首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
神经营养素—4研究进展   总被引:1,自引:0,他引:1  
神经营养素-4(NT-4)能够促进多种神经元的存活,在神经系统发育,分化和损伤修复过程中具有重要作用。NT-4是NGF家族成员之一,它的受体和BDNF相同为TrkB,NT-4的神经营养作用为运动神经元疾病的临床治疗带来了新的希望。  相似文献   

2.
N42—A神经生长因子诱导PC12细胞分化的抑制作用   总被引:2,自引:0,他引:2  
研究表明,缺乏神经生长因子(NGF)的营养支持是Alzheimer′s等神经元退行性疾病发生发展的重要原因,而NGF和/或NGF受体的过度表达则与一些神经系统肿瘤的发生发展有着十分密切的因果关系。采用^125I-NGF受体特异结合实验作为NGF受体活性物质筛选实验模型从中药牛膝中筛选出了能强烈地抑制^125I-NGF受体结合的活性成分N42-A(IC50=6.18±3.43,n=4);细胞培养实验  相似文献   

3.
本文用RGNTF单克隆抗体及抗独特型单克隆抗体的免疫组织化学反应,对RGNTF及其受体在大鼠体仙的分布进行了研究。结果显示,大鼠的肾脏、肾上腺、下颌下腺、胃底腺,以及睾丸丸的生精细胞对RGNTF均呈现强阳性免疫反应,并对RGNTF抗独特型单克隆抗体也呈现阳性免疫反应,表明RGNTF及其受体有较广泛的分布,这种情况与神经生长因子(NGF)及睫状节神经诱向(营养)因子(CNTF)相类似。但是,RGNT  相似文献   

4.
GABA减缓缺氧引起的神经营养素mRNA表达量的变化   总被引:5,自引:0,他引:5  
γ-氨基丁酸是中枢神经系统中的一种内源性抑制递质。近年已有实验证据揭示GABA具有抵抗中枢神经元缺氧或缺血损伤的作用,但其机制尚不清楚。脑源性神经营养因子BDNF,神经生长因子NGF和神经营养素-3是同一家族的成员,它们在海马脑区均有表达。为研究GABA抗缺氧作用的机制,我们以培养的海马CA1神经元为材料,采用原位杂交的方法检测了缺氧后BDNFmRNA,NGFmRNA和NT-3mRNA表达量的变化以及GABA对这种变化的影响。结果显示,缺氧使NGFmRNA和BDNFmRNA的表达量迅速上调且前者的变化极为剧烈,而NT-3mRNA的表达量显著下降;用20μM的GABA处理细胞后,上述缺氧引起的神经营养因子mRNA表达量的上升或下降幅度均被减缓,其中对NGFmRNA表达量变化的影响最为显著。这些结果表明,GABA具有稳定缺氧后BDNFmRNA,NGFmRNA和NT-3mRNA表达水平的作用。推测这种作用与GABA增加氯电导,维持钙稳态以及提高神经元的抗缺氧能力的效应有一定联系  相似文献   

5.
本文用RGNTF单克隆抗体及抗独特型单克隆抗体的免疫组织化学反应,对RGNTF及其受体在 大鼠体内的分布进行了研究.结果显示,大鼠的肾脏、肾上腺、下颌下腺、胃底腺,以及睾丸的生精细胞对 RGNTIF均呈现强阳性免疫反应,并对RGNTF抗独特型单克隆抗体也呈现阳性免疫反应,表明 RGNTF及其受体有较广泛的分布,这种情况与神经生长因子(NGF)及睫状节神经诱向(营养)因子 (CNTF)相类似.但是,RGNTF及其受体的分布特点和NGF、CNTF的分布是不完全相同的,提示作者 分离的RGNTF与NGF和CNTF不是同源物。这样肾上腺皮质、下颌下腺的浆液腺泡及导管上皮细胞、 胃底腺上皮细胞和生精细胞不仅能够产生RGNTF,也能合成RGNTF受体。因此,它们对RGNTF可能 有自分泌的功能,RGNTF对这些细胞可能有自身调节的效应。  相似文献   

6.
神经生长因子的信号转导   总被引:1,自引:0,他引:1  
神经生长因子的信号转导李智任一萍(华东师范大学生物系,上海200062)关键词神经生长因子神经营养蛋白神经营养因子信号转导图1NGF的信号转导机制A.NGF的信号转导概况B.Ras的激活?未知转录调节因子.——转导途径.促进.抑制神经生长因子(n...  相似文献   

