首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Genomic technologies, such as array comparative genomic hybridization (aCGH), increasingly offer definitive gene dosage profiles in clinical samples. Historically, copy number profiling was limited to large fresh-frozen tumors where intact DNA could be readily extracted. Genomic analyses of pre-neoplastic tumors and diagnostic biopsies are often limited to DNA processed by formalin-fixation and paraffin-embedding (FFPE). We present specialized protocols for DNA extraction and processing from FFPE tissues utilizing DNase processing to generate randomly fragmented DNA. The protocols are applied to FFPE clinical samples of varied tumor types, from multiple institutions and of varied block age. Direct comparative analyses with regression coefficient were calculated on split-sample (portion fresh/portion FFPE) of colorectal tumor samples. We show equal detection of a homozygous loss of SMAD4 at the exon-level in the SW480 cell line and gene-specific alterations in the split tumor samples. aCGH application to a set of archival FFPE samples of skin squamous cell carcinomas detected a novel hemizygous deletion in INPP5A on 10q26.3. Finally we present data on derivative of log ratio, a particular sensitive detector of measurement variance, for 216 sequential hybridizations to assess protocol reliability over a wide range of FFPE samples.  相似文献   

2.
The use of next-generation sequencing technologies to produce genomic copy number data has recently been described. Most approaches, however, reply on optimal starting DNA, and are therefore unsuitable for the analysis of formalin-fixed paraffin-embedded (FFPE) samples, which largely precludes the analysis of many tumour series. We have sought to challenge the limits of this technique with regards to quality and quantity of starting material and the depth of sequencing required. We confirm that the technique can be used to interrogate DNA from cell lines, fresh frozen material and FFPE samples to assess copy number variation. We show that as little as 5 ng of DNA is needed to generate a copy number karyogram, and follow this up with data from a series of FFPE biopsies and surgical samples. We have used various levels of sample multiplexing to demonstrate the adjustable resolution of the methodology, depending on the number of samples and available resources. We also demonstrate reproducibility by use of replicate samples and comparison with microarray-based comparative genomic hybridization (aCGH) and digital PCR. This technique can be valuable in both the analysis of routine diagnostic samples and in examining large repositories of fixed archival material.  相似文献   

3.
Array comparative genomic hybridization (aCGH) is a powerful tool to detect relative DNA copy number at a resolution limited only by the coverage of bacterial artificial chromosomes (BACs) used to print the genomic array. The amount of DNA needed to perform a reliable aCGH analysis has been a limiting factor, especially on minute tissue samples where limited DNA is available. Here we report a simple, highly sensitive and reliable aCGH method to analyze samples of no more than 1 ng genomic DNA. The speed and simplicity of the technique are ideal for studies on small clinical samples such as needle biopsies.  相似文献   

4.
The ability to utilize formalin-fixed, paraffin-embedded (FFPE) archival specimens reliably for high-resolution molecular genetic analysis would be of immense practical application in the study of human disease. We have evaluated the ability of the GenomePlex whole genome amplification (WGA) kit to amplify frozen and FFPE tissue for use in array CGH (aCGH). GenomePlex gave highly representative data compared with unamplified controls both from frozen material (Pearson's R(2) = 0.898) and from FFPE (R(2) = 0.883). Artifactual amplification observed using DOP-PCR at chromosomes 1p, 3, 13q, and 16p was not seen with GenomePlex. Highly reproducible aCGH profiles were obtained using as little as 5 ng starting material from FFPE (R(2) = 0.918). This WGA method should readily lend itself to the determination of DNA copy number alterations from small fresh-frozen and FFPE clinical tumor specimens, although some care must be taken to optimize the DNA extraction procedure.  相似文献   

