首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Everglades periphyton mats are tightly-coupled autotrophic (algae and cyanobacteria) and heterotrophic (eubacteria, fungi and microinvertebrates) microbial assemblages. We investigated the effect of water column total phosphorus and nitrogen concentrations, water depth and hydroperiod on periphyton of net production, respiration, nutrient content, and biomass. Our study sites were located along four transects that extended southward with freshwater sheetflow through sawgrass-dominated marsh. The water source for two of the transects were canal-driven and anchored at canal inputs. The two other transects were rain-driven (ombrotrophic) and began in sawgrass-dominated marsh. Periphyton dynamics were examined for upstream and downstream effects within and across the four transects. Although all study sites were characterized as short hydroperiod and phosphorus-limited oligotrophic, they represent gradients of hydrologic regime, water source and water quality of the southern Everglades. Average periphyton net production of 1.08 mg C AFDW−1 h−1 and periphyton whole system respiration of 0.38 mg C AFDW−1 h−1 rates were net autotrophic. Biomass was generally highest at ombrotrophic sites and sites downstream of canal inputs. Mean biomass over all our study sites was high, 1517.30 g AFDW m−2. Periphyton was phosphorus-limited. Average periphyton total phosphorus content was 137.15 μg P g−1 and average periphyton total N:P ratio was 192:1. Periphyton N:P was a sensitive indicator of water source. Even at extremely low mean water total phosphorus concentrations ( ≤ 0.21 μmol l−1), we found canal source effects on periphyton dynamics at sites adjacent to canal inputs, but not downstream of inflows. These canal source effects were most pronounced at the onset of wet season with initial rewetting. Spatial and temporal variability in periphyton dynamics could not solely be ascribed to water quality, but was often associated with both hydrology and water source.  相似文献   

2.
The Florida Everglades is a mosaic of short and long-hydroperiod marshes that differ in the depth, duration, and timing of inundation. Algae are important primary producers in widespread Everglades’ periphyton mats, but relationships of algal production and community structure to hydrologic variability are poorly understood. We quantified differences in algal biomass and community structure between periphyton mats in 5 short and 6 long-hydroperiod marshes in Everglades National Park (ENP) in October 2000. We related differences to water depth and total phosphorus (TP) concentration in the water, periphyton and soils. Long and short-hydroperiod marshes differed in water depth (73 cm vs. 13 cm), periphyton TP concentrations (172μg g−1 vs. 107 μg g−1, respectively) and soil TP (284 μg g−1 vs. 145 μg g−1). Periphyton was abundant in both marshes, with short-hydroperiod sites having greater biomass than long-hydroperiod sites (2936 vs. 575 grams ash-free dry mass m−2). A total of 156 algal taxa were identified and separated into diatom (68 species from 21 genera) and “soft algae” (88 non-diatom species from 47 genera) categories for further analyses. Although diatom total abundance was greater in long-hydroperiod mats, diatom species richness was significantly greater in short- hydroperiod periphyton mats (62 vs. 47 diatom taxa). Soft algal species richness was greater in long-hydroperiod sites (81 vs. 67 soft algae taxa). Relative abundances of individual taxa were significantly different among the two site types, with soft algal distributions being driven by water depth, and diatom distributions by water depth and TP concentration in the water and periphyton. Periphyton communities differ between short and long-hydroperiod marshes, but because they share many taxa, alterations in hydroperiod could rapidly promote the alternate community. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

3.
Lake Varese (northern Italy) has shown deterioration in water quality since the 1960s and, as a result of the long duration of direct discharge of untreated sewage into the lake, it was classified as being hypertrophic. To recover the lake water quality, a series of externally and internally remedial actions were implemented in subsequent years. The applied sewage collecting system induced a reduction of the external P loads from 50 t P year−1 to 16t P year−1 and the weighted mean annual TP concentration decreased from 352 μg P l−1 to 85 μg P l−1, typical of eutrophic conditions. The hypolimnetic water withdrawals, adopted in the years 2000–2003, allowed a reduction of the internal P loads of about 3–5 t P. In the same years, 500t O2 were injected at depths of 4.5–8 m during the summer months. In spite of these internal remedial actions, no significant reduction of the weighted mean annual concentration of the TP could be observed, and during the summer stratification period no significant reduction of the volumes of anoxic water and of the duration of the anoxia were detected. The anoxic conditions are still the prevailing force driving the lake P-budget, maintaining the lake in eutrophic status.  相似文献   

