kinase domain duplication, can result in the malignant activation of the human trk proto-oncogene.  相似文献   

19.
Abstract: K-252b potentiates the neurotrophic effects of neurotrophin-3 (NT-3) in primary cultures of rat central cholinergic and peripheral sensory neurons and in a rat pheochromocytoma PC12 cell line. The ligand and receptor specificity, and role of the low-affinity neurotrophin receptor (p75NTR) in the potentiation response induced by K-252b, are unknown. To address the issues of ligand and receptor specificity of K-252b potentiation, we have examined neurotrophin-induced DNA synthesis ([3H]thymidine incorporation) in NIH3T3 cells expressing trkA, trkB, or trkC . Neither NT-3 nor K-252b alone could stimulate mitogenic activity in the trkA -overexpressing clone. However, coaddition of K-252b (EC50 of ∼2 n M ) with 10–100 ng/ml NT-3 led to incorporation of [3H]thymidine in trkA expressing cells to a level induced by optimal concentrations of nerve growth factor (NGF). The K-252b- and NT-3-induced [3H]thymidine incorporation correlated with an increase in the tyrosine autophosphorylation of the trkA receptor as well as tyrosine phosphorylation of trk -associated phospholipase C-γ1 and SH2-containing proteins. K-252b did not potentiate submaximal doses of NGF, or maximal doses of brain-derived neurotrophic factor (BDNF) or neurotrophin-4/5 (NT-4/5) in trkA -expressing cells. Furthermore, K-252b did not potentiate DNA synthesis by submaximal doses of BDNF, NT-4/5, or NT-3 in trkB - or trkC -expressing NIH3T3 cells, suggesting that the potentiation profile for K-252b was specific for NT-3 in trkA -expressing cells. We found no expression of p75NTR in the trk -expressing NIH3T3 cells. This is the first demonstration that K-252b potentiates a trkA -mediated biological nonneuronal response by NT-3 that occurs independent of p75NTR and appears to be both ligand and receptor specific.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号