首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 990 毫秒
1.
以Swaisonine(Sw)作为高尔基体N-糖链加工酶系中α-甘露糖苷酶II的特异抑制剂。研究N-糖链结构和胰岛素受体(Ins-R)功能的关系,发现Sw不影响细胞生长和3H-亮氨酸参入SMMC7721细胞,但明显促进3H-甘露糖参入细胞总糖蛋白和表面糖蛋白,并使后者的ConA强结合组分显著增加,提示Sw使Ins-R的N-糖链变成杂合型及高甘露糖型,胰岛素结合试验后作Scatchard分析,发现S  相似文献   

2.
利用标记N-糖链的凝集素亲和层析法研究了佛波醇肉桂酸乙酸酯(PMA)对人肝癌细胞SMMC-7721表面糖蛋白上N-糖链结构的影响,发现100nmol/L的PMA处理5天后,可使细胞表面N-糖链中高甘露糖型和杂合型以及四天线、C2C2,6三天线复杂型的比例增高,而二天线复杂型降低。此结果与我们曾报道的视黄酸(RA)和双丁配环磷酸腺苷(db-cAMP)对该细胞表面N-糖链的影响相反。因RA和db-cAMP是SMMC-7721细胞的分化诱导剂,可抑制细胞生长;而PMA是该细胞的增殖促进剂,故细胞表面N-糖链的变化与细胞的分化和增殖密切相关。  相似文献   

3.
视黄酸对人肝癌细胞表面N糖链类型及天线数的影响   总被引:1,自引:0,他引:1  
本文采用系列凝集素柱层析法,并配合外切糖苷酶处理研究了在视黄酸作用1-5天过程中人肝癌细胞株SMMC-7721细胞表面N糖结构的变化。结果表明,RA促进^3H-甘露糖参入细胞表面N糖链,使高甘露糖型N糖的百分比下降,复杂型百分比长升,并促进二天线N糖链的生物合成,使多天线特别是四天线和C2,C21b三天线N糖链的合成减少。结果提示,N糖链结构的这些变化可能是RA诱导SMMC-7721细胞向正常方向  相似文献   

4.
利用标记N-糖链的凝集素亲和层析法研究了佛波醇肉桂酸乙酸酯对人肝癌细胞SMMC-7721表面糖蛋白上N-糖链结构的影响,发现100nmol/L的PMA处理5天后,可使细胞表面N-糖链中高甘露糖型和杂合型以及四天线,C2C2,6三天线复杂型的比例增高,而二天线复杂型降低,此结果与我们曾报道的视黄酸和双丁酰环磷酸腺苷对该细胞表面N-糖链的影响相反。因RA和db-cAMP是SMMC-7721细胞的分化诱  相似文献   

5.
应用抑制糖蛋白N-糖链合成的地衣霉素处理SMMC-7721人肝癌细胞,3H甘露糖掺入实验显示细胞表面糖蛋白N-糖链的合成受到显著抑制,但细胞膜表面运铁蛋白受体内吞再循环的过程无显明变化,进一步的研究表明受体与运铁蛋白的亲和力亦无改变,但细胞膜表面运铁蛋白受体数减少。结果提示用地衣霉素处理细胞后,在内质网合成的无N-糖链的运铁蛋白受体影响其运输到细胞膜表面表达。  相似文献   

6.
SMMC-7721细胞经10μmol/L视黄酸(RA)处理1-5天后,完整细胞或纯化胰岛素受体(Ins-R)对胰岛素(Ins)的结合容量逐日降低。^%35S-甲硫氨酸参人Ins-R明显减少,特别是β亚基。部分纯化Ins-R的酷氨酸蛋白激酶(TPK)活力也随RA处理时间延长而逐步降低。结果表明RA降低Ins-R的表达。但RA并不改变Ins-R与Ins结合的亲和力和它的负协同效应。  相似文献   