4.
In this study we manipulated both nitrogen and phosphorus concentrations in stream mesocosms to develop quantitative relationships between periphytic algal growth rates and peak biomass with inorganic N and P concentrations. Stream water from Harts Run, a 2nd order stream in a pristine catchment, was constantly added to 36 stream-side stream mesocosms in low volumes and then recirculated to reduce nutrient concentrations. Clay tiles were colonized with periphyton in the mesocosms. Nutrients were added to create P and N concentrations ranging from less than Harts Run concentrations to 128 μg SRP l−1 and 1024 μg NO3-N l−1. Algae and water were sampled every 3 days during colonization until periphyton communities reached peak biomass and then sloughed. Nutrient depletion was substantial in the mesocosms. Algae accumulated in all streams, even streams in which no nutrients were added. Nutrient limitation of algal growth and peak biomass accrual was observed in both low P and low N conditions. The Monod model best explained relationships between P and N concentrations and algal growth and peak biomass. Algal growth was 90% of maximum rates or higher in nutrient concentrations 16 μg SRP l−1 and 86 μg DIN l−1. These saturating concentrations for growth rates were 3–5 times lower than concentrations needed to produce maximum biomass. Modified Monod models using both DIN and SRP were developed to explain algal growth rates and peak biomass, which respectively explained 44 and 70% of the variance in algal response.  相似文献   

5.
Aluminum in lake water and in the organs of the fish Tribolodon hakonensis was investigated in Lake Usoriko (pH 3.6), Lake Inawashiroko (pH 5.0), and the Tenryu River (pH 7.7). The concentration of total soluble aluminum in the water was 0.51 mg l−1 in Usoriko, 0.05 mg l−1 in Inawashiroko, and less than 0.01 mg l−1 in the Tenryu. The chemical forms of soluble aluminum in the acid water were characterized as Al3+, AlL2+, and AlL≦1+. More than 90% of soluble aluminum in the water of Usoriko was Al3+, whereas AlL2+ was dominant in the water of Inawashiroko. The aluminum concentration in the organs of T. hakonensis in Usoriko was 42 μg g−1 wet weight in gills, 4.2 μg g−1 in muscle, 6.9 μg g−1 in bone, 12.7 μg g−1 in liver, 6.0 μg g−1 in kidney, and 6.0 μg g−1 in intestine, indicating accumulation of aluminum in the gills. The aluminum concentration in the organs of T. hakonensis living in Inawashiroko was approximately the same, in spite of the difference in water chemistry of the two acid lakes, especially for pH and aluminum. This suggests that aluminum accumulation might be controlled in the fish living in the acid lakes. In contrast, the aluminum concentration in the gills of T. hakonensis from the Tenryu was 2 μg g−1. Received: May 20, 1999 / Accepted: December 10, 1999  相似文献   

6.
Nitrogen dynamics in Lake Okeechobee: forms,functions, and changes   总被引:1,自引:0,他引:1  
Total nitrogen (TN) in Lake Okeechobee, a large, shallow, turbid lake in south Florida, has averaged between 90 and 150 μM on an annual basis since 1983. No TN trends are evident, despite major storm events, droughts, and nutrient management changes in the watershed. To understand the relative stability of TN, this study evaluates nitrogen (N) dynamics at three temporal/spatial levels: (1) annual whole lake N budgets, (2) monthly in-lake water quality measurements in offshore and nearshore areas, and (3) isotope addition experiments lasting 3 days and using 15N-ammonium (15NH4 +) and 15N-nitrate (15NO3 ) at two offshore locations. Budgets indicate that the lake is a net sink for N. TN concentrations were less variable than net N loads, suggesting that in-lake processes moderate these net loads. Monthly NO3 concentrations were higher in the offshore area and higher in winter for both offshore and nearshore areas. Negative relationships between the percentage of samples classified as algal blooms (defined as chlorophyll a > 40 μg l−1) and inorganic N concentrations suggest N-limitation. Continuous-flow experiments over intact sediment cores measured net fluxes (μmol N m−2 h−1) between 0 and 25 released from sediments for NH4 +, 0–60 removed by sediments for NO3 , and 63–68 transformed by denitrification. Uptake rates in the water column (μmol N m−2 h−1) determined by isotope dilution experiments and normalized for water depth were 1,090–1,970 for NH4 + and 59–119 for NO3 . These fluxes are similar to previously reported results. Our work suggests that external N inputs are balanced in Lake Okeechobee by denitrification.  相似文献   

