首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Z Ben-Zvi  C E Graham  A Hurwitz 《Life sciences》1987,40(16):1617-1623
Chronic treatment of mice with clonidine or morphine caused tolerance to the analgesic and thermoregulatory effects of these drugs. After chronic morphine, mice also became tolerant to the analgesic and thermoregulatory effects of clonidine. Cross tolerance to the hypothermic effect of morphine was demonstrated after chronic clonidine administration, but no diminution of morphine-induced analgesia could be shown. Morphine and clonidine acutely increased the retention of sulfobromophthalein (BSP) in plasma and liver. Chronic dosing with morphine or clonidine caused partial tolerance and cross-tolerance to the rise in hepatic BSP caused by an acute challenge with either agonist. However, both drugs elevated plasma BSP levels similarly in tolerant and non-tolerant mice. Thus, regimens which readily induced tolerance to the analgesic and hypothermic effects of morphine or clonidine were only partially effective in modifying the acute hepatobiliary effects of these drugs.  相似文献   

2.
The findings from our laboratory indicated that pharmacological manipulations of GABA system modified morphine analgesia, tolerance and physical dependence. Elevating brain levels of GABA by slowing its destruction with aminooxyacetic acid not only antagonized the analgesic action of morphine in both non-tolerant and tolerant mice, but also enhanced the development of tolerance and physical dependence. On the other hand, blockade of postsynaptic sites of GABA receptors by bicuculline resulted in an inhibition of tolerance and dependence development. Administration of 2,4-diaminobutyric acid, an inhibitor of GABA uptake in the neurons, antagonized morphine analgesia in both non-tolerant and tolerant mice. However, it did not modify naloxone precipitated withdrawal jumping. On the contrary, β-alanine, an inhibitor of the GABA uptake process in glial cells, potentiated naloxone precipitated withdrawal jumping in morphine dependent mice, but it had no effect on morphine antinociception in both non-tolerant and tolerant mice.  相似文献   

3.
The ability of acute environmental or intraperitoneal (i.p.) ethanol to influence morphine antinociceptive effect was studied in mice. In order to induce tolerance to morphine analgesia, mice received daily injections of 10 mg/Kg morphine over a period of 10 days. Mice were divided into three groups: i.p. ethanol (E), environmental ethanol (E*), and control saline (M). During the induction of tolerance these groups were treated identically except on days 1 and 11. On these days, 10 minutes prior to morphine injection, mice received either i.p. ethanol (1g/Kg), environmental ethanol (a bottle of 10% ethanol placed next to the animals cage during the experiments), or an equivalent volume of saline. Analgesia was assessed using a standard hot plate protocol and dose-response cumulative curves for morphine analgesia were obtained on days 1 and 11. On day 1, both the i.p. and environmental administration of ethanol showed similar morphine-potentiation effects [Mean Effective Dose: ED50 (M1)=4.5 mg/kg; ED50 (E1)=2.4 mg/kg; ED50 (E*1)=2.1 mg/kg]. On day 11, control group mice showed a reduction of morphine analgesia at test [ED50 (M11)=14.1 mg/kg]. Mice receiving i.p. and environmental ethanol again showed a leftward shift in dose-response cumulative curves for morphine antinociception with respect to controls [ED50 (E11)=9.1 mg/kg; ED50 (E*11)=4.7 mg/kg]. I.p. ethanol administration at non-antinociceptive doses enhances the morphine antinociception effect similarly in tolerant and non-tolerant (naive) mice. The presence of environmental ethanol can also induce a similar pattern of increase in morphine antinociception effect.  相似文献   

4.
The interaction of sodium pentobarbital with morphine sulfate in both morphine-tolerant and non-tolerant rats was investigated using the tail-compression test for analgesia. Male Sprague-Dawley rats (300–350 g) were given pentobarbital (4, 8, or 16 mg/kg) 5 min before morphine (2, 4, 6, or 8 mg/kg). Control animals received two saline injections, or pentobarbital plus saline, or saline plus morphine. All injections were subcutaneous. Prior to the first injection, a baseline nociceptive threshold was determined for each rat by applying a modified micrometer to its tail and increasing the pressure until a squeak was elicited. Test readings were taken every half-hour for 2 hr beginning 30 min after the second injection. For the chronic studies, animals were first made tolerant to morphine by the administration of the narcotic twice a day for 3 days, increasing the dose from 10 to 50 mg/kg/injection. Identical testing procedures were then followed with these rats except that the test dose of morphine given on day 4 was in the range 8–128 mg/kg. It was found that Na pentobarbital, in the subanesthetic doses used, had neither antinociceptive nor hyperalgesic properties. Furthermore, the barbiturate had no effect on the antinociceptive action of morphine in either morphine-tolerant or non-tolerant rats.  相似文献   