5.
Comprehensive genome wide analyses of single cells became increasingly important in cancer research, but remain to be a technically challenging task. Here, we provide a protocol for array comparative genomic hybridization (aCGH) of single cells. The protocol is based on an established adapter-linker PCR (WGAM) and allowed us to detect copy number alterations as small as 56 kb in single cells. In addition we report on factors influencing the success of single cell aCGH downstream of the amplification method, including the characteristics of the reference DNA, the labeling technique, the amount of input DNA, reamplification, the aCGH resolution, and data analysis. In comparison with two other commercially available non-linear single cell amplification methods, WGAM showed a very good performance in aCGH experiments. Finally, we demonstrate that cancer cells that were processed and identified by the CellSearch® System and that were subsequently isolated from the CellSearch® cartridge as single cells by fluorescence activated cell sorting (FACS) could be successfully analyzed using our WGAM-aCGH protocol. We believe that even in the era of next-generation sequencing, our single cell aCGH protocol will be a useful and (cost-) effective approach to study copy number alterations in single cells at resolution comparable to those reported currently for single cell digital karyotyping based on next generation sequencing data.  相似文献   

6.
As new technologies come within reach for the average cytogenetic laboratory, the study of chromosome structure has become increasingly more sophisticated. Resolution has improved from karyotyping (in which whole chromosomes are discernible) to fluorescence in situ hybridization and comparative genomic hybridization (CGH, with which specific megabase regions are visualized), array-based CGH (aCGH, examining hundreds of base pairs), and next-generation sequencing (providing single base pair resolution). Whole genome next-generation sequencing remains a cost-prohibitive method for many investigators. Meanwhile, the cost of aCGH has been reduced during recent years, even as resolution has increased and protocols have simplified. However, aCGH presents its own set of unique challenges. DNA of sufficient quantity and quality to hybridize to arrays and provide meaningful results is required. This is especially difficult for DNA from formalin-fixed paraffin-embedded (FFPE) tissues. Here, we compare three different methods for acquiring DNA of sufficient length, purity, and “amplifiability” for aCGH and other downstream applications. Phenol–chloroform extraction and column-based commercial kits were compared with adaptive focused acoustics (AFA). Of the three extraction methods, AFA samples showed increased amplicon length and decreased polymerase chain reaction (PCR) failure rate. These findings support AFA as an improvement over previous DNA extraction methods for FFPE tissues.  相似文献   

7.
Fan B  Dachrut S  Coral H  Yuen ST  Chu KM  Law S  Zhang L  Ji J  Leung SY  Chen X 《PloS one》2012,7(4):e29824

Background

Genomic instability with frequent DNA copy number alterations is one of the key hallmarks of carcinogenesis. The chromosomal regions with frequent DNA copy number gain and loss in human gastric cancer are still poorly defined. It remains unknown how the DNA copy number variations contributes to the changes of gene expression profiles, especially on the global level.

Principal Findings

We analyzed DNA copy number alterations in 64 human gastric cancer samples and 8 gastric cancer cell lines using bacterial artificial chromosome (BAC) arrays based comparative genomic hybridization (aCGH). Statistical analysis was applied to correlate previously published gene expression data obtained from cDNA microarrays with corresponding DNA copy number variation data to identify candidate oncogenes and tumor suppressor genes. We found that gastric cancer samples showed recurrent DNA copy number variations, including gains at 5p, 8q, 20p, 20q, and losses at 4q, 9p, 18q, 21q. The most frequent regions of amplification were 20q12 (7/72), 20q12–20q13.1 (12/72), 20q13.1–20q13.2 (11/72) and 20q13.2–20q13.3 (6/72). The most frequent deleted region was 9p21 (8/72). Correlating gene expression array data with aCGH identified 321 candidate oncogenes, which were overexpressed and showed frequent DNA copy number gains; and 12 candidate tumor suppressor genes which were down-regulated and showed frequent DNA copy number losses in human gastric cancers. Three networks of significantly expressed genes in gastric cancer samples were identified by ingenuity pathway analysis.

Conclusions

This study provides insight into DNA copy number variations and their contribution to altered gene expression profiles during human gastric cancer development. It provides novel candidate driver oncogenes or tumor suppressor genes for human gastric cancer, useful pathway maps for the future understanding of the molecular pathogenesis of this malignancy, and the construction of new therapeutic targets.  相似文献   

8.