7.
Microphytoplankton populations were studied in shallow coastal water (<60 m) near the Brazilian Antarctic Station Comandante Ferraz (EACF) and three reference areas in Admiralty Bay in early and late summer (2002–2003). Phytoplankton was diverse (113 taxa), but not abundant (103 cells l−1). The highest abundances (>104 cells l−1) were caused by pennate benthic diatoms (Fragilaria striatula Lyngbye) that occurred mainly in early summer, associated with the presence of ice. In late summer, when the water temperature (−0.4 to 1.5°C), salinity (34 to 35), and phosphate (2.6 to 4.5 μmol l−1) were highest and the dissolved oxygen was lowest (6.4 to 2.9 ml l−1), centric diatoms (Thalassiosira spp.) were more abundant, suggesting an influence of oceanic waters. Phytoplankton abundance (≤102 cells l−1) and chlorophyll a concentrations (0.22 μg l−1) were lowest close to EACF. Pennate diatoms were dominant close to shore and in surface waters elsewhere, probably because of ice melting or sediment resuspension caused by water mixing.  相似文献   

8.
Pleurotus ostreatus showed atypical laccase production in submerged vs. solid-state fermentation. Cultures grown in submerged fermentation produced laccase at 13,000 U l−1, with a biomass production of 5.6 g l−1 and four laccase isoforms. However, cultures grown in solid-state fermentation had a much lower laccase activity of 2,430 U l−1, biomass production of 4.5 g l−1, and three laccase isoforms. These results show that P. ostreatus performs much better in submerged fermentation than in solid-state fermentation. This is the first report that shows such atypical behavior in the production of extracellular laccases by fungi.  相似文献   

9.
The abundance, community structure and nutrient content of periphyton, and the host plant taxa Chara, Hydrilla, Potamogeton, Vallisneria and Scirpus were studied in Lake Okeechobee, USA. Water levels were generally high during the study period (August 2002–January 2006), but substantial fluctuations occurred. All host plant biomass was seasonally variable but only Vallisneria biomass was spatially variable. All submerged plant beds disappeared after the passage of two hurricanes in September 2004, and a third hurricane passed over the lake in October 2005. Periphyton assemblages were statistically separated most by substrate and then by season. Prior to the hurricanes, annual maxima of periphyton biovolumes and those of summer submerged plant coverage coincided. During all study years, the diatom taxa dominated periphyton total biovolumes. Periphyton biomass was generally highest during the summer or prior to the hurricanes (in the case of epiphytes) and was spatially variable in the case of both Scirpus and Vallisneria. Epiphytic nutrient contents within each host plant group seasonally varied except for nitrogen and carbon in the Vallisneria epiphytes. Epipelic nutrient contents were spatially variable and seasonally variable for carbon. Nutrient contents in epipelon were significantly higher than that in Scirpus epiphytes and were similar but lower among all epiphytic communities. The total annual areal potential epiphytic phosphorus storage extrapolated during this study (2.0 × 10−4 metric tons ha−1 year−1) was underestimated because storage estimates for epipelon, Chara and Hydrilla-associated epiphytes were omitted. The Chara and Hydrilla-associated epiphytic nutrient storage values were omitted because of limited data, whereas the epipelic data may have not been spatially representative. For periphyton biovolume, host substrate type, water level fluctuation and hurricane impacts on host substrates appear to be more important than seasonal variation in such factors as temperature and nutrients. Epiphytic nutrient storage appears to be influenced most by water level fluctuation and hurricane-related impacts, while the host substrate type appears to be a less important factor than it is for periphyton biovolume. Maximum periphyton biomass and high nutrient storage in shallow subtropical and tropical eutrophic lakes may only occur at consistently lower water levels and during infrequent periods of disturbance, which enhance host substrate colonizable area.  相似文献   