5.
The effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on pain sensitivity, on morphine analgesia, on morphine tolerance and withdrawal were investigated in mice. The heat-radiant tail-flick test was used to assess antinociceptive threshold. Intracerebroventricular (i.c.v.) administration of PACAP alone had no effect on pain sensitivity but in a dose of 500 ng, it significantly diminished the analgesic effect of a single dose of morphine (2.25 mg/kg, s.c.). PACAP (500 ng, i.c.v.) significantly increased the chronic tolerance to morphine and enhanced the naloxone (1 mg/kg, s.c.)-precipitated withdrawal jumping. Theophylline (1 mg/kg, i.p.) pretreatment significantly enhanced the effect of PACAP on morphine analgesia but the effects of PACAP on tolerance and withdrawal were unaffected upon theophylline administration. On the grounds of our previous studies with vasoactive intestinal polypeptide (VIP), it appears that different receptors are involved in the effects of PACAP in acute and chronic morphine actions. Our results indicate that PACAP-induced actions likely participate in acute and chronic effects of morphine and suggest a potential role of PACAP in opioid analgesia, tolerance and withdrawal.  相似文献   

6.
Previously, we have demonstrated that intrathecally (i.t.) administered corticotropin-releasing factor (CRF) in mice produces stimulus-specific antinociception and modulation of morphine-induced antinociception by mechanisms involving spinal kappa opioid receptors. Recently, we also have found that CRF releases immunoreactive dynorphin A, a putative endogenous kappa opioid receptor agonist, from superfused mice spinal cords in vitro. Dynorphin A administered intracerebroventricularlly (i.c.v.) to mice has been shown to modulate the expression of morphine tolerance. In the present study, the possible modulatory effects of i.t. administered CRF as well as dynorphin A on morphine tolerance were studied in an acute tolerance model. Subcutaneous administration of 100 mg/kg of morphine sulfate (MS) to mice caused an acute tolerance to morphine-induced antinociception. The antinociceptive ED50 of MS was increased from 4.4 mg/kg (naive mice) to 17.9 mg/kg (4 hours after the injection of 100 mg/kg MS). To study the modulatory effects of spinally administered CRF and dynorphin A on the expression of morphine tolerance, CRF and dynorphin A were injected i.t. at 15 min and 5 min, respectively, before testing the tolerant mice by the tail-flick assay. The antinociceptive ED50 of MS in tolerant mice was decreased to 8.8 mg/kg and 7.1 mg/kg, respectively, after i.t. administration of CRF (0.1 nmol) and dynorphin A (0.2 nmol). In contrast, 0.5 nmol of alpha-helical CRF (9-41), a CRF antagonist and 0.4 nmol of norbinaltorphimine, a highly selective kappa opioid receptor antagonist, when administered i.t. at 15 min before the tail-flick test in tolerant mice, increased the antinociceptive ED50 of MS to 56.6 mg/kg and 88.8 mg/kg, respectively. These data confirmed the modulatory effect of dynorphin A on morphine tolerance and suggested that CRF, which releases dynorphin A in several central nervous system regions, also plays a modulatory role in the expression of morphine tolerance.  相似文献   

7.
The development of tolerance to ethanol-induced hypothermia and hypnosis, and cross-tolerance with morphine was studied in mice and rats. Ethanol significantly decreased the body temperature in rats (3.0 and 3.2 g/kg) and in mice (3.5 and 4.0 g/kg). Chronic administration of ethanol resulted in the tolerance not only to ethanol hypothermia but also to hypothermic effects of morphine in examined animals. Implantation of morphine pellets caused the development of cross tolerance to ethanol-induced hypothermia in rats but not in mice. The hypnotic effect of ethanol was significantly shorter in chronic alcoholized rats but not in morphine-implanted rats. Neither chronic ethanol administration nor implantation of morphine pellets changed the duration of ethanol-induced hypnosis in mice. These results seem to support the hypothesis on the opiate-like mechanism of ethanol action.  相似文献   

