首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Commercial turkey flocks in North Carolina have been found to be colonized frequently with Campylobacter coli strains that are resistant to several antimicrobials (tetracycline, streptomycin, erythromycin, kanamycin, and ciprofloxacin/nalidixic acid). Such strains have been designated multidrug resistant (MDR). However, the population structure of MDR C. coli from turkeys remains poorly characterized. In this study, an analysis of multilocus sequence typing (MLST)-based sequence types (STs) of 59 MDR strains from turkeys revealed that the majority of these strains corresponded to one of 14 different STs, with three STs accounting for 41 (69%) of the strains. The major STs were turkey specific, and most (87%) of the strains with these STs were resistant to the entire panel of antibiotics mentioned above. Some (13%) of the strains with these STs were susceptible to just one or two of the antibiotics in this panel. Further subtyping using fla typing and pulsed-field gel electrophoresis with SmaI and KpnI revealed that the major MDR STs corresponded to strains of related but distinct subtypes, providing evidence for genomic diversification within these STs. These findings suggest that MDR strains of C. coli from turkeys have a clonal population structure characterized by the presence of a relatively small number of clonal groups that appear to be disseminated in the turkey production system. In addition, the observed correlation between STs and the MDR profiles of the microbes indicates that MLST-based typing holds potential for source-tracking applications specific to the animal source (turkeys) and the antimicrobial resistance profile (MDR status) of C. coli.  相似文献   

2.
Commercial turkey flocks in North Carolina have been found to be colonized frequently with Campylobacter coli strains that are resistant to several antimicrobials (tetracycline, streptomycin, erythromycin, kanamycin, and ciprofloxacin/nalidixic acid). Such strains have been designated multidrug resistant (MDR). However, the population structure of MDR C. coli from turkeys remains poorly characterized. In this study, an analysis of multilocus sequence typing (MLST)-based sequence types (STs) of 59 MDR strains from turkeys revealed that the majority of these strains corresponded to one of 14 different STs, with three STs accounting for 41 (69%) of the strains. The major STs were turkey specific, and most (87%) of the strains with these STs were resistant to the entire panel of antibiotics mentioned above. Some (13%) of the strains with these STs were susceptible to just one or two of the antibiotics in this panel. Further subtyping using fla typing and pulsed-field gel electrophoresis with SmaI and KpnI revealed that the major MDR STs corresponded to strains of related but distinct subtypes, providing evidence for genomic diversification within these STs. These findings suggest that MDR strains of C. coli from turkeys have a clonal population structure characterized by the presence of a relatively small number of clonal groups that appear to be disseminated in the turkey production system. In addition, the observed correlation between STs and the MDR profiles of the microbes indicates that MLST-based typing holds potential for source-tracking applications specific to the animal source (turkeys) and the antimicrobial resistance profile (MDR status) of C. coli.  相似文献   

3.
Yersinia ruckeri is the causative agent of enteric redmouth in fish and one of the major bacterial pathogens causing losses in salmonid aquaculture. Previously typing methods, including restriction enzyme analysis, pulsed-field gel electrophoresis and multilocus enzyme electrophoresis (MLEE) have indicated a clonal population structure. In this work, we describe a multilocus sequence typing (MLST) scheme for Y.ruckeri based on the internal fragment sequence of six housekeeping genes. This MLST scheme was applied to 103 Y.ruckeri strains from diverse geographic areas and hosts as well as environmental sources. Sequences obtained from this work were deposited and are available in a public database (http://publmst.org/yruckeri/). Thirty different sequence types (ST) were identified, 21 of which were represented by a single isolate, evidencing high genetic diversity. ST2 comprised more than one-third of the isolates and was most frequently observed among isolates from trout. Two major clonal complexes (CC) were identified by eBURST analysis showing a common evolutionary origin for 94 isolates forming 21 STs into CC1 and for 6 isolates of 6 STs in the CC2. It was also possible to associate some unique ST with isolates from recent outbreaks in vaccinated salmonid fish.  相似文献   

