首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
M.F. Ren  C.H. Lu  J.S. Han 《Peptides》1985,6(6):1015-1020
Intrathecal injection of subanalgesic doses of morphine (7.5 nmol) and dynorphin-A-(1–13) (1.25 nmol) in combination resulted in a marked analgesic effect as assessed by tail flick latency in the rat. The analgesic effect of the composite dynorphin/morphine was dose-dependent in serial dilutions so that a composition of 1/8 of the analgesic dose of dynorphin and 1/3 that of morphine produced an analgesic effect equipotent to full dose of either drug applied separately. The analgesic effect induced by dynorphin/morphine mixture was not accompanied by motor dysfunction and was easily reversed by a small dose (0.5 mg/kg) of naloxone. Contrary to the augmentatory effect of dynorphin on morphine analgesia in the spinal cord, intracerevroventricular (ICV) injection of 20 nmol of dynorphin-A-(1–13) exhibited a marked antagonistic effect on the analgesia produced by morphine (120 nmol, ICV). The theoretical considerations and practical implications of the differential interactions between dynorphin-A-(1–13) and morphine in the brain versus spinal cord are discussed.  相似文献   

2.
Dynorphin: potent analgesic effect in spinal cord of the rat   总被引:2,自引:0,他引:2  
J S Han  C W Xie 《Life sciences》1982,31(16-17):1781-1784
Evidence is presented to show a strong and long-lasting analgesic effect after injection of dynorphin into the subarachnoid space of the spinal cord of the rat. Calculating on a molar basis dynorphin was 6-10 times more potent than morphine and 65-100 times more potent than morphiceptin, the specific mu receptor agonist. Dynorphin analgesia was completely reversed by intrathecal injection of anti-dynorphin IgG and partially reversed by naloxone. Acute tolerance to morphine analgesia did not affect the occurrence of dynorphin analgesia. Evidence from different lines of approach suggest that dynorphin may bind with kappa receptors in the spinal cord to exert its analgesic effect.  相似文献   

3.
The effects of putative mu and kappa agonists, with and without naloxone, were compared in the formalin and tail flick tests in rats. The mu agonist sufentanil was more potent in the tail flick test than the formalin test while the opposite was true for the kappa agonist ethylketocyclazocine (EKC). MR2034 was equipotent in the two tests and in the tail flick test, analgesia decreased at high doses. The naloxone (0.1 mg/kg) dose-ratios (DR) for sufentanil and EKC were 3 to 7 times larger for the tail flick test than the formalin test. From this and other DR studies it is argued that in thermal pain tests, opioid analgesia is mediated primarily by mu receptors while in non thermal tests kappa effects predominate.  相似文献   

4.
Analgesic effects of dynorphin-A and morphine in mice   总被引:3,自引:0,他引:3  
To investigate whether or not dynorphin-A is analgesic, the effect of this peptide was tested in comparison with that of morphine in mice. Dynorphin-A produced a potent analgesic effect in the acetic acid writhing and tail pinch tests, but a weak effect in the tail flick test when given by intracerebroventricular injection. In contrast, morphine caused a potent analgesia in all the tests. Dynorphin-A was more effective when given by intrathecal injection than by intracerebroventricular injection, whereas morphine was equipotent by both injection routes. The results suggest that dynorphin-A is analgesic and that its analgesia may be differentiated from that of morphine.  相似文献   

5.
Pryor SC  Nieto F  Henry S  Sarfo J 《Life sciences》2007,80(18):1650-1655
The effects of the opiates morphine and morphine-6-glucuronide (M6G), the mu opioid receptor specific antagonist D-Phe-Cys-Tyr-D-Trp-Om-Thr-Pen-Thr-NH(2) (CTOP), and the general opiate antagonist naloxone on the latency of response to thermal stimulation were determined in the parasitic nematode Ascaris suum. Thermal detection and avoidance behaviors of the worms were evaluated with a tail flick analgesia meter using a modification of a technique employed for nociception experiments in rodents. Morphine and M6G were shown to have a dose dependent analgesic effect on A. suum's latency of response to heat with morphine being the most potent. The analgesic effect of morphine was reversed by naloxone but not CTOP. Neither naloxone nor CTOP was able to block the analgesia of M6G. CTOP but not naloxone had significant analgesic effects on its own. These findings are generally consistent with previous results on the effects of opiates and nitric oxide release from A. suum tissue. Apparently these nematodes possess opioid receptors that effect nociception.  相似文献   