8.
Involvement of T-type voltage dependent Ca2+ channels (VDCCs) on morphine antinociception, in the development of tolerance and dependence to morphine, and naloxone-precipitated abstinence syndrome in morphine dependent mice was examined by using mibefradil, a T-type VDCCs blocker. Mice were rendered tolerant and dependent on morphine by subcutaneous (s.c.) implantation of a morphine pellet containing 75 mg of morphine base for 72 hr. The tail-flick test was used to assess the nociceptive threshold. Coadministration of acute mibefradil (10 mg/kg, i.p.) with morphine enhanced the antinociceptive effects of acute morphine. Repeated mibefradil administration (10 mg/kg, i.p., just before, 24 and 48 hr after morphine pellet implantation) completely blocked the development of tolerance to the antinociceptive effect of morphine and even by this effect reached supersensitivity to morphine. However, repeated mibefradil treatment did not alter the development of dependence to morphine assessed by the A(50) values of naloxone (s.c.) required to precipitate withdrawal jumping 72 hr after morphine pellet. But, acute mibefradil (10, 30, and 50 mg/kg, i.p.) dose dependently decreased the expression of morphine abstinence syndrome when given directly 30 min prior to naloxone (0,05 mg/kg, s.c.) 72 hr after morphine pellet. These results indicate a critical role of T-type VDCCs in morphine antinociception, the development of tolerance to the antinociceptive effects of morphine and in morphine abstinence syndrome.  相似文献   

9.
Experiments were designed to test for short-term tolerance to morphine and ethyl-ketocyclazocine (EKC), mu and kappa agonists, respectively, and cross-tolerance between the two drugs. Mice were primed with one of the drugs, using doses that did not affect the tail-flick response when tested at a time 1 or 3 hours later, when the same or alternate test drug was administered. All animals were injected with the priming drug IP. In one series of experiments, the test drugs were given SC, and in the other, the test drugs were injected ICV under brief halothane anesthesia. Priming with morphine (30 or 100 mg/kg) significantly raised the ED50 for ICV morphine. Priming with EKC (2 or 6 mg/kg) similarly elevated the ED50's for SC and ICV EKC. Symmetrical cross-tolerance was produced in experiments where the test drugs were administered SC when tested at 3 hrs. The effects of priming with EKC on morphine analgesia was evident when the interval between priming and test drugs was 1 hour. When the test drugs were given ICV, cross-tolerance was also symmetrical: priming with EKC significantly raised the ED50 for morphine and priming with morphine raised the ED50 for EKC when tested at 3 hrs. These data suggest that both agonists act on a common site to produce analgesia as similar pA2 values for naloxone antagonism were determined. The occurrence of short-term tolerance and cross-tolerance to the opiates was unaltered by chronic pretreatment with diazepam, phenobarbital, or amphetamine.  相似文献   

10.
The aim of the present study was to explore the possible role of kappa/dynorphin system in the development of tolerance to nicotine antinociception in mice. First, we observed that kappa-opioid receptor (KOP-r) participates in the acute spinal antinociception produced by nicotine (3 and 5 mg/kg, s.c.) since the pre-treatment with the selective kappa antagonist nor-binaltorphimine (3 mg/kg, i.p.) attenuated this response in the tail-immersion test but not in the hot-plate test nor in locomotor responses. Possible changes in the expression of KOP-r were investigated in tolerant mice to nicotine antinociception by using autoradiography of [3H]CI-977 binding. The density of KOP-r decreased in the spinal cord of tolerant mice. In addition, bi-directional cross-tolerance between nicotine (3 and 5 mg/kg, s.c.) and the selective kappa agonist U50,488H (10 mg/kg, s.c.) was found in the tail-immersion test. Recent evidences indicate that an up-regulation of dynorphin levels in the spinal cord and subsequent activation of NMDA receptors participate in the development of tolerance to opioid and cannabinoid antinociception. In this study, dynorphin content in the lumbar spinal cord was similar in control and nicotine tolerant mice. Furthermore, the administration of the NMDA antagonist MK-801 (0.03 and 0.01 mg/kg, i.p.) before each daily nicotine injection did not modify the development of nicotine tolerance. In summary, these data indicate that KOP-r is directly involved in the development of tolerance to nicotine antinociception by a mechanism independent from dynorphin and NMDA receptors.  相似文献   