4.
The Burkholderia cepacia complex (BCC) comprises at least nine closely related species of abundant environmental microorganisms. Some of these species are highly spread in the rhizosphere of several crop plants, particularly of maize; additionally, as opportunistic pathogens, strains of the BCC are capable of colonizing humans. We have developed and validated a multilocus sequence typing (MLST) scheme for the BCC. Although widely applied to understand the epidemiology of bacterial pathogens, MLST has seen limited application to the population analysis of species residing in the natural environment; we describe its novel application to BCC populations within maize rhizospheres. 115 BCC isolates were recovered from the roots of different maize cultivars from three different Italian regions over a 9-year period (1994-2002). A total of 44 sequence types (STs) were found of which 41 were novel when compared with existing MLST data which encompassed a global database of 1000 clinical and environmental strains representing nearly 400 STs. In this study of rhizosphere isolates approximately 2.5 isolates per ST was found, comparable to that found for the whole BCC population. Multilocus sequence typing also resolved inaccuracies associated with previous identification of the maize isolates based on recA gene restriction fragment length polymorphims and species-specific polymerase chain reaction. The 115 maize isolates comprised the following BCC species groups, B. ambifaria (39%), BCC6 (29%), BCC5 (10%), B. pyrrocinia (8%), B. cenocepacia IIIB (7%) and B. cepacia (6%), with BCC5 and BCC6 potentially constituting novel species groups within the complex. Closely related clonal complexes of strains were identified within B. cepacia, B. cenocepacia IIIB, BCC5 and BCC6, with one of the BCC5 clonal complexes being distributed across all three sampling sites. Overall, our analysis demonstrates that the maize rhizosphere harbours a massive diversity of novel BCC STs, so that their addition to our global MLST database increased the ST diversity by 10%.  相似文献   

5.
Multi-Locus Sequence Typing (MLST) of Streptococcus pneumoniae is based on the sequence of seven housekeeping gene fragments. The analysis of MLST allelic profiles by eBURST allows the grouping of genetically related strains into Clonal Complexes (CCs) including those genotypes with a common descent from a predicted ancestor. However, the increasing use of MLST to characterize S. pneumoniae strains has led to the identification of a large number of new Sequence Types (STs) causing the merger of formerly distinct lineages into larger CCs. An example of this is the CC156, displaying a high level of complexity and including strains with allelic profiles differing in all seven of the MLST loci, capsular type and the presence of the Pilus Islet-1 (PI-1). Detailed analysis of the CC156 indicates that the identification of new STs, such as ST4945, induced the merging of formerly distinct clonal complexes. In order to discriminate the strain diversity within CC156, a recently developed typing schema, 96-MLST, was used to analyse 66 strains representative of 41 different STs. Analysis of allelic profiles by hierarchical clustering and a minimum spanning tree identified ten genetically distinct evolutionary lineages. Similar results were obtained by phylogenetic analysis on the concatenated sequences with different methods. The identified lineages are homogenous in capsular type and PI-1 presence. ST4945 strains were unequivocally assigned to one of the lineages. In conclusion, the identification of new STs through an exhaustive analysis of pneumococcal strains from various laboratories has highlighted that potentially unrelated subgroups can be grouped into a single CC by eBURST. The analysis of additional loci, such as those included in the 96-MLST schema, will be necessary to accurately discriminate the clonal evolution of the pneumococcal population.  相似文献   

6.
Type 1 fimbriae of Escherichia coli mediate mannose-specific adhesion to host epithelial surfaces and consist of a major, antigenically variable pilin subunit, FimA, and a minor, structurally conserved adhesive subunit, FimH, located on the fimbrial tip. We have analysed the variability of fimA and fimH in strains of vaginal and other origin that belong to one of the most prominent clonal groups of extraintestinal pathogenic E. coli, comprised of O1:K1-, O2:K1- and O18:K1-based serotypes. Multiple locus sequence typing (MLST) of this group revealed that the strains have identical (at all but one nucleotide position) eight housekeeping loci around the genome and belong to the ST95 complex defined by the publicly available E. coli MLST database. Multiple highly diverse fimA alleles have been introduced into the ST95 clonal complex via horizontal transfer, at a frequency comparable to that of genes defining the major O- and H-antigens. However, no further significant FimA diversification has occurred via point mutation after the transfers. In contrast, while fimH alleles also move horizontally (along with the fimA loci), they acquire point amino acid replacements at a higher rate than either housekeeping genes or fimA. These FimH mutations enhance binding to monomannose receptors and bacterial tropism for human vaginal epithelium. A similar pattern of rapid within-clonal structural evolution of the adhesive, but not pilin, subunit is also seen, respectively, in papG and papA alleles of the di-galactose-specific P-fimbriae. Thus, while structurally diverse pilin subunits of E. coli fimbriae are under selective pressure for frequent horizontal transfer between clones, the adhesive subunits of extraintestinal E. coli are under strong positive selection (Dn/Ds > 1 for fimH and papG) for functionally adaptive amino acid replacements.  相似文献   

7.
Eight strains of Bacillus cereus isolated from bacteremia and soft tissue infections were assigned to seven sequence types (STs) by multilocus sequence typing (MLST). Two strains from different locations had identical STs. The concatenated sequences of the seven STs were aligned with 65 concatenated sequences from reference STs and a neighbor-joining tree was constructed. Two strains were distantly related to all reference STs. Three strains were recovered in a clade that included Bacillus anthracis, B. cereus and rare Bacillus thuringiensis strains while the other three strains were assigned to two STs that were more closely affiliated to most of the B. thuringiensis STs. We conclude that invasive B. cereus strains do not form a single clone or clonal complex of highly virulent strains.  相似文献   

8.
Yersinia pseudotuberculosis is an enteric human pathogen but is widespread in the environment. Pathogenicity is determined by a number of virulence factors, including the virulence plasmid pYV, the high-pathogenicity island (HPI), and the Y. pseudotuberculosis-derived mitogen (YPM), a superantigen. The presence of the 3 virulence factors varies among Y. pseudotuberculosis isolates. We developed a multilocus sequence typing (MLST) scheme to address the population structure of Y. pseudotuberculosis and the evolution of its pathogenicity. The seven housekeeping genes selected for MLST were mdh, recA, sucA, fumC, aroC, pgi, and gyrB. An MLST analysis of 83 isolates of Y. pseudotuberculosis, representing 19 different serotypes and six different genetic groups, identified 61 sequence types (STs) and 12 clonal complexes. Out of 26 allelic changes that occurred in the 12 clonal complexes, 13 were mutational events while 13 were recombinational events, indicating that recombination and mutation contributed equally to the diversification of the clonal complexes. The isolates were separated into 2 distinctive clusters, A and B. Cluster A is the major cluster, with 53 STs (including Y. pestis strains), and is distributed worldwide, while cluster B is restricted to the Far East. The YPM gene is widely distributed on the phylogenetic tree, with ypmA in cluster A and ypmB in cluster B. pYV is present in cluster A only but is sporadically absent in some cluster A isolates. In contrast, an HPI is present only in a limited number of lineages and must be gained by lateral transfer. Three STs carry all 3 virulence factors and can be regarded as high-pathogenicity clones. Isolates from the same ST may not carry all 3 virulence factors, indicating frequent gain or loss of these factors. The differences in pathogenicity among Y. pseudotuberculosis strains are likely due to the variable presence and instability of the virulence factors.  相似文献   

9.
The characterization of Campylobacter jejuni has been significantly improved by the use of multilocus sequence typing (MLST), which allows the relationship between isolates to be determined. The sequence types (STs) of 261 isolates of C. jejuni from New Zealand were determined. Isolates were obtained from a range of sources including chicken meat, cattle, pigs, duck, sheep, water and human infections. Thirty-two new alleles and 44 new STs were identified. Comparison of the MLST data and pulsed-field gel electrophoresis macrorestriction profiles showed that the macrorestriction profiles were good predictors of the clonal complex (CC) but not ST. All the major CCs identified elsewhere in the world were found in New Zealand as well as the association of certain CCs with particular animal niches. The majority of new STs identified were from river water isolates.  相似文献   

10.

Background  

Multilocus Sequence Typing (MLST) is a frequently used typing method for the analysis of the clonal relationships among strains of several clinically relevant microbial species. MLST is based on the sequence of housekeeping genes that result in each strain having a distinct numerical allelic profile, which is abbreviated to a unique identifier: the sequence type (ST). The relatedness between two strains can then be inferred by the differences between allelic profiles. For a more comprehensive analysis of the possible patterns of evolutionary descent, a set of rules were proposed and implemented in the eBURST algorithm. These rules allow the division of a data set into several clusters of related strains, dubbed clonal complexes, by implementing a simple model of clonal expansion and diversification. Within each clonal complex, the rules identify which links between STs correspond to the most probable pattern of descent. However, the eBURST algorithm is not globally optimized, which can result in links, within the clonal complexes, that violate the rules proposed.  相似文献   

11.
【背景】拟态弧菌(Vibrio mimicus)是一种常见的革兰氏阴性病原菌,广泛分布于水环境和水生动物体内,可导致多种水产动物和人类感染。多位点序列分型(multilocus sequence typing, MLST)已被应用于多种病原菌的分子分型,其通过分析不同菌株之间的遗传关系,监测细菌传播的时间和地理分布,确定感染和传播途径,但目前未见有关拟态弧菌MLST的报道。【目的】开发一种基于MLST的拟态弧菌分型方法,并用于江苏水产养殖区拟态弧菌的种群结构和遗传进化分析,为拟态弧菌感染所引起的疾病防治提供理论基础。【方法】选择拟态弧菌的7个管家基因dnaEgyrBmdhrecArpoDpntApyrH作为靶点,对江苏水产养殖区分离的155株拟态弧菌进行PCR扩增和测序。将测序结果分配等位基因,制作等位基因谱,分配不同的序列类型(sequence type, ST),利用软件goeBURST-1.2.1和MEGA-X对分配的ST型进行克隆复合体和遗传进化树聚类分析;此外,利用Kirby-Bauer圆盘扩散法测试155株拟态弧菌的药敏特性。【结果】155株拟态弧菌被分为56个STs,其中ST11占比最高;在双位点变异(double locus variants, DLV)水平分析发现56个STs分为3个克隆复合体和3个单体;系统发育树显示,56个STs被分为3个集群(cluster I、cluster II、cluster III)。药敏结果显示,155株拟态弧菌对红霉素类抗生素的耐药性最高(88.39%, 137/155),对氯霉素类抗生素敏感性最高(91.61%, 142/155)。【结论】本研究建立的MLST方法具有良好的分辨率,可作为拟态弧菌系统发育和未来流行病学调查有用的分子分型工具。根据抗生素耐药谱结果,提示在养殖过程中可选用氟苯尼考等国家批准使用的专用抗菌药对拟态弧菌进行防治。  相似文献   

12.
Xie Y  He Y  Gehring A  Hu Y  Li Q  Tu SI  Shi X 《PloS one》2011,6(12):e28276
A total of 108 S. aureus isolates from 16 major hospitals located in 14 different provinces in China were characterized for the profiles of 18 staphylococcal enterotoxin (SE) genes, 3 exfoliatin genes (eta, etb and etd), and the toxic shock syndrome toxin gene (tsst) by PCR. The genomic diversity of each isolate was also evaluated by pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and accessory gene regulator (agr) typing. Of these strains, 90.7% (98/108) harbored toxin genes, in which tsst was the most prevalent toxin gene (48.1%), followed by sea (44.4%), sek (42.6%) and seq (40.7%). The see and etb genes were not found in any of the isolates tested. Because of high-frequency transfer of toxin gene-containing mobile genetic elements between S. aureus strains, a total of 47 different toxin gene combinations were detected, including a complete egc cluster in 19 isolates, co-occurrence of sea, sek and seq in 38 strains, and sec and sel together in 11 strains. Genetic typing by PFGE grouped all the strains into 25 clusters based on 80% similarity. MLST revealed 25 sequence types (ST) which were assigned into 16 clonal complexes (CCs) including 2 new singletons. Among these, 11 new and 6 known STs were first reported in the S. aureus strains from China. Overall, the genotyping results showed high genetic diversity of the strains regardless of their geographical distributions, and no strong correlation between genetic background and toxin genotypes of the strains. For genotyping S. aureus, PFGE appears to be more discriminatory than MLST. However, toxin gene typing combined with PFGE or MLST could increase the discriminatory power of genotyping S. aureus strains.  相似文献   

13.
Members of the genus Wolbachia are intracellular bacteria that are widespread in arthropods and establish diverse symbiotic associations with their hosts, ranging from mutualism to parasitism. Here we present the first detailed analyses of Wolbachia in butterflies from India with screening of 56 species. Twenty-nine species (52%) representing five families were positive for Wolbachia. This is the first report of Wolbachia infection in 27 of the 29 species; the other two were reported previously. This study also provides the first evidence of infection in the family Papilionidae. A striking diversity was observed among Wolbachia strains in butterfly hosts based on five multilocus sequence typing (MLST) genes, with 15 different sequence types (STs). Thirteen STs are new to the MLST database, whereas ST41 and ST125 were reported earlier. Some of the same host species from this study carried distinctly different Wolbachia strains, whereas the same or different butterfly hosts also harbored closely related Wolbachia strains. Butterfly-associated STs in the Indian sample originated by recombination and point mutation, further supporting the role of both processes in generating Wolbachia diversity. Recombination was detected only among the STs in this study and not in those from the MLST database. Most of the strains were remarkably similar in their wsp genotype, despite divergence in MLST. Only two wsp alleles were found among 25 individuals with complete hypervariable region (HVR) peptide profiles. Although both wsp and MLST show variability, MLST gives better separation between the strains. Completely different STs were characterized for the individuals sharing the same wsp alleles.  相似文献   

14.
For the first time, we used multilocus sequence typing (MLST) to understand how Romanian group B streptococcus (GBS) strains fit into the global GBS population structure. Colonising isolates recovered from adult human females were tested for antibiotic resistance, were molecularly serotyped based on the capsular polysaccharide synthesis (cps) gene cluster and further characterised using a set of molecular markers (surface protein genes, pilus-encoded islands and mobile genetic elements inserted in the scpB-lmb intergenic region). Pulsed-field gel electrophoresis was used to complement the MLST clonal distribution pattern of selected strains. Among the 55 strains assigned to six cps types (Ia, Ib, II-V), 18 sequence types (STs) were identified by MLST. Five STs represented new entries to the MLST database. The prevalent STs were ST-1, ST-17, ST-19 and ST-28. Twenty molecular marker profiles were identified. The most common profiles (rib+GBSi1+PI-1, rib+GBSi1+PI-1, PI-2b and alp2/3+PI-1, PI-2a) were associated with the cps III/ST-17 and cps V/ST-1 strains. A cluster of fluoroquinolone-resistant strains was detected among the cps V/ST-19 members; these strains shared alp1 and IS1548 and carried PI-1, PI-2a or both. Our results support the usefulness of implementing an integrated genotyping system at the reference laboratory level to obtain the reliable data required to make comparisons between countries.  相似文献   