Background

Array comparative genomic hybridization (aCGH) to detect copy number variants (CNVs) in mammalian genomes has led to a growing awareness of the potential importance of this category of sequence variation as a cause of phenotypic variation. Yet there are large discrepancies between studies, so that the extent of the genome affected by CNVs is unknown. We combined molecular and aCGH analyses of CNVs in inbred mouse strains to investigate this question.

Principal Findings

Using a 2.1 million probe array we identified 1,477 deletions and 499 gains in 7 inbred mouse strains. Molecular characterization indicated that approximately one third of the CNVs detected by the array were false positives and we estimate the false negative rate to be more than 50%. We show that low concordance between studies is largely due to the molecular nature of CNVs, many of which consist of a series of smaller deletions and gains interspersed by regions where the DNA copy number is normal.

Conclusions

Our results indicate that CNVs detected by arrays may be the coincidental co-localization of smaller CNVs, whose presence is more likely to perturb an aCGH hybridization profile than the effect of an isolated, small, copy number alteration. Our findings help explain the hitherto unexplored discrepancies between array-based studies of copy number variation in the mouse genome.  相似文献   

9.
Array-based comparative genomic hybridization (aCGH) using bacterial artificial chromosomes (BAC) is a powerful method to analyze DNA copy number aberrations of the entire human genome. In fact, CGH and aCGH have revealed various DNA copy number aberrations in numerous cancer cells and cancer cell lines examined so far. In this report, BAC aCGH was applied to evaluate the stability or instability of cell lines. Established cell lines have greatly contributed to advancements in not only biology but also medical science. However, cell lines have serious problems, such as alteration of biological properties during long-term cultivation. Firstly, we investigated two cancer cell lines, HeLa and Caco-2. HeLa cells, established from a cervical cancer, showed significantly increased DNA copy number alterations with passage time. Caco-2 cells, established from a colon cancer, showed no remarkable differences under various culture conditions. These results indicate that BAC aCGH can be used for the evaluation and validation of genomic stability of cultured cells. Secondly, BAC aCGH was applied to evaluate and validate the genomic stabilities of three patient's mesenchymal stem cells (MSCs), which were already used for their treatments. These three MSCs showed no significant differences in DNA copy number aberrations over their entire chromosomal regions. Therefore, BAC aCGH is highly recommended for use for a quality check of various cells before using them for any kind of biological investigation or clinical application.  相似文献   

10.
Comparative genomic hybridization (CGH) microarrays have been used to determine copy number variations (CNVs) and their effects on complex diseases. Detection of absolute CNVs independent of genomic variants of an arbitrary reference sample has been a critical issue in CGH array experiments. Whole genome analysis using massively parallel sequencing with multiple ultra-high resolution CGH arrays provides an opportunity to catalog highly accurate genomic variants of the reference DNA (NA10851). Using information on variants, we developed a new method, the CGH array reference-free algorithm (CARA), which can determine reference-unbiased absolute CNVs from any CGH array platform. The algorithm enables the removal and rescue of false positive and false negative CNVs, respectively, which appear due to the effects of genomic variants of the reference sample in raw CGH array experiments. We found that the CARA remarkably enhanced the accuracy of CGH array in determining absolute CNVs. Our method thus provides a new approach to interpret CGH array data for personalized medicine.  相似文献   

11.

Background

Molecular alterations critical to development of cancer include mutations, copy number alterations (amplifications and deletions) as well as genomic rearrangements resulting in gene fusions. Massively parallel next generation sequencing, which enables the discovery of such changes, uses considerable quantities of genomic DNA (> 5 ug), a serious limitation in ever smaller clinical samples. However, a commonly available microarray platforms such as array comparative genomic hybridization (array CGH) allows the characterization of gene copy number at a single gene resolution using much smaller amounts of genomic DNA. In this study we evaluate the sensitivity of ultra-dense array CGH platforms developed by Agilent, especially that of the 1 million probe array (1 M array), and their application when whole genome amplification is required because of limited sample quantities.

Methods

We performed array CGH on whole genome amplified and not amplified genomic DNA from MCF-7 breast cancer cells, using 244 K and 1 M Agilent arrays. The ADM-2 algorithm was used to identify micro-copy number alterations that measured less than 1 Mb in genomic length.