11.
Mice receiving daily injection of morphine (10 mg/kg) developed tolerance to morphine-induced analgesia, such that after 5–7 days of treatment their thermal response (paw licking) latencies in the hot plate test were indistinguishable from those of control animals. Exposure to a rotating magnetic field for thirty minutes before the daily morphine administrations significantly reduced the development of tolerance. These magnetic exposure also significantly increased over 7–10 days the basal nociceptive thresholds and paw licking response latencies of saline treated mice. Control and sham exposed mice that were fully tolerant to the analgesic effects of morphine failed to show any tolerance to morphine-induced analgesia when exposed to the magnetic stimuli prior to injection. Likewise, the partial tolerance to morphine shown by mice exposed to the rotating magnetic field pre-injection environmental cues was eliminated when control or sham pre-injection cues lacking the magnetic stimuli were provided. In all cases tolerance to morphine-induced analgesia was evident in the subsequent re-test with the original cues. These results indicate that magnetic field exposure can reduce the development of tolerance to the analgesic effects of morphine. They also show that magnetic stimuli function as significant environmental cues for the development of tolerance to morphine-induced analgesia. This suggests that magnetic stimuli affect both the associative (classical conditioning) and non-associative (physiological, pharmacological) mechanisms involved in the development of opiate tolerance.  相似文献   

12.
Bhalla S  Matwyshyn G  Gulati A 《Peptides》2003,24(4):553-561
Several neurotransmitter mechanisms have been proposed to play a role in the development of morphine tolerance. The present study provides evidence for the first time that endothelin (ET) antagonists can restore morphine analgesia in morphine tolerant rats. Tolerance to morphine was induced by subcutaneous implantation of six morphine pellets during a 7-day period. The degree of tolerance to morphine was measured by determining analgesic response (tail-flick latency) and hyperthermic response to morphine sulfate (8 mg/kg, subcutaneously (s.c.)) in placebo and morphine pellet implanted rats. The maximal tail-flick latency in morphine pellet-vehicle treated rats (7.54 s) was significantly lower (P<0.05) when compared to placebo pellet-vehicle treated rats (10s), indicating that tolerance developed to the analgesic effect of morphine. In separate sets of experiments, ET antagonists, BQ123 (10 microg, intracerebroventricularly (i.c.v.)) and BMS182874 (50 microg, i.c.v.) were administered in placebo and morphine tolerant rats. BQ123 was injected twice daily for 7 days and once on day 8. BMS182874 was administered only on day 8. Morphine (8 mg/kg, s.c.) was administered 30min after BQ123 or BMS182874 administration. It was found that both BQ123 and BMS182874 potentiated morphine analgesia in placebo and morphine tolerant rats. BQ123 potentiated tail-flick latency by 30.0% in placebo tolerant rats and 94.5% in morphine tolerant rats compared to respective controls. BMS182874 potentiated tail-flick latency by 30.2% in placebo tolerant rats and 66.7% in morphine tolerant rats. Morphine-induced hyperthermic effect was also potentiated by BQ123 and BMS182874. The duration of analgesic action was also prolonged by BQ123 and BMS182874. The effect of BMS182874 was less as compared to BQ123. BQ123 and BMS182874 are selective ET(A) receptor antagonists. Therefore, it is concluded that ET(A) receptor antagonists restore morphine analgesia in morphine tolerant rats.  相似文献   

13.
Tolerance and cross-tolerance between Tyr-W-MIF-1, a mixed micro-agonist/antagonist, and morphine were examined. Opiate dependence also was examined. Rats were pretreated with Tyr-W-MIF-1, morphine, or saline for 4 days. On day 5, the animals were tested for Tyr-W-MIF-1 analgesia, morphine analgesia, or naloxone-precipitated withdrawal. Tyr-W-MIF-1- and morphine-pretreated animals showed similar levels of dependence. Animals pretreated with Tyr-W-MIF-1 failed to express tolerance to Tyr-W-MIF-1 analgesia but did display cross-tolerance to morphine analgesia. Animals pretreated with morphine displayed tolerance to morphine analgesia but did not express cross-tolerance to Tyr-W-MIF-1 analgesia. Therefore, tolerance and morphine-induced cross-tolerance were not expressed to Tyr-W-MIF-1 analgesia.  相似文献   