7.
双丁酰环烯酸腺苷对人肝癌细胞株SMMC—7721表面N—糖…   总被引:2,自引:0,他引:2  
本文采用系列凝集素柱层析法,并配合外切糖苷酶研究了在双丁酰环磷酸腺苷(dB-cAMP)作用1-5过程中人肝癌细胞株SMMC-7721细胞表面N-糖链类型及复杂型糖链天线数的变化。结果表明,dB-cAMP促进^3H-Man参人细胞表面N-糖链,使高甘露糖型N-糖链的百分比下降,并促进二天线N-糖链的生物合成,使多天线特别是四天线和C2C2C6三天线N-糖链的百分比减少。结果提示,N-糖链结构的这些变  相似文献   

8.
本文采用系列凝集素柱层析法,并配合外切精苷酶研究了在双丁酰环磷酸腺苷(dB-cAMP)作用1~5天过程中人肝癌细胞株SMMC-7721细胞表面N-糖链类型及复杂型糖链天线数的变化。结果表明,dB-cAMP促进3H—Man参入细胞表面N-糖链,使高甘露糖型N-糖链的百分比下降,并促进二天线N-糖链的生物合成。使多天线特别是四天线和C2C2C6三天线N-糖链的百分比减少.结果提示,N-糖链结构的这些变化可能是dB-cAMP诱导SMMC-7721细胞向正常方向分化的结果。  相似文献   

9.
地衣霉素对细胞膜表面运铁蛋白受体功能的影响   总被引:1,自引:0,他引:1  
应用抑制糖蛋白N-糖链合成的地衣霉素处理SMMC-7721人肝癌细胞,3H甘露糖掺入实验显示细胞膜表面糖蛋白N-糖链的合成受到显著抑制,但细胞膜表面运铁蛋白受体内吞再循环的过程无显明变化,进一步的研究表明受体与运铁蛋白的亲和力亦无改变,但细胞膜表面运铁蛋白受体数减少。结果提示用地衣霉素处理细胞后,在内质网合成的无N-糖链的运铁蛋白受体影响其运输到细胞膜表面表达。  相似文献   

10.
衣霉素是一种糖蛋白N-连接型糖链合成的抑制剂。它可抑制人肝癌细胞株SMMC-7721的生长,其抑制率和剂量及处理时间有相关性。衣霉素处理细胞18h尚可显著抑制^3H-亮氨酸的参入。这些标记化合物的参入抑制都有量效关系。0.1μg/mL衣霉素处理18h后,细胞表面胰岛素受体和胰岛素的结合容量下降,而对照细胞和处理细胞的胰岛素竞争结合曲线基本平行。这主要由于衣霉素抑制新合成的胰岛素受体的糖基化所致。我  相似文献   

11.
The facilitative glucose transporter GLUT4 plays a key role in regulating whole body glucose homeostasis. GLUT4 dramatically changes its distribution upon insulin stimulation, and insulin-resistant diabetes is often linked with compromised translocation of GLUT4 under insulin stimulation. To elucidate the functional significance of the sole N-glycan chain on GLUT4, wild-type GLUT4 and a GLUT4 glycosylation mutant conjugated with enhanced GFP were stably expressed in HeLa cells. The N-glycan contributed to the overall stability of newly synthesized GLUT4. Moreover, cell surface expression of wild-type GLUT4 in HeLa cells was elevated upon insulin treatment, whereas the glycosylation mutant lost the ability to respond to insulin. Subcellular distribution of the mutant was distinct from that of wild-type GLUT4, implying that the subcellular localization required for insulin-mediated translocation was impaired in the mutant protein. Interestingly, kifunensine-treated cells also lost sensitivity to insulin, suggesting the functional importance of the N-glycan structure for GLUT4 trafficking. The K(m) or turnover rates of wild-type and mutant GLUT4, however, were similar, suggesting that the N-glycan had little effect on transporter activity. These findings underscore the critical roles of the N-glycan chain in quality control as well as intracellular trafficking of GLUT4.  相似文献   

12.
13.
The insulin receptor/kinase was purified to near homogeneity from human placenta. The purified kinase exhibited a specific activity of 300 nmol/min/mg of protein at 30 degrees C using the synthetic peptide, Arg-Arg-Leu-Ile-Glu-Asp-Ala-Glu-Tyr-Ala-Ala-Arg-Gly, as substrate in the presence of insulin. Treatment of the receptor/kinase with dithiothreitol (DTT) reduced insulin binding by 40-50% and also inhibited tyrosine kinase activity. Phosphorylation and activation of the receptor/kinase did not prevent the DTT-induced loss of binding but completely protected it from the deleterious effects of reducing agent on enzymic activity. Analyses of the structure of the receptor/kinase following phosphorylation and treatment with DTT indicated that the class I disulfide bonds were reduced under the conditions employed, but the tetrameric structure of the receptor/kinase was essentially unaltered. These findings indicate that intact class I disulfides are required for insulin binding but are not necessary for maintenance of the preactivated kinase. DTT was also found to enhance the autoactivation of the insulin receptor/kinase and to promote the reversal of the autophosphorylation reaction. Thus disulfide bonds appear to have multiple roles in the function of the insulin receptor/kinase.  相似文献   

14.
人血浆纤连蛋白(Fibronectin,Fn)与人胎盘纤连蛋白两者在肽链结构上基本相同,但人血浆Fn的N-糖链结构为二天线结构,而人胎盘Fn不仅N-糖链的数量增加,同时还含有多天线结构,分别用~(125)I标记这两种具有不同糖链结构的Fn,观察两者与HT1080细胞的饱和结合的亲和性,结果发现,在4℃,人血浆Fn与HT1080细胞的饱和结合为129ng/10~5细胞,解离常数为2.83×10~(-8)mol/L,人胎盘Fn与HT1080细胞的饱和结合为133ng/10~6细胞,解离常数为2.64×10~(-8)mol/L.因而,人血浆Fn与人胎盘Fn上N-糖链的不同并未影响其与受体的结合.  相似文献   

15.
16.
An elevated content of membrane glycoprotein PC-1 has been observed in cells and tissues of insulin resistant patients. In addition, in vitro overexpression of PC-1 in cultured cells induces insulin resistance associated with diminished insulin receptor tyrosine kinase activity. We now find that PC-1 overexpression also influences insulin receptor signaling at a step downstream of insulin receptor tyrosine kinase, independent of insulin receptor tyrosine kinase. In the present studies, we employed Chinese hamster ovary cells that overexpress the human insulin receptor (CHO IR cells; ∼106 receptors per cell), and transfected them with human PC-1 c-DNA (CHO IR PC-1). In CHO IR PC-1 cells, insulin receptor tyrosine kinase activity was unchanged, following insulin treatment of cells. However, several biological effects of insulin, including glucose and amino acid uptake, were decreased. In CHO IR PC-1 cells, insulin stimulation of mitogen-activated protein (MAP) kinase activity was normal, suggesting that PC-1 overexpression did not affect insulin receptor activation of Ras, which is upstream of MAP kinase. Also, insulin-stimulated phosphatidylinositol (PI)-3-kinase activity was normal, suggesting that PC-1 overexpression did not interfere with the activation of this enzyme by insulin receptor substrate-1. In these cells, however, insulin stimulation of p70 ribosomal S6 kinase activity was diminished. These studies suggest, therefore, that, in addition to blocking insulin receptor tyrosine kinase activation, PC-1 can also block insulin receptor signaling at a post-receptor site. J. Cell. Biochem. 68:366–377, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
衣霉素(Tunicamycin)是一种糖蛋白N-连接型糖链合成的抑制剂。它可抑制人肝癌细胞抹SMMC-7721的生长,其抑制率和剂量及处理时间有相关性。衣霉素处理细胞18h尚可显著抑制~3H-甘露糖和~3H-氨基葡萄糖参入细胞,但仅轻度抑制~3H-亮氨酸的参入。这些标记化合物的参入抑制都有量效关系。0.1gg/mL衣霉素处理18h后,细胞表面胰岛素受体和胰岛素的结合容量下降,而对照细胞和处理细胞的胰岛素竞争结合曲线基本平行。这主要由于衣霉素抑制新合成的胰岛素受体的糖基化所致。我们对糖基化障碍引起细胞膜胰岛素受体结合容量降低的机理作了讨论。  相似文献   