15.
AIMS: Multilocus sequence typing (MLST) was performed for vancomycin-resistant Enterococcus faecium (VREF) from diverse geographical areas in Korea to obtain insights into the genetic relationships with other molecular profiles. To understand the diversity of lineages, vancomycin-susceptible E. faecium (VSEF) were included. METHODS AND RESULTS: A total of 60 E. faecium isolates were analysed by MLST and esp profile. Molecular typing of Tn1546 of 30 VREF strains was evaluated by overlapping PCR of Tn1546 and DNA sequencing. Seven sequence types (ST) were found among 30 VSEF isolates, and four STs were found among 30 VREF isolates. The types most frequently encountered were ST 78 (26 isolates) and ST 203 (16 isolates). Of the 60 E. faecium isolates, 35 isolates were positive for the esp gene. On molecular typing of Tn1546, all VREF isolates were divided into four main types. Strains with the same ST showed divergence in Tn1546 types and strains with the same Tn1546 type represented different STs. CONCLUSIONS: An association between Tn1546 typing and MLST was not found. SIGNIFICANCE AND IMPACT OF THE STUDY: These results suggest that the horizontal spread of Tn1546 between strains plays a major role in the dissemination of vancomycin resistance in Korea.  相似文献   

16.
Aims: To speciate Campylobacter strains from the caeca of chickens in Grenada using PCR and to evaluate DNA‐based typing methods for the characterization of these isolates. Methods and Results: Isolates were speciated with two multiplex PCR assays and were typed with flaA‐RFLP, pulsed‐field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Results confirmed that Campylobacter coli strains were more predominant than Campylobacter jejuni strains. From 56 isolates, 18 were misidentified using biochemical tests. PFGE typing gave the highest discriminatory power among the methods used (Simpson’s index of diversity, D = 0·9061). However, the combination of flaA‐RFLP, PFGE and MLST results gave the highest discrimination for subtyping of these isolates (D = 0·9857). A band position tolerance of 4% in Bio Numerics was the most appropriate for the analysis of this database. MLST profiles were generally concordant with PFGE and/or flaA‐RFLP types. Several isolates exhibited new MLST sequence types (STs), and 43 of the 49 Camp. coli strains belonged to the ST‐828 clonal complex. Conclusions: Campylobacter coli was the most prevalent species isolated from broilers and layers in Grenada, and a combination of restriction and sequence methods was most appropriate for the typing of Camp. coli isolates. Campylobacter coli STs clustered with described poultry‐associated Camp. coli STs by phylogenetic analysis. Significance and Impact of the Study: Further studies to understand the predominance of Camp. coli within Campylobacter spp. from chickens in Grenada may help elucidate the epidemiology of these pathogens in chickens.  相似文献   

17.
Multilocus sequence typing scheme for bacteria of the Bacillus cereus group   总被引:3,自引:0,他引:3  
In this study we developed a multilocus sequence typing (MLST) scheme for bacteria of the Bacillus cereus group. This group, which includes the species B. cereus, B. thuringiensis, B. weihenstephanensis, and B. anthracis, is known to be genetically very diverse. It is also very important because it comprises pathogenic organisms as well as bacteria with industrial applications. The MLST system was established by using 77 strains having various origins, including humans, animals, food, and soil. A total of 67 of these strains had been analyzed previously by multilocus enzyme electrophoresis, and they were selected to represent the genetic diversity of this group of bacteria. Primers were designed for conserved regions of housekeeping genes, and 330- to 504-bp internal fragments of seven such genes, adk, ccpA, ftsA, glpT, pyrE, recF, and sucC, were sequenced for all strains. The number of alleles at individual loci ranged from 25 to 40, and a total of 53 allelic profiles or sequence types (STs) were distinguished. Analysis of the sequence data showed that the population structure of the B. cereus group is weakly clonal. In particular, all five B. anthracis isolates analyzed had the same ST. The MLST scheme which we developed has a high level of resolution and should be an excellent tool for studying the population structure and epidemiology of the B. cereus group.  相似文献   