6.
Substance P was found to be a potent, long-lasting analgesic in the tail flick test in rats following intracerebral administration, via chronically indwelling cannulae, into the midbrain periaqueductal gray. Substance P was approximately five times as potent as morphine sulfate on a weight basis; however, it was 25 times more potent than morphine on a molar basis. The analgesic activity produced by Substance P was significantly antagonized by pretreatment with naloxone, a narcotic antagonist. The analgesic activity of Substance P exhibited a rapid onset (1 min.), peaked by 3 minutes post infusion and its duration of activity was between 30 and 60 minutes. Thus, Substance P may be yet another endogenous analgesic peptide.  相似文献   

7.
Loperamide, a mu opioid receptor agonist, which is commonly used as an antidiarrhoeal agent has been reported to possess analgesic activity after intrathecal administration. However, the exact analgesic profile, i.e., onset, duration and intensity of analgesia in relation to morphine is not fully known. In the present study, the acute analgesic effect of loperamide (5 microg) was compared with that of morphine (5 microg) and morphine + loperamide (5 microg of each) using the tail flick method after intrathecal administration. Naloxone (5 mg/kg) reversibility of the analgesic effect was also studied. The analgesic response of loperamide was significantly higher than morphine. Even after 22 hr, maximum possible effect was greater than 49%. Naloxone partially antagonized the analgesic effect of loperamide. This suggested that loperamide may be acting through blockade of Ca2+ channels besides activating mu opioid receptors. Loperamide may prove to be a better substitute for morphine as spinal analgesic.  相似文献   

8.
L F Tseng 《Life sciences》1981,29(14):1417-1424
The inhibition of tail flick response to radiant heat and body temperature changes after intrathecal administration of β-endorphin (β-EP) and D-Ala2-D-Leu5-enkephalin (DADL) were studied in rats. Both opioid peptides caused inhibition of tail flick response. On a molar basis, β-EP was 73% as potent as DADL, but the duration of tail flick inhibition of β-EP was much longer than that of DADL. β-EP induced hyperthermia while DADL did not cause any significant change in body temperature. The tail flick inhibition induced by β-EP (1 nmole) was reversed by 2 mg/kg of naloxone, ip; however, the tail flick inhibition induced by DADL (7 nmole) was not reversed by 2 mg/kg and was incompletely reversed by a higher dose of naloxone one (6 mg/kg, ip). These studies demonstrate the existence of naloxone-resistant opioid receptors in the spinal cord which are sensitive to enkephalin. These results indicate that the opioid receptors involved in the production of opioid responses in the spinal cord are different from those in supraspinal brain areas.  相似文献   

9.
Methionine- and leucine-enkephalin were found to be potent, short-acting analgesics in the tail flick test in rats following intracerebral administration, via chronically indwelling cannulae, into the midbrain periaqueductal gray. Morphine sulfate was approximately 4 times as potent as the enkephalins when infused into this same brain site. The analgesia produced by the enkephalins and by morphine was inhibited by pretreatment with naloxone.  相似文献   

10.
The analgesic effect and possible mechanism(s) of action of 50-200 mg/kg of the aqueous seed extract of H. umbellata (HU) were investigated in different experimental models of analgesia using the tail flick, tail immersion, acetic acid-induced writhing tests and formalin-induced algesia. Oral pre-treatment with 50-200 mg/kg of HU caused significant and dose related analgesic effect in the treated rats in all the experimental models used. This analgesia was mediated via central and peripheral mechanisms. Overall, the results showed that HU possesses analgesic effect which lends support to its folkloric use in the local management of pain.  相似文献   