18.
The influence of a mild heat shock on the fate of the insulin-receptor complex was studied in cultured fetal rat hepatocytes whose insulin glycogenic response is sensitive to heat [Zachayus and Plas (1995): J Cell Physiol 162:330–340]. After exposure from 15 min to 2 hr at 42.5°C, the amount of 125I-insulin associated with cells at 37°C was progressively decreased (by 35% after 1 hr), while the release of 125I-insulin degradation products into the medium was also inhibited (by 75%), more than expected from the decrease in insulin binding. Heat shock did not affect the insulin-induced internalization of cell surface insulin receptors but progressively suppressed the recycling at 37°C of receptors previously internalized at 42.5°C in the presence of insulin. When compared to the inhibitory effects of chloroquine on insulin degradation and insulin receptor recycling, which were immediate (within 15 min), those of heat shock developed within 1 hr of heating. The protein level of insulin receptors was not modified after heat shock and during recovery at 37°C, while that of Hsp72/73 exhibited a transitory accumulation inversely correlated with variations in insulin binding, as assayed by Western immunoblotting from whole cell extracts. Coimmunoprecipitation experiments revealed a heat shock-stimulated association of Hsp72/73 with the insulin receptor. Affinity labeling showed an interaction between 125I-insulin and Hsp72/73 in control cells, which was inhibited by heat shock. These results suggest that increased Hsp72/73 synthesis interfered with insulin degradation and prevented the recycling of the insulin receptor and its further thermal damage via a possible chaperone-like action in fetal hepatocytes submitted to heat stress. © 1996 Wiley-Liss, Inc.  相似文献   

19.
Biological actions of insulin regulate glucose metabolism and other essential physiological functions. Binding of insulin to its cell surface receptor initiates signal transduction pathways that mediate cellular responses. Thus, it is of great interest to understand the mechanisms underlying insulin receptor binding kinetics. Interestingly, negative cooperative interactions are observed at high insulin concentrations while positive cooperativity may be present at low insulin concentrations. Clearly, insulin receptor binding kinetics cannot be simply explained by a classical bimolecular reaction. Mature insulin receptors have a dimeric structure capable of binding two molecules of insulin. The binding affinity of the receptor for the second insulin molecule is significantly lower than for the first bound insulin molecule. In addition, insulin receptor aggregation occurs in response to ligand binding and aggregation may also influence binding kinetics. In this study, we develop a mathematical model for insulin receptor binding kinetics that explicitly represents the divalent nature of the insulin receptor and incorporates receptor aggregation into the kinetic model. Model parameters are based upon published data where available. Computer simulations with our model are capable of reproducing both negative and positive cooperativity at the appropriate insulin concentrations. This model may be a useful tool for helping to understand the mechanisms underlying insulin receptor binding and the coupling of receptor binding to downstream signaling events.  相似文献   

20.
Conjointly, the solvent-exposed residues of the central alpha-helix of the B chain form a well-defined ridge, which is flanked and partly overlapped by the two described insulin receptor binding surfaces on either side of the insulin molecule. To evaluate the importance of this interface in insulin receptor binding, we developed a new powerful method that allows us to introduce all the naturally occurring amino acids into a given position and subsequently determine the receptor binding affinities of the resulting insulin analogues. The total amino acid scanning mutagenesis was performed at positions B9, B10, B12, B13, B16, and B17, and the vast majority of the insulin analogue precursors were expressed and secreted in amounts close to that of the wild-type (human insulin) precursor. The analogue binding data revealed that positions B12 and B16 were the two positions most affected by the amino acid substitutions. Interestingly, the receptor binding affinities of the B13 analogues were also markedly affected by the amino acid substitutions, suggesting that GluB13 indeed is a part of insulin's binding surface. The B10 library screen generated analogues covering a wide range of (20-340%) of relative binding affinities, and the results indicated that a structural stabilization of the central alpha-helix and thereby a more rigid presentation of the binding epitope at the insulin receptor is important for receptor recognition. In conclusion, systematic amino acid scanning mutagenesis allowed us to confirm the importance of the B chain alpha-helix as a central recognition element serving as a linker of a continual binding surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号