7.
在听力损伤过程中有一大类的损伤是由于各种外界因素对于听神经的损伤而引起的。为了观察脑源性神经营养因子(BDNF)和神经营养素-3(NT3)对听神经元的营养作用,并研究基因治疗在听神经损伤治疗中的可行性。在体外建立了听神经元的培养系统,利用LacZ重组腺病毒感染培养的听神经元来研究重组腺病毒介导的外源基因的转染效率,通过X-Gal染色来显示被感染的阳性细胞,在加入100病毒感染复数(MOI)的Ad-  相似文献   

8.
胶质细胞源性神经营养因子GDNF和Neurturin的新受体:TrnR2最近,Neurturin(NTN)———一种与胶质细胞源性神经营养因子(GDNF)相关的神经营养因子被发现,于是产生了一个由GDNF和NTN所组成的转化生长因子(TGF)β相关...  相似文献   

9.
研究表明,缺乏神经生长因子(NGF)的营养支持是Alzheimer's等神经元退行性疾病发生发展的重要原因,而NGF和/或NGF受体的过度表达则与一些神经系统肿瘤的发生发展有着十分密切的因果关系。采用(125)Ⅰ-NGF受体特异结合实验作为NGF受体活性物质筛选实验模型从中药牛膝中筛选出了能强烈地抑制(125)Ⅰ-NGF受体结合的活性成分N42-A(ⅠC(50)=6.18±3.43,n=4);细胞培养实验表明,N42-A对NGF诱导大鼠嗜铬神经瘤PCl2细胞的分化也具有很强的剂量依赖性抑制作用(对0.1nmol/L和0.2nmol/LNGF诱导的大鼠嗜铬神经病PC12细胞轴突生长的半数抑制浓度分别为6μg/mL和21μg/mL)。这表明,N42-A是神经元上介导NGF诱导轴突生长的特异受体抑制剂,不仅对NGF及其受体过度表达所致的神经系统肿瘤的防治具有潜在的应用价值,而且对Alzheimer's等神经元退行性疾病防治药物的开发研究具有十分重要的意义。  相似文献   

10.
Neurturin:与GDNF相关的新的神经营养因子   总被引:2,自引:0,他引:2  
Gao H  Wang XM 《生理科学进展》1998,29(2):151-154
1996年12月,P.T.Kotzbauer等在仓鼠卵巢细胞的条件2基中发现一种新的神经营养因子Neurturin(NTU),并成功克隆了人及小鼠NTN基因。此神经营养因子能促进颈上神经节交感神经元存活,其氨基序列与胶质细胞营养因子(GDNF)有42%的同源性,二者共同构成转化生长因子β(TGF-β)超家族一个新的亚家族。NTN受体α则是通过糖基化磷脂酰肌醇(GPI)连结于细胞膜表面的胞外蛋白,与  相似文献   

11.
Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin 3 (NT-3) are members of a family of structurally related proteins termed neurotrophins that promote the growth and survival of neurons in the central and peripheral nervous systems. Each of these proteins bind to at least two membrane receptors. One is the low affinity nerve growth factor receptor (p75), which binds each member of the neurotrophin family. The other is one of a family of tyrosine kinase receptors —trkA binds only NGF, the relatedtrkB receptor binds BDNF and NT-3, andtrkC binds NT-3 alone. This article reviews kinetic and biochemical information on p75 and its relationship to thetrk gene products.  相似文献   

12.
The members of the family of neurotrophic factors known as neurotrophins, NGF, BDNF, NT-3 and NT4/5 are known to be cleaved intracellularly from immature precursors, the proneurotrophins. NGF and the other neurotrophins regulate neurite outgrowth and neuronal survival during development via binding to Trk receptor tyrosine kinases and the p75 neurotrophin receptor. Surprisingly, the proneurotrophins were shown to be also biologically active ligands. ProNGF and proBDNF induce neuronal apoptosis via binding to a complex of p75 and sortilin. Therefore, life and death seems to be a delicate interplay between 'cleavage' or 'not cleavage' of the proneurotrophins. However, there is a third aspect to this story. In general, peptide-hormone precursors are known to give rise to several biologically active peptides from one precursor molecule. The paradox with the proneurotrophins is that although they have several additional potential cleavage sites that would necessarily give rise to other peptides besides the neurotrophins and thus new members in the neurotrophin family, this aspect has been largely neglected. This article aims to review evidence for biologically active peptides other than the NGF and NT-3 that can be generated from the proNGF and proNT-3.  相似文献   

13.
The low-affinity p75 molecule and trk tyrosine kinases serve as receptors for target-derived neurotrophins. While the mechanism by which receptor tyrosine kinases impart intracellular signaling has become well understood, the precise roles of the p75 receptor are not fully defined. The p75 neurotrophin receptor belongs to a family of transmembrane molecules which also serve as receptors for the tumor necrosis factor family of cytokines. Each receptor shares a common extracellular structure highlighted by conserved cysteine-rich repeats. Because NGF, BDNF, NT-3, and NT-4/5 bind to p75 with similar affinity, p75 may either act as a common subunit in a neurotrophin receptor complex with trk family members, or act by independent mechanisms to mediate biological actions of each neurotrophin. 1994 John Wiley & Sons, Inc.  相似文献   