14.
The possible role of succinic dehydrogenase (SD) in producing physical dependence to morphine by affecting tissue respiration was investigated in Swiss albino mice during the development of morphine tolerance through a period of addiction and naloxone withdrawal therapy. Tolerance and physical dependence were induced by injecting the mice with morphine sulfate subcutaneously at 8-hour intervals, increasing the dose from 10 mg/kg BW every 24 h for 15 days. The animals were considered to be addicted when they were able to tolerate an otherwise lethal dose of 150 mg/kg 3 times a day. Results indicated that succinic dehydrogenase was inhibited throughout the 15-day period of morphine administration and that this effect was greatest in tolerant animals. Increasing the dose and duration of treatment did not cause further decreases in enzyme activity; instead, after 15 days levels of enzyme activity increased in addicted animals compared with tolerant mice. Furthermore, morphine abstinence for 2 days, markedly increased the levels of SD activity, while 6 days of abstinence had little effect. Naloxone withdrawal at each stage was associated with increased SD activity, but the increase was significant only in tolerant mice.  相似文献   

15.
Opioids are extensively used for the management of both chronic malignant and non malignant pains. One major serious limitation associated with chronic use of opioids is the development of tolerance to its analgesic effect. The effect of Bacopa monnieri, a renowned ayurvedic medicine for acquisition and expression of morphine tolerance in mice, was investigated. Bacopa monnieri, n-Butanol fraction was analyzed on High performance liquid chromatography (HPLC), for Bacopaside A major components i.e. Bacoside A3, Bacopaside ll and Bacosaponin C. Antinociceptive effect of n-Butanol extract of Bacopa monnieri (n Bt-ext BM) (5, 10 and 15 mg/kg) was assessed on hot plate. Effect of different doses of n Bt-ext BM on morphine antinociception was also assessed. n Bt-ext BM was also screened for development of tolerance to antinociceptive effect of Bacopa monnieri by administering 15 mg/kg n Bt-ext BM for seven days. Tolerance to morphine analgesia was induced in mice by administering intraperitoneally (I.P.) 20 mg/kg morphine twice daily for five days. Acute and Chronic administration of 5, 10 and 15 mg/kg n Bt-ext BM significantly reduced both expression and development of tolerance to morphine analgesia in mice. Additionally, Bacopa monnieri was found to enhance antinociceptive effect of morphine in intolerant animals. However, no tolerance to Bacopa monnieri antinociceptive effect was observed in seven days treatment schedule. These findings indicate effectiveness of Bacopa monnieri for management of morphine tolerance.  相似文献   

16.
We tested the role of sex chromosome complement and gonadal hormones in sex differences in several different paradigms measuring nociception and opioid analgesia using "four core genotypes" C57BL/6J mice. The genotypes include XX and XY gonadal males, and XX and XY gonadal females. Adult mice were gonadectomized and tested 3-4 weeks later, so that differences between sexes (mice with testes vs. ovaries) were attributable mainly to organizational effects of gonadal hormones, whereas differences between XX and XY mice were attributable to their complement of sex chromosomes. In Experiment 1 (hotplate test of acute morphine analgesia), XX mice of both gonadal sexes had significantly shorter hotplate baseline latencies prior to morphine than XY mice. In Experiment 2 (test of development of tolerance to morphine), mice were injected twice daily with 10 mg/kg morphine or saline for 6 days. Saline or the competitive NMDA antagonist CPP (3-(2-carboxypiperazin-4yl) propyl-1-phosphonic acid) (10 mg/kg) was co-injected. On day 7, mice were tested for hotplate latencies before and after administration of a challenge dose of morphine (10 mg/kg). XX mice showed shorter hotplate latencies than XY mice at baseline, and the XX-XY difference was greater following morphine. In Experiment 3, mice were injected with morphine (10 mg/kg) or saline, 15 min before intraplantar injection of formalin (5%/25 microl). XX mice licked their hindpaw more than XY mice within 5 min of formalin injection. The results indicate that X- or Y-linked genes have direct effects, not mediated by gonadal secretions, on sex differences in two different types of acute nociception.  相似文献   