Results

DNA from MCF-7 breast cancer cells was analyzed for micro-copy number alterations, defined as measuring less than 1 Mb in genomic length. The 4-fold extra resolution of the 1 M array platform relative to the less dense 244 K array platform, led to the improved detection of copy number variations (CNVs) and micro-CNAs. The identification of intra-genic breakpoints in areas of DNA copy number gain signaled the possible presence of gene fusion events. However, the ultra-dense platforms, especially the densest 1 M array, detect artifacts inherent to whole genome amplification and should be used only with non-amplified DNA samples.

Conclusions

This is a first report using 1 M array CGH for the discovery of cancer genes and biomarkers. We show the remarkable capacity of this technology to discover CNVs, micro-copy number alterations and even gene fusions. However, these platforms require excellent genomic DNA quality and do not tolerate relatively small imperfections related to the whole genome amplification.  相似文献   

12.

Introduction

In breast cancer, the basal-like subtype has high levels of genomic instability relative to other breast cancer subtypes with many basal-like-specific regions of aberration. There is evidence that this genomic instability extends to smaller scale genomic aberrations, as shown by a previously described micro-deletion event in the PTEN gene in the Basal-like SUM149 breast cancer cell line.

Methods

We sought to identify if small regions of genomic DNA copy number changes exist by using a high density, gene-centric Comparative Genomic Hybridizations (CGH) array on cell lines and primary tumors. A custom tiling array for CGH (244,000 probes, 200 bp tiling resolution) was created to identify small regions of genomic change, which was focused on previously identified basal-like-specific, and general cancer genes. Tumor genomic DNA from 94 patients and 2 breast cancer cell lines was labeled and hybridized to these arrays. Aberrations were called using SWITCHdna and the smallest 25% of SWITCHdna-defined genomic segments were called micro-aberrations (<64 contiguous probes, ∼ 15 kb).

Results

Our data showed that primary tumor breast cancer genomes frequently contained many small-scale copy number gains and losses, termed micro-aberrations, most of which are undetectable using typical-density genome-wide aCGH arrays. The basal-like subtype exhibited the highest incidence of these events. These micro-aberrations sometimes altered expression of the involved gene. We confirmed the presence of the PTEN micro-amplification in SUM149 and by mRNA-seq showed that this resulted in loss of expression of all exons downstream of this event. Micro-aberrations disproportionately affected the 5′ regions of the affected genes, including the promoter region, and high frequency of micro-aberrations was associated with poor survival.

Conclusion

Using a high-probe-density, gene-centric aCGH microarray, we present evidence of small-scale genomic aberrations that can contribute to gene inactivation. These events may contribute to tumor formation through mechanisms not detected using conventional DNA copy number analyses.  相似文献   

13.
Oligonucleotide array comparative genomic hybridization (aCGH) was applied on fifteen gastric cancer (GCA) samples to reveal information of DNA copy number changes at an exon-level resolution. Twelve of the samples represented the intestinal (IGCA) and three the diffuse (DGCA) type of GCA. The samples had previously been assessed for genetic stability by microsatellite analysis and categorized into microsatellite phenotypes according to the type of alterations. As compared to our previous results obtained using cDNA platforms, the oligonucleotide platforms revealed more aberrations per sample (0-45 vs. 0-22). A total of 22 amplifications were detected by the oligonucleotide arrays. Ten of the amplicons had also been detected on the cDNA platform, but five of them spanned only one or a few cDNA clones, thus resembling apparent outliers. Two tumors showed five or more amplifications by oligonucleotide aCGH, suggesting the presence of an amplifier phenotype. The amplifications occurred irrespective of the microsatellite phenotypes. None of the DGCA tumors showed more than one aberration, whereas the IGCA tumors showed several aberrations. The increased resolution of the oligonucleotide arrays enabled the detection of amplicon boundaries at gene level, allowing, e.g., the determination of the 17q12 core amplicon and interstitial losses within the 8p23.1-->p22 and 20q13.2-->q13.1 amplifications. Previously no losses have been reported within amplified regions in GCA. In addition to novel amplified regions, the oligonucleotide array results describe novel targets for amplicons at 8p11 (SFRP1), 11p12 (LRRC4C), and 19q13.2 (CEACAM6).  相似文献   

14.
Formalin-fixed paraffin embedded (FFPE) tumor tissue provides an opportunity to perform retrospective genomic studies of tumors in which chromosomal imbalances are strongly associated with oncogenesis. The application of comparative genomic hybridization (CGH) has led to the rapid accumulation of cytogenetic information on osteosarcoma (OS); however, the limited resolving power of metaphase CGH does not permit precise mapping of imbalances. Array CGH allows quantitative detection and more precise delineation of copy number aberrations in tumors. Unfortunately the high cost and lower density of BACs on available commercial arrays has limited the ability to comprehensively profile copy number changes in tumors such as OS that are recurrently subject to genomic imbalance. In this study a cDNA/EST microarray including 18,980 human cDNAs (which represent all 22 pairs of autosomal chromosomes and chromosome X) was used for CGH analysis of eight OS FFPE. Chromosomes 1, 12, 17, and X harbored the most imbalances. Gain/amplification of X was observed in 4/8 OS, and in keeping with other recent genomic analyses of OS, gain/amplification of 17p11.2 was often accompanied by a distal deletion in the region of the p53 gene. Gain/amplification of the X chromosome was verified using interphase FISH carried out on a subset of OS FFPE sections and OS tissue arrays.  相似文献   

15.
Miscarriage is a condition that affects 10%-15% of all clinically recognized pregnancies, most of which occur in the first trimester. Approximately 50% of first-trimester miscarriages result from fetal chromosome abnormalities. Currently, G-banded chromosome analysis is used to determine if large-scale genetic imbalances are the cause of these pregnancy losses. This technique relies on the culture of cells derived from the fetus, a technique that has many limitations, including a high rate of culture failure, maternal overgrowth of fetal cells, and poor chromosome morphology. Comparative genomic hybridization (CGH)-array analysis is a powerful new molecular cytogenetic technique that allows genomewide analysis of DNA copy number. By hybridizing patient DNA and normal reference DNA to arrays of genomic clones, unbalanced gains or losses of genetic material across the genome can be detected. In this study, 41 product-of-conception (POC) samples, which were previously analyzed by G-banding, were tested using CGH arrays to determine not only if the array could identify all reported abnormalities, but also whether any previously undetected genomic imbalances would be discovered. The array methodology detected all abnormalities as reported by G-banding analysis and revealed new abnormalities in 4/41 (9.8%) cases. Of those, one trisomy 21 POC was also mosaic for trisomy 20, one had a duplication of the 10q telomere region, one had an interstitial deletion of chromosome 9p, and the fourth had an interstitial duplication of the Prader-Willi/Angelman syndrome region on chromosome 15q, which, if maternally inherited, has been implicated in autism. This retrospective study demonstrates that the DNA-based CGH-array technology overcomes many of the limitations of routine cytogenetic analysis of POC samples while enhancing the detection of fetal chromosome aberrations.  相似文献   

16.
17.

Background

Array-based comparative genomic hybridization (aCGH) is a high-throughput method for measuring genome-wide DNA copy number changes. Current aCGH methods have limited resolution, sensitivity and reproducibility. Microarrays for aCGH are available only for a few organisms and combination of aCGH data with expression data is cumbersome.

Results

We present a novel method of using commercial oligonucleotide expression microarrays for aCGH, enabling DNA copy number measurements and expression profiles to be combined using the same platform. This method yields aCGH data from genomic DNA without complexity reduction at a median resolution of approximately 17,500 base pairs. Due to the well-defined nature of oligonucleotide probes, DNA amplification and deletion can be defined at the level of individual genes and can easily be combined with gene expression data.

Conclusion

A novel method of gene resolution analysis of copy number variation (graCNV) yields high-resolution maps of DNA copy number changes and is applicable to a broad range of organisms for which commercial oligonucleotide expression microarrays are available. Due to the standardization of oligonucleotide microarrays, graCNV results can reliably be compared between laboratories and can easily be combined with gene expression data using the same platform.  相似文献   

18.
Alterations in DNA copy number contribute to the development and progression of cancers and are common in epithelial tumors. We have used array Comparative Genomic Hybridization (aCGH) to visualize DNA copy number alterations across the genomes of lung tumors in the Kras(LA2) model of lung cancer. Copy number gain involving the Kras locus, as focal amplification or whole chromosome gain, is the most common alteration in these tumors and with a prevalence that increased significantly with increasing tumor size. Furthermore, Kras amplification was the only major genomic event among the smallest lung tumors, suggesting that this alteration occurs early during the development of mutant Kras-driven lung cancers. Recurring gains and deletions of other chromosomes occur progressively more frequently among larger tumors. These results are in contrast to a previous aCGH analysis of lung tumors from Kras(LA2) mice on a mixed genetic background, in which relatively few DNA copy number alterations were observed regardless of tumor size. Our model features the Kras(LA2) allele on the inbred FVB/N mouse strain, and in this genetic background, there is a highly statistically significant increase in level of genomic instability with increasing tumor size. These data suggest that recurring DNA copy alterations are important for tumor progression in the Kras(LA2) model of lung cancer and that the requirement for these alterations may be dependent on the genetic background of the mouse strain.  相似文献   

19.

Background

Cancer re-sequencing programs rely on DNA isolated from fresh snap frozen tissues, the preparation of which is combined with additional preservation efforts. Tissue samples at pathology departments are routinely stored as formalin-fixed and paraffin-embedded (FFPE) samples and their use would open up access to a variety of clinical trials. However, FFPE preparation is incompatible with many down-stream molecular biology techniques such as PCR based amplification methods and gene expression studies.

Methodology/Principal Findings

Here we investigated the sample quality requirements of FFPE tissues for massively parallel short-read sequencing approaches. We evaluated key variables of pre-fixation, fixation related and post-fixation processes that occur in routine medical service (e.g. degree of autolysis, duration of fixation and of storage). We also investigated the influence of tissue storage time on sequencing quality by using material that was up to 18 years old. Finally, we analyzed normal and tumor breast tissues using the Sequencing by Synthesis technique (Illumina Genome Analyzer, Solexa) to simultaneously localize genome-wide copy number alterations and to detect genomic variations such as substitutions and point-deletions and/or insertions in FFPE tissue samples.

Conclusions/Significance

The application of second generation sequencing techniques on small amounts of FFPE material opens up the possibility to analyze tissue samples which have been collected during routine clinical work as well as in the context of clinical trials. This is in particular important since FFPE samples are amply available from surgical tumor resections and histopathological diagnosis, and comprise tissue from precursor lesions, primary tumors, lymphogenic and/or hematogenic metastases. Large-scale studies using this tissue material will result in a better prediction of the prognosis of cancer patients and the early identification of patients which will respond to therapy.  相似文献   

20.
Array-based comparative genomic hybridization (aCGH) enables the measurement of DNA copy number across thousands of locations in a genome. The main goals of analyzing aCGH data are to identify the regions of copy number variation (CNV) and to quantify the amount of CNV. Although there are many methods for analyzing single-sample aCGH data, the analysis of multi-sample aCGH data is a relatively new area of research. Further, many of the current approaches for analyzing multi-sample aCGH data do not appropriately utilize the additional information present in the multiple samples. We propose a procedure called the Fused Lasso Latent Feature Model (FLLat) that provides a statistical framework for modeling multi-sample aCGH data and identifying regions of CNV. The procedure involves modeling each sample of aCGH data as a weighted sum of a fixed number of features. Regions of CNV are then identified through an application of the fused lasso penalty to each feature. Some simulation analyses show that FLLat outperforms single-sample methods when the simulated samples share common information. We also propose a method for estimating the false discovery rate. An analysis of an aCGH data set obtained from human breast tumors, focusing on chromosomes 8 and 17, shows that FLLat and Significance Testing of Aberrant Copy number (an alternative, existing approach) identify similar regions of CNV that are consistent with previous findings. However, through the estimated features and their corresponding weights, FLLat is further able to discern specific relationships between the samples, for example, identifying 3 distinct groups of samples based on their patterns of CNV for chromosome 17.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号