11.
A significant enhancement of the analgetic effect of morphine (6 mg/kg, subcutaneously; tail withdrawal reflex at 60 degrees C) was observed in rats 3-4 hours after single naloxone (1 mg/kg) administration. Periodical naloxone injection (0.5 mg/kg, subcutaneously, 3 times per day at 3.5-hour intervals for 3 days) led to a prominent and long-term (testing on the 20th and 105th hour after the last naloxone administration) enhancement of morphine analgesia (2.6 mg/kg subcutaneously) and insignificant inhibition of stress analgesia during two-hour immobilization of animals. These modifications of morphine and stress analgetic effects are considered a result of adaptive changes of opiate receptors after their blockade.  相似文献   

12.
Bremazocine: a potent, long-acting opiate kappa-agonist   总被引:15,自引:0,他引:15  
The benzomorphan analogue bremazocine is a potent, centrally-acting analgesic with a long duration of action. In animal models it is free of physical and psychological dependence liability, produces no respiratory depression, and has a variety of other properties which justify its classification as a putative opiate kappa-receptor agonist.Binding studies with tritiated (?)-bremazocine on rat brain membrane preparations show that this molecule differs in its binding properties from previously investigated exogenous or endogenous opioids. Studies on isolated guinea-pig ileum and mouse vas deferens indicate a preference for opiate kappa-receptors.In mice (hot plate, tail flick) and rhesus monkeys (shock titration), bremazocine is a potent analgesic with a long duration of action. Here also, the actions of the antagonists naloxone and Mr 2266 suggest a preference for opiate kappa-receptors.Bremazocine differs from morphine in the non-production of mydriasis and the Straub tail phenomenon in mice, in its lack of effects on respiration in rats, in that it is not self-administered by rhesus monkeys, and in that programmed administration in the same species does not lead to a morphine-like withdrawal syndrome upon cessation of drug treatment or upon naloxone challenge. Prolonged treatment of animals with bremazocine leads to tolerance to its analgesic effects; morphine treatment of such tolerant animals causes analgesia. Conversely, treatment of morphine-tolerant animals with bremazocine does not cause analgesia; these findings suggest that morphine and bremazocine interact with different subpopulations of opiate receptors.  相似文献   

13.
Vasopressin analgesia: specificity of action and non-opioid effects   总被引:4,自引:1,他引:3  
J H Kordower  R J Bodnar 《Peptides》1984,5(4):747-756
Recent neuroanatomical and behavioral evidence has indicated that vasopressin (VP) increases pain thresholds. In the present study intracerebroventricular (ICV) administration of both arginine VP (AVP: 75-500 ng) and 1-deamino-8-D-arginine vasopressin (DDAVP: 150-500 ng) elevated tail flick latencies. Oxytocin (OXY, ICV), also elevated tail-flick latencies (150-1000 ng); however this increase was accompanied by "barrel-roll" seizure activity. VP analgesia was eliminated by pretreatment with 1-deamino-penicillamine-2(O-methyl)tyrosine-AVP (dPTyr(me)AVP: 500 ng, ICV), a VP antagonist, but not naloxone (1 or 10 micrograms, ICV), suggesting that VP modulates nonciceptive thresholds through its own binding sites. Conversely, pretreatment with naloxone (1 micrograms, ICV) but not dPTyr(me)AVP (1 microgram, ICV) attenuated the analgesic efficacy of systemic morphine (10 mg/kg), further dissociating VP and central opiate analgesic processes. Finally, systemic pretreatment with dexamethasone potentiated VP analgesia. These data support the notion that VP is a specific non-opioid pain inhibitor.  相似文献   