18.
We recently developed a multilocus sequence typing (MLST) scheme to differentiate S. uberis isolates and facilitate an understanding of the population biology of this pathogen. The scheme was initially used to study a collection of 160 bovine milk isolates from the United Kingdom and showed that the majority of isolates were from one clonal complex (designated the ST-5 complex). Here we describe the MLST analysis of a collection of New Zealand isolates. These were obtained from diverse sources, including bovine milk, other bovine anatomical sites, and environmental sources. The complete allelic profiles of 253 isolates were determined. The collection was highly diverse and included 131 different sequence types (STs). The New Zealand and United Kingdom populations were distinct, since none of the 131 STs were represented within the previously studied collection of 160 United Kingdom S. uberis isolates. However, seven of the STs were members of the ST-5 clonal complex, the major complex within the United Kingdom collection. Two new clonal complexes were identified: ST-143 and ST-86. All three major complexes were isolated from milk, other bovine sites, and the environment. Carriage of the hasA gene, which is necessary for capsule formation, correlated with clonal complex and isolation from clinical cases of mastitis.  相似文献   

19.
Staphylococcus equorum, the predominant bacterial species detected in Saeu-jeotgal, a Korean high-salt fermented seafood, is a candidate starter bacterium for Saeu-jeotgal fermentation. A multilocus sequence typing (MLST) scheme was developed to evaluate the genetic diversity and background of S. equorum strains isolated from Saeu-jeotgal. A total of 135 strains, including 117 isolates from Saeu-jeotgal, and others from Myeolchi-jeotgal, sausage, cheese and horse skin, were subjected to MLST, and the internal fragments of seven housekeeping genes, aroE, dnaJ, glpF, gmk, hsp60, mutS, and pta, were compared. This MLST scheme produced 45 sequence types (STs) and the eBURST algorithm clustered the STs into nine clonal groups and seven singletons. Clonal group 1, the major group, consisted of 30 isolates from cheese, Saeu-jeotgal and sausages, which were classified into 12 STs. The predominant ST, ST26, comprised 25 isolates and presented as a singleton. Most of the isolates from Myeolchi-jeotgal and sausages clustered on two different branches of a phylogenetic tree generated with a cluster analysis using the maximum likelihood algorithm. This MLST scheme established the genetic backgrounds of S. equorum strains isolated from different types of food. Among the housekeeping genes used for MLST, gmk had the fewest allele types and fairly low sequence identities (74.0–90.0 %) within the Staphylococcus species. Therefore, sequence analyses of the gmk gene and 16S rRNA gene can be used for the accurate and rapid identification of S. equorum.  相似文献   

20.
Aims:  To determine the antimicrobial resistant profiles and clonality of Campylobacter coli isolated from clinically ill humans and retail meats.
Methods and Results:  A total of 98 C. coli isolates (20 from humans and 78 from retail meats) were phenotypically characterized. Antimicrobial susceptibility testing was done using agar dilution method for ciprofloxacin, gentamicin, erythromycin and doxycycline. Seventy C. coli isolates including humans ( n  = 20) and retail meats ( n  = 50) were genotyped by multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). Resistance to ciprofloxacin was found in 29% and 15% of isolates from retail meats and humans. We observed 61 PFGE profiles using two enzymes ( Sma I, Kpn I) with an Index of discrimination of 0·99, whereas MLST generated 37 sequence types. Two clonal complexes were identified with 58 (82%) C. coli isolates clustered in the ST-828 complex.
Conclusions:  Resistance to ciprofloxacin and erythromycin was identified in C. coli obtained from retail meats and ill humans. PFGE typing of C. coli isolates was more discriminatory than MLST. Grouping of C. coli isolates (82%) by MLST in ST-828 clonal complex indicates a common ancestry.
Significance and Impact of the Study:  A high frequency of resistance found to ciprofloxacin and erythromycin is concerning from food safety perspective. PFGE using single or double restriction enzymes was found to be more discriminatory than MLST for genotyping C. coli . Overall, the C. coli populations recovered from humans and retail meats were genotypically diverse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号