17.
Cross-tolerance between [D-Arg2]-dermorphin tetrapeptide analogs and morphine with respect to antinociception was examined in the present set of experiments. Systemic administration of H-Tyr-D-Arg-Phe-Gly-NH2 (TDAPG-NH2), H-Tyr-D-Arg-Phe-beta-Ala-OH (TDAPA) or morphine over a period of 5 days produced the development of tolerance. In the cross-tolerance study, antinociception after subcutaneous (SC), intracerebroventricular (ICV) and intrathecal (IT) administrations of TDAPG-NH2 and TDAPA in morphine-tolerant mice was not significantly different from their respective effects in saline-pretreated control mice. A marked tolerance to SC- and ICV-administered morphine was seen in mice made tolerant to TDAPG-NH2 and TDAPA. However, IT administration of morphine produced no significant decrement in the antinociceptive activity in mice made tolerant to TDAPG-NH2 and TDAPA. These data indicate that [D-Arg2]-dermorphin tetrapeptide analogs can produce significant antinociception in morphine-tolerant mice.  相似文献   

18.
H N Bhargava  P Ramarao 《Peptides》1989,10(4):767-771
Comparative effects of Pro-Leu-Gly-NH2 (MIF) and cyclo(Leu-Gly) (CLG) administered orally at different stages of chronic morphine treatment on the development of tolerance to the analgesic effect of morphine in the rat were determined. Male Sprague-Dawley rats were implanted with either 6 placebo or morphine pellets during a 7-day period. Implantation of morphine pellets resulted in the development of a high degree of tolerance as evidenced by a decrease in the analgesic response to morphine. Administration of CLG (8 and 16 mg/kg/day) on day 5, 6 and 7 of implantation inhibited the development of tolerance to morphine but 4 and 32 mg/kg doses had no effect. Further, CLG (2 mg/kg/day for 7 days) inhibited the development of tolerance but higher doses (4 and 8 mg/kg) had no effect. MIF (26 and 52 mg/kg) administered orally on the last three days of the implantation schedule inhibited the development of tolerance to morphine. MIF (6.5 mg/kg/day for 7 days) inhibited the development of tolerance but the higher doses had no effect. Concurrent administration of MIF (6.5 mg/kg) and CLG (2 mg/kg) for seven days failed to inhibit the development of tolerance. A single dose of MIF or CLG administered a day before the assessment of tolerance did not affect the morphine tolerance. Thus, even after a significant degree of tolerance to morphine had developed, neuropeptides like MIF and CLG given orally, in appropriate doses, can inhibit development of tolerance to morphine and restore the analgesic effect of morphine.  相似文献   

19.
L.J. King  K.H. Minnema  C. Cash 《Life sciences》1977,21(10):1465-1473
Morphine sulphate (4 mg/kg to 32 mg/kg) produced a dose-dependent decrease in brain malate as antinociception increased. Decreased brain malate persisted 72 hours after implantation of morphine pellets by which time mice had become tolerant to antinociception. This finding suggests that malate decrease, unlike changes of other metabolites in other studies, might not be simply a result of general metabolic changes. Malate change as well as antinociception was prevented by prior injection of naloxone (3.0 mg/kg) or naltrexone (0.6 mg/kg) in acute experiments. Malate decrease in pelleted mice was no longer present if withdrawal was produced by naloxone or naltrexone in mice implanted with morphine pellets for 72 hours. Brain P-creatine was elevated in all mice implanted with morphine pellets even after withdrawal, thus, apparently, representing a more generalized effect than malate change.  相似文献   

20.
The analgesic effect elicited by intracerebroventricular (icv) administration of either morphine or d-ala2-methionine-enkephalin (d-ala2-met-enk) was studied during the onset and offset of morphine tolerance in DBA/2J (DBA) and C57 BL/6J (C57) strains of mice. DBA mice become tolerant to the analgesic effect of morphine icv injected after receiving 8 subcutaneous (sc) injections (2 injections daily × 4 days) of the ED50 of morphine for analgesia. In c57 mice tolerance to morphine icv-administered is evident after only a single sc injection of morphine ED50. On the contrary the development of cross-tolerance to the analgesic effect of d-ala2-met-enk is similar in both strains of mice. With respect to the offset period, the recovery of the analgesic effect of morphine and d-ala2-met-enk is slower in C57 than in DBA mice; in C57 mice tolerance to both morphine and d-ala2-met-enk is still present 10 days after morphine withdrawal. These results suggest the existence of a strain dependent rate in the onset of tolerance to the analgesic effect of morphine. C57 mice represent an interesting tool to investigate tolerance to opiates and opioid peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号