14.
S Gupta  S Pasha  Y K Gupta  D K Bhardwaj 《Peptides》1999,20(4):471-478
A synthetic chimeric peptide of Met-enkephalin and FMRFamide (YGGFMKKKFMRFa), based on MERF was synthesized. This peptide was tested for possible antinociceptive effects using the tail flick test in mice. The effect of the chimeric peptide on morphine antinociception and development of tolerance to the antinociceptive action of morphine was also investigated. The chimeric peptide produced significant, dose-dependent antinociception (40, 60 and 90 mg/kg) in the tail flick test. Pretreatment with naloxone (5 mg/kg, IP) significantly attenuated the antinociceptive effect induced by the chimeric peptide (90 mg/kg, IP), indicating involvement of an opioidergic mechanism. In combination experiments with morphine, the antinociceptive dose of the chimeric peptide (60 mg/kg, IP) potentiated morphine (7 mg/kg, IP) antinociception. A low dose of the chimeric peptide (10 mg/kg, IP), that did not produce significant antinociception on its own, also potentiated morphine antinociception. In the tolerance studies, male albino mice received twice daily injections of morphine (20 mg/kg, IP) followed by either saline (0.1 ml) or chimeric peptide (80 mg/kg, IP) for a period of 4 days. A control group received twice daily injections of saline (0.1 ml) for the same period. When tested on Day 5, tolerance to antinociceptive action of morphine (15 mg/kg, IP) was evidenced by decreased response in chronic morphine plus saline treated mice compared to control group. Concurrent administration of chimeric peptide (80 mg/kg, IP) with morphine significantly attenuated the development of tolerance to the antinociceptive action of morphine. The preliminary results of this study demonstrate that peripherally administered chimeric peptide can produce dose dependent, naloxone reversible, antinociception; potentiate morphine antinociception and attenuate morphine tolerance, indicating a possible role of these type of amphiactive sequences in antinociception and its modulation. These chimeric peptides may also prove to be useful tools for further ascertaining the role of FMRFa family of peptides in mechanisms leading to opiate tolerance and dependence.  相似文献   

15.
Naloxone (5 mg/kg subcutaneously) failed to effect significantly the reaction of electric self-stimulation in rats with electrodes implanted into lateral hypothalamic area. In 3 rats the analgesic effect manifested in an increase of the threshold of painful vocalization under electrostimulation of the tail was revealed. The antinociceptive effect was abolished with naloxone. Morphine (3 mg/kg) potentiated self-stimulation while naloxone antagonized this action. The role of opiate receptors in effects of self-stimulation and centrally produced analgesia is discussed.  相似文献   

16.
本工作进一步探索中脑导水管周围灰质(PAG)在吗啡镇痛与纳洛酮拮抗吗啡镇痛中的作用。实验在清醒受限制的大鼠上进行,以电刺激鼠尾出现的甩尾和嘶叫为痛反应指标。结果表明:(1)侧脑室注射微量纳洛酮后,可使电刺激 PAG 或注射微量吗啡于 PAG 所引起的镇痛效应受到明显拮抗;(2)损毀 PAG 或注射微量纳洛酮于 PAG 后,可使由侧脑室注入微量吗啡所引起的镇痛效应显著减弱。由此可见 PAG 既是侧脑室注射吗啡镇痛作用的重要中枢部位,又是侧脑室注射纳洛酮拮抗吗啡镇痛的重要中枢部位。  相似文献   

17.
The aim of this investigation was to study the effect of the doping steroid nandrolone on metamizol and morphine-induced analgesia and tolerance/dependence in rats. Nandrolone per se did not change the basal nociceptive thresholds in both sexes. It diminished the analgesic effect of metamizol in females, revealed by tail flick test, and males, revealed by paw pressure and hot plate tests. In general, the action of nandrolone was to decrease the morphine-induced analgesia in female and male rats. This was strongly manifested by paw pressure and tail flick tests in male, and tail flick tests in female animals. Nandrolone slowed the development of opioid tolerance/dependence. It aggravated the withdrawal syndrome in the females and invigorated aggression in the males. The data provide evidence that anabolic steroid nandrolone might decrease the analgesic action of metamizol or morphine. The doping steroid could modulate opioid tolerance/dependence and the aggressive behavior in a gender dependent manner. The action of nandrolone is most likely due to profound long-term effects on the central nervous system and might be a gateway to addiction of other drugs of abuse.  相似文献   