14.
The neurotrophins mediate their effects through binding to two classes of receptors, a tyrosine kinase receptor, member of the Trk family, and the low-affinity neurotrophin receptor, p75LNGFR, of as yet undefined signalling capacity. The need for a two-component receptor system in neurotrophin signalling is still not understood. Using site-directed mutagenesis, we have identified positively charged surfaces in BDNF, NT-3 and NT-4 that mediate binding to p75LNGFR. Arg31 and His33 in NT-3, and Arg34 and Arg36 in NT-4, located in an exposed hairpin loop, were found to be essential for binding to p75LNGFR. In BDNF, however, positively charged residues critical for p75LNGFR binding (Lys95, Lys96 and Arg97) were found in a spatially close but distinct loop region. Models of each neurotrophin were built using the coordinates of NGF. Analysis of their respective electrostatic surface potentials revealed similar clusters of positively charged residues in each neurotrophin but with differences in their precise spatial locations. Disruption of this positively charged interface abolished binding to p75LNGFR but not activation of cognate Trk receptors or biological activity in Trk-expressing fibroblasts. Unexpectedly, loss of low-affinity binding in NT-4, but not in BDNF or NT-3, affected receptor activation and biological activity in neuronal cells co-expressing p75LNGFR and TrkB, suggesting a role for p75LNGFR in regulating biological responsiveness to NT-4. These findings reveal a possible mechanism of ligand discrimination by p75LNGFR and suggest this receptor may selectively modulate the biological actions of specific neurotrophin family members.  相似文献   

15.
Trk receptors: mediators of neurotrophin action   总被引:46,自引:0,他引:46  
The four mammalian neurotrophins - NGF, BDNF, NT-3 and NT-4 - each bind and activate one or more of the Trk family of receptor tyrosine kinases. Through these receptors, neurotrophins activate many intracellular signaling pathways, including those controlled by Ras, the Cdc42/Rac/RhoG protein family, MAPK, PI3K and PLC-gamma, thereby affecting both development and function of the nervous system. During the past two years, several novel signaling pathways controlled by Trk receptors have been characterized, and it has become clear that membrane transport and sorting controls Trk-receptor-mediated signaling because key intermediates are localized to different membrane compartments. Three-dimensional structures of the Trk receptors, in one instance in association with a neurotrophin, have revealed the structural bases underlying specificity in neurotrophin signaling.  相似文献   

16.
Survival and maintenance of vertebrate neurons are influenced by neurotrophic factors which mediate their signal by binding to specific cell surface receptors. We determined the binding sites of human neurotrophin-3 (NT-3) to its receptors trkC and gp75 by mutational analysis and compared them to the analogous interactions of nerve growth factor (NGF) with trkA and gp75. The trkC binding site extends around the central beta-strand bundle and in contrast to NGF does not make use of non-conserved loops and the six N-terminal residues. The gp75 epitope is dominated by loop residues and the C-terminus of NT-3. A novel rapid biological screening procedure allowed the identification of NT-3 mutants that are able to signal efficiently through the non-preferred receptors trkA and trkB, which are specific for NGF and BDNF respectively. Mutation of only seven residues in NT-3 resulted in a human neurotrophin variant which bound to all receptors of the trk family with high affinity and efficiently supported the survival of NGF-, BDNF- and NT-3-dependent neurons. Our results suggest that the specificity among neurotrophic factors is not solely encoded in sequence diversity, but rather in the way each neurotrophin interacts with its preferred receptor.  相似文献   

17.
Neurotrophins play an essential role in nerve systems. Recent reports indicated that neurotrophins [nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4/5 (NT-4/5)] have numerous effects on non-neural cells, especially on immune cells. However, whether lung cells express neurotrophins and/or their receptors (TrkA for NGF, TrkB for BDNF and NT-4/5, and TrkC for NT-3) has never been systematically investigated. We investigated constitutive expression of neurotrophin family and their Trk receptor family in alveolar macrophages and other peripheral lung cells of mice. New findings were: (1) RT-PCR for neurotrophins and their receptors detected NT-3 and NT-4/5 in alveolar macrophages, BDNF, NT-4/5, trkA, the truncated form of trkB, and trkC in lung homogenate, but no trks in alveolar macrophages, (2) immunohistochemistry for neurotrophin receptors detected TrkA in capillary cells, the truncated form of TrkB, and TrkC in interstitial macrophages, (3) immunoelectron microscopy for TrkC revealed expression of TrkC on the surface of interstitial macrophages, and (4) in situ hybridization for neurotrophins detected BDNF in interstitial macrophages and alveolar type I cells, NT-3 in alveolar macrophages, and NT-4/5 in alveolar and interstitial macrophages. These findings indicate that a previously unknown signal trafficking occurs through neurotrophins in peripheral lung.  相似文献   