10.
We studied the trophic development of the past 30–100 years in eight moderately deep Dutch lakes based on their sedimentary fossil diatom assemblages. The dominant diatoms indicating meso- to eutrophic conditions were Aulacoseira subarctica, Cyclotella ocellata, C. cyclopuncta, C. meneghiniana, Puncticulata bodanica, Aulacoseira granulata, Cyclostephanos dubius, C. invisitatus, Stephanodiscus hantzschii, S. medius, and S. parvus. Ordination of diatom data separated the lakes into four groups according to their total phosphorus concentrations (TP), water supply, water management, and origin. The first group consists of dike-breach lakes, which were in stable eutrophic to hypertrophic conditions throughout the past century with diatom-inferred TP (DI-TP) concentrations of between 70 and 300 μg l−1. The main factors influencing these dike-breach lakes are river management, ground water supply of riverine origin, and local land use. The second group are artificial lakes of fluctuating oligo- to mesotrophic conditions and DI-TP concentrations of 10–30 μg l−1. Only one of the artificial lakes showed a DI-TP increase due to changes in catchment agricultural practice. A third group includes an artificial moat and an inland dike-breach lake with DI-TP concentrations of 50–100 μg l−1. The fourth group contains an individual dike-breach lake with stable mesotrophic conditions of 50 μg l−1 throughout the past century. Rather than showing a regional pattern, the studied lakes behave very individualistically with regard to their trophic history, reflecting changes in the local hydrology and in their nutrient sources.  相似文献   

11.
The abundance of pelagic invertebrate predators in relation to turbidity and depth gradients in Lake Hiidenvesi (southern Finland) were studied. In the shallow (<5 m) and the most turbid (up to 75 NTU) part of the lake, the community of invertebrate predators consisted of cyclopoid copepods (max biomass >500 μg dw l−1) and Leptodora kindtiii (Focke) (17 μg dw l−1), while in the less turbid (10–40 NTU) stratifying area Chaoborus flavicans (Meigen) dominated (max 146 μg dw l−1). In the temporarily stratifying and moderately turbid basin Chaoborus and small-bodied invertebrate predators co-existed. Mysis relicta (Lovén) occurred only in the stratifying area (max 15 μg dw l−1). The results suggested that both water depth and turbidity contributed to the community structure of Chaoborus flavicans. Depth great enough for stratification was of special importance and its effect was amplified by elevated turbidity, while high turbidity alone could not maintain chaoborid populations. Mysis relicta also requires a hypolimnetic refuge but is more sensitive to low oxygen concentrations and may therefore be forced to the epilimnion where it is vulnerable to fish predation. Cyclopoids as rapid swimmers can take advantage at elevated turbidity levels and coexist in high biomass with fish even in shallow water. Leptodora kindtii can form high biomass despite planktivorous fish providing that turbidity exceeds 20 NTU. The results demonstrated that depth and water turbidity can strongly regulate the abundance and species composition of invertebrate predators. These factors must thus be taken into account when applying food web management, which aims to reduce phytoplankton biomass by depressing planktivorous fish.  相似文献   

12.
 Water and surficial sediment samples of Lake Chascomús and its tributaries were analyzed in order to relate changes in diatom community structure to chemical variables. Over the course of 13 months of sampling, the lake exhibited major changes in water level (1.15–1.98 m average depth), total dissolved solids (821–1972 mg l−1), silica (0.098–8.22 mg l−1), and total algal biomass (21.4–145.9 μg Chl a l−1). However, despite these large fluctuations, the diatom species composition was relatively stable. The dominant species in the water column was always Synedra berolinensis (68.9%–90.1% total frustules), with Fragilaria construens and F. brevistriata as subdominants. In the sediments the latter two species dominated the frustule counts. These results indicate an unusual floristic stability of this eutrophic ecosystem, with persistent dominance by broadly tolerant, generalist species. Received: April 24, 2001 / Accepted: January 23, 2002  相似文献   

13.
Van Donk  E.  Grimm  M. P.  Gulati  R. D.  Heuts  P. G. M.  de Kloet  W. A.  van Liere  L. 《Hydrobiologia》1990,200(1):291-301
Lake Breukeleveen (180 ha, mean depth 1.45 m), a compartment of the eutrophic Loosdrecht lakes system, was selected to study the effects of whole-lake foodweb manipulation on a large scale. In Lake Loosdrecht (dominated by filamentous cyanobacteria), due to water management measures taken from 1970–1984 (sewerage systems, dephosphorization) the external P load has been reduced from 1.2 g m−2 y−1 to 0.35 g m−2 y−1. The water transparency (Secchi-depthca. 30 cm), however, has not improved. The aim of the food-web manipulation in Lake Breukeleveen was not only to improve the light climate of the lake, but also to study if the successfull effects observed in small lakes (a few ha) can be upscaled. In March 1989 the standing crop of planktivorous and bentivorous fish populations was reduced by intensive fishery, fromca. 150 kg ha−1 toca. 57 kg ha−1. The lake was made unaccessible to fish migrating from the other lakes and it was stocked with large-sized daphnids and 0+ pike. However, water transparency did not increase in the following summer and autumn 1989, which is in contrast with great improvement in the light conditions previously observed in smaller lakes. The main explanations for the negative outcome in Lake Breukeleveen are: 1) the rapid increase of the planktivorous fish biomass and carnivorous cladocerans, predating on the zooplankton community; 2) suppression of the large daphnids by the high concentrations of filamentous cyanobacteria; 3) high turbidity of the lake due to resuspension of bottom material induced by wind, unlike in smaller lakes, and thus inability of submerged macrophytes to develop and to stabilize the ecosystem.  相似文献   

14.
Lake ülemiste, the drinking water reservoir of Estonia’s capital city Tallinn, was biomanipulated by manual removal of cyprinids in 2004–2006 and its impact on water quality in the vegetation period was studied. A total biomass of 156 tonnes corresponding to 160 kg ha−1 of fish, predominantly cyprinids, were removed. A decline in the unit catches of fishing was observed. The removed fish biomass versus phosphorus concentration of the lake was considered sufficient to reduce the impact of cyprinids on water quality. The phosphorus removed within fish biomass corresponded to 38 μg l−1 and 21% of the external phosphorus load of the fishing period. The mean total phosphorus concentration dropped from >50 to ≤36 μg l−1. However, the densities of planktivorous young-of-the-year percids remained high and the role of zooplankton grazing in improving water quality was found non-significant or transient. The cladocerans biomass decreased and the small-sized Daphnia cucullata remained almost the only daphnid in Lake ülemiste during and after the manipulation. Predomination of filamentous cyanobacteria was replaced by a more diverse phytoplankton composition and co-domination of micro- and pico-sized colonial cyanobacteria during summer. Mean phytoplankton biomass decreased from 15 to 6 mg l−1 primarily as a result of decreased in-lake TP availability. The Secchi disc transparency increased only in May 2005–2007. The effects of coincidental events, a decline of external loading of phosphorus and a simultaneous flushing induced by heavy rainfall, on lake water quality are discussed with some implications to the future management of the reservoir.  相似文献   

15.
Under optimal nutrient conditions, both Microcystis sp. and Anabaena sp. isolated from Lake Biwa grew optimally at 28–32°C but differed in maximal growth rates, phosphate uptake kinetics, maximal phosphorus quotas, and growth responses to nitrogen and phosphorus limitation. The maximal growth rates of Microcystis and Anabaena were 1.6 and 1.25 divisions day−1, respectively. With phosphate and nitrate in the growth-limiting range, the growth of Microcystis was optimal at an N : P ratio of 100 : 1 (by weight) and declined at lower (nitrogen limitation) and higher (phosphorus limitation) ratios. In contrast, Anabaena growth rates did not change at N : P ratios from 1000 : 1 to 10 : 1. Starting with cells containing the maximal phosphorus quota, Microcystis growth in minus-phosphorus medium ceased in 7–9 days, compared with 12–13 days for Anabaena. The phosphate turnover time in cultures starved to their minimum cell quotas was 7.9 min for Microcystis and 0.6 min for Anabaena. Microcystis had a higher K s (0.12 μg P l−1 10−6 cells) and lower V max (9.63 μg P l−1 h−1 10−6 cells), than Anabaena (K s 0.02 μg P l−1 h−1 10−6 cells; V max 46.25 63 μg P l−1 h−1 10−6 cells), suggesting that Microcystis would not be able to grow well in phosphorus-limited waters. We conclude that in spite of the higher growth rate under ideal conditions, Microcystis does not usually bloom in the North Basin because of low availability of phosphorus and nitrogen. Although Anabaena has an efficient phosphorus-uptake system, its main strategy for growth in low-phosphorus environments may depend on storage of phosphorus during periods of abundant phosphorus supply, which are rare in the North Basin. Received: July 31, 2000 / Accepted: October 18, 2000  相似文献   

16.
Cell suspension cultures of Commiphora wightii, grown in modified MS medium containing 2,4-dichlorophenoxyacetic acid (0.5 mg l−1) and kinetin (0.25 mg l−1), produced ∼5 μg guggulsterone g−1 dry wt. In a 2 l stirred tank bioreactor, the biomass was 5.5 g l−1 and total guggulsterone was 36 μg l−1.  相似文献   

17.
To determine the sources and sinks of atmospherically deposited Pb at a forested watershed (Plastic Lake) in central Ontario, Canada, Pb pools and fluxes through upland, wetland and lake compartments were measured during 2002/2003 and compared with previous measurements taken between 1989 and 1991. In 2002/2003, annual bulk deposition of Pb was 0.49 mg m−2 compared with 1.90–1.30 mg m−2 in 1989–1991. Annual Pb concentrations in stream water draining the upland part of the catchment were very low (0.04 μg l−1) and were approximately half those measured in 1989–1991 (0.11–0.08 μg l−1). Leaching losses in stream water were small and mass balance estimates indicate almost complete retention (>95%) of atmospherically deposited Pb in upland soils. In contrast, annual Pb concentrations in stream water draining a wetland were between 0.38 and 0.77 μg l−1, with the highest concentration occurring in 2002/2003 and mass balance calculations indicate that the wetland is a net source of Pb in all measured years. Lead concentrations in the lake outflow were low and the average Pb concentration measured in 2002/2003 (0.09 μg l−1) was approximately half the value recorded in 1989–1991 (0.19 μg l−1 both years). Annual mass balance estimates indicate that the lake retained between 2.47 mg m−2 (1989/1990) and 1.42 mg m−2 (2002/2003) and that in 2002/2003 68% of the Pb input to the lake is derived from the terrestrial catchment. These estimates are higher than sediment core records, which indicate around 18 mg m−2 Pb was retained in sediment during the 1990s. Nevertheless, Pb concentrations decrease with sediment depth and 206Pb/207Pb concentrations increase with depth, a pattern also observed in mineral soils that reflects the substantial contribution of anthropogenic Pb to the watershed. Lead isotope data from soil and sediment indicate a recent anthropogenic Pb signal (206Pb/207Pb ∼ 1.185) in upper soils and sediments and an older anthropogenic signal (206Pb/207Pb ∼ 1.20) in deeper soil and sediment. Lead isotope data in sediment and vegetation indicate that practically all the Pb cycled in the forest at Plastic Lake is anthropogenic in origin.  相似文献   

18.
Transgenic herbicide tolerant Acacia sinuata plants were produced by transformation with the bar gene conferring phosphinothricin resistance. Precultured hypocotyl explants were infected with Agrobacterium tumefaciens strain EHA105 in the presence of 100 μM acetosyringone and shoots regenerated on MS (Murashige and Skoog, 1962, Physiol Plant 15:473–497) medium with 13.3 μM benzylaminopurine, 2.6 μM indole-3-acetic acid, 1 g l−1 activated charcoal, 1.5 mg l−1 phosphinothricin, and 300 mg l−1 cefotaxime. Phosphinothricin at 1.5 mg l−1 was used for the selection. Shoots surviving selection on medium with phosphinothricin expressed GUS. Following Southern hybridization, eight independent shoots regenerated of 500 cocultivated explants were demonstrated to be transgenic, which represented transformation frequency of 1.6%. The transgenics carried one to four copies of the transgene. Transgenic shoots were propagated as microcuttings in MS medium with 6.6 μM 6-benzylaminopurine and 1.5 mg l−1 phosphinothricin. Shoots elongated and rooted in MS medium with gibberellic acid and indole-3-butyric acid, respectively both supplemented with 1.5 mg l−1 phosphinothricin. Micropropagation of transgenic plants by microcuttings proved to be a simple means to bulk up the material. Several transgenic plants were found to be resistant to leaf painting with the herbicide Basta.  相似文献   

19.
Dissolution of the Silurian-Devonian aquifer in the Lake Huron Basin has produced several karst formations in the bedrock (sinkholes), through which groundwater emerges onto the lake floor. During September 2003, we explored a recently discovered submerged sinkhole ecosystem (55 m × 40 m × ∼1 m) located at a depth of 93 m with a remotely operated vehicle (ROV) equipped with a conductivity-temperature-depth (CTD) system, an acoustic navigational system, a video camera, and a water sampling system. In addition to two morphotypes of benthic mats, a 1–2 m thick visibly cloudy near-bottom nepheloid-like layer (sinkhole plume) with a strong hydrogen sulfide odor prevailed just above the seepage area of clear water. Relative to lake water, water samples collected within the sinkhole plume were characterized by slightly higher (by 4°C) temperatures, very high levels of chloride (up to 175 mg l−1) and conductivity (1,700 μS cm−1), as well as extremely high concentrations of sulfate (1,400 mg l−1), phosphorus (3 mg l−1) and particulate organic matter (400 mg C l−1). Compared to background lake water, sinkhole plume water was characterized by approximately twofold lower C:N ratios and tenfold higher levels of dissolved organic carbon, bacterial biomass as well as heterotrophic bacterial production. Significant uptake of 14C-bicarbonate in dark incubations provided preliminary evidence for occurrence of chemosynthesis, possibly mediated by specialized Bacteria and Archea present in this submerged sinkhole ecosystem in the Laurentian Great Lakes.  相似文献   

20.
Heterotrophic bacterial and phytoplankton biomass, production, specific growth rates and growth efficiencies were studied in July 2001 and January 2002 during both spring and neap tides, along a tidal cycle, at three sites in a subtropical estuary. Major freshwater inputs located in the Northern region led to differences in both phytoplankton and bacterioplankton biomass and activity along the estuary. While in the Northern region phytoplankton is light-limited, with mean phytoplankton production (PP) between 1.1 and 1.9 μg C l−1 h−1 and mean specific growth rates (PSG) between 0.14 and 0.16 d−1, the Southern region registered values as high as 24.7 μg C l−1 h−1 for PP and 2.45 d−1 (mean PP between 3.4 and 7.3 μg C l−1 h−1; mean PSG between 0.28 and 0.57 d−1). On the other hand, maximum bacterial production (BP: 63.8 μg C l−1 h−1) and specific growth rate (BSG: 32.26 d−1) were observed in the Northern region (mean BP between 3.4 and 12.8 μg C l−1 h−1; mean BSG between 1.98 and 6.67 day−1). These bacterial activity rates are among the highest recorded rates in estuarine and coastal waters, indicating that this system can be highly heterotrophic, due to high loads of allochthonous carbon (mainly derived from mangrove forest). Our results also showed that, despite that BP rates usually exceeded PP, in the Southern region BP may be partially supported (∼45%) by PP, since a significant regression was observed between BP and PP (r = 0.455, P < 0.001). Handling editor: P. Viaroli  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号