18.
The effect of methamphetamine on morphine analgesia (tail-flick assay) was studied in non-tolerant mice and in mice made acutely tolerant to morphine following a single injection of 100 mg/kg morphine. The analgesic potency of morphine was increased in non-tolerant and tolerant mice to the same extent by 3.2 mg/kg methamphetamine (3.3 and 4.4 fold increases, respectively). In contrast, the ED50's for morphine analgesia and naloxone-precipitated jumping in mice pretreated with either 100 mg/kg morphine or both morphine and 3.2 mg/kg methamphetamine were not significantly different, indicating that methamphetamine had no effect on the development of acute morphine tolerance and dependence. Although methamphetamine had no effect on the development of acute tolerance to morphine, 4-day pretreatment with methamphetamine produced cross-tolerance to morphine analgesia. However, cross-tolerance to morphine was not accompanied by enchanced sensitivity to naloxone.  相似文献   

19.
B.S. Barbaz  N.R. Hall  J.M. Liebman   《Peptides》1988,9(6):1295-1300
The conditions under which CCK-8-S may block opiate-induced analgesia were examined in detail. A U-shaped dose-response relationship was observed for the ability of CCK-8-S to attenuate (by approximately 50%, at most) morphine-induced tail flick analgesia. The analgesic effects of morphine in the hot plate or acetic acid-induced stretching tests were not altered by CCK-8-S at doses that antagonized morphine in the tail flick test. Tail flick latency elevations induced by meptazinol, a putative mu-1 receptor agonist, were also attenuated by CCK-8-S according to a U-shaped dose-response relationship, but those induced by U-50,488, a kappa agonist, were not antagonized by CCK-8-S doses that attenuated morphine analgesia. Thus, the ability of CCK-8-S to antagonize opiate analgesia does not follow a conventional dose-response relationship, does not extend to all tests of analgesia and may not extend to all opioid drugs. Analgesia mediated by the mu-1 opioid receptor subtype may be more amenable to antagonism by CCK-8-S than that mediated by the kappa receptor subtype.  相似文献   

20.
Antinociceptive activity of a novel buprenorphine analogue   总被引:2,自引:0,他引:2  
HS-599 is a didehydroderivative of buprenorphine that displays high affinity and good selectivity for mu-opioid receptors. We studied its antinociceptive properties after s.c. injection in mice with the tail-flick and hot-plate tests. In the tail-flick test HS-599 (AD50 = 0.2801 micromol/kg s.c.) behaved as a full agonist and was twice as potent as buprenorphine (AD50=0.4569 micromol/kg s.c.) and 50 times more potent than morphine (AD50 = 13.3012 micromol/kg s.c.). Whereas the mu-opioid receptor antagonists naloxone (1-10 mg/kg s.c.) and naltrexone (5-15 mg/kg s.c.) antagonized HS-599 induced analgesia, the delta-opioid receptor antagonist naltrindole (20 mg/kg s.c.) and the kappa-opioid receptor antagonist nor-binaltorphimine (20 mg/kg s.c.) did not. With the hot-plate test at 50 degrees C, HS-599 (AD50 = 0.0359 micromol/kg s.c.) was a full agonist about 130 times more potent than morphine (AD50 = 4.8553 micromol/kg s.c.). With a high intensity nociceptive stimulus (55 degrees C) HS-599 (AD50 = 1.0382 micromol/kg s.c.) remained 7 times more potent than morphine (AD50 = 7.0210 micromol/kg s.c.) but never exceeded the 55% of the maximum possible effect, behaving as a partial agonist able to antagonize morphine antinociception in a dose-dependent manner. HS-599 promises to be a potent and safe new analgesic, preferentially acting at spinal level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号