18.
Abstract: We have examined the role of the p75 neurotrophin receptor in survival-promoting effects of nerve growth factor (NGF) and neurotrophin-3 (NT-3) on cultured Purkinje cells. Previously, we showed that NGF promotes Purkinje cell survival in conjunction with (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD), an agonist of metabotropic excitatory amino acid receptors, whereas NT-3 by itself increases cell number. We now present evidence that p75 plays different roles in Purkinje cell responses to the two neurotrophins. A metabotropic receptor of the mGluR1 subtype may interact with p75 function, so as to regulate Purkinje cell responsiveness to neurotrophins. When cerebellar cultures were grown for 6 days in the presence of ACPD and a mutant form of NGF that does not bind to p75, no increase in Purkinje cell number was observed. Moreover, the survival-promoting effect of wild-type NGF and ACPD could be inhibited by a neutralizing antiserum to p75 or by a pyrazoloquinazolinone inhibitor of neurotrophin binding to p75. In contrast, the response to NT-3 was potentiated by anti-p75 treatment and by the quinazolinone. These data indicate the mediation of p75 in the trophic response to NGF-ACPD and a negative modulatory role of p75 in the action of NT-3. To probe the role of ACPD in the p75-dependent response to NGF, metabotropic receptor subtype-specific ligands were tested. The pattern of agonist specificity implicated the mGluR1 subtype, a receptor that is expressed at high levels by Purkinje cells and linked to activation of protein kinase C (PKC). Down-regulation or blockade of PKC abolished the response to NGF-ACPD. Consistent with the opposite roles of p75 in effects of the two neurotrophins, blockade of mGluR1 or PKC potentiated the survival response elicited by NT-3. In sum, our data suggest that afferent excitatory transmitters activate specific metabotropic receptors to elicit a p75-mediated action of NGF. NT-3 acts on Purkinje cells by a different mechanism that is not absolutely p75-dependent and that is reduced by neurotrophin access to p75 and metabotropic receptor activity.  相似文献   

19.
Neurotrophin-3 (NT-3) has low-affinity (Kd = 8 x 10(-10) M), as well as high-affinity receptors (Kd = 1.8 x 10(-11) M) on embryonic chick sensory neurons, the latter in surprisingly high numbers. Like the structurally related proteins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), NT-3 also binds to the low-affinity NGF receptor, a molecule that we suggest to designate low-affinity neurotrophin receptor (LANR). NT-3 dissociates from the LANR much more rapidly than BDNF, and more slowly than NGF. The binding of labelled NT-3 to the LANR can be reduced by half using a concentration of BDNF corresponding to the Kd of BDNF to the LANR. In contrast, the binding of NT-3 to its high-affinity neuronal receptors can only be prevented by BDNF or NGF when used at concentrations several thousand-fold higher than those corresponding to their Kd to their high-affinity neuronal receptors. Thus, specific high-affinity NT-3 receptors exist on sensory neurons that can readily discriminate between three structurally related ligands. These findings, including the remarkable property of the LANR to bind three related ligands with similar affinity, but different rate constants, are discussed.  相似文献   

20.
The nerve growth factor (NGF) family of neurotrophins provides a substantial part of the normal trophic support for sensory neurons during development. Although these neurotrophins, which include Brain-Derived Neurotrophic Factor (BDNF), Neurotrophin-3 (NT-3), and Neurotrophin-4 (NT-4), continue to be expressed into adulthood, there is little evidence that they are survival factors for adult neurons. Here we have examined the age-dependent neurotrophic requirements of a specialized type of mechanoreceptive neuron, called a D-hair receptor, in the dorsal root ganglion (DRG). Studies using knockout mice have demonstrated that the survival of D-hair receptors is dependent upon both NT-3 and NT-4. Here, we show that the time period when D-hair receptors require these two neurotrophins is different. Survival of D-hair receptors depends on NT-3 early in postnatal development and NT-4 later in the mature animal. The age-dependent loss of D-hair neurons in older NT-4 knockout mice was accompanied by a large reduction (78%) in neurons positive for the NT-4 receptor (trkB) together with neuronal apoptosis in the DRG. This is the first evidence that sensory neurons have a physiological requirement for a single neurotrophin for their continued survival in the adult.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号