首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rice (Oryza sativa L.) centromeres are composed of 155-bp satellite repeats (CentO), centromere-specific retrotransposon (CRR), and a variety of other repeats. Previous studies have shown that CentO and CRR elements are both parts of the functional centromere/kinetochore complex. In this study, a naturally occurring karyotype rearrangement involving a reciprocal translocation between chromosomes 9 and 11 in an indica rice Zhongxian 3037 has been identified. The recombinant centromere in Chr11L?·?9L has two CentO tandem arrays, separated by a long array of 5S rDNAs. Chromatin immunoprecipitation and immunostaining showed that centromere-specific histone H3 (cenH3) variant was bound to the two flanking CentO arrays, but not to the 5S rDNAs residing between the CentO repeats. No obvious difference was detected in H3K4me2 and H3K9ac modification of the 5S rDNAs between the wild type and the mutant. Therefore, the translocation results in a recombinant stable chromosome with interrupted centromeric domains. A lack of cenH3 binding in 5S rDNA sequences residing within the centromeric core suggests that not all centromeric sequences confer centromere identity in rice.  相似文献   

2.
The genomic sequences derived from rice centromeric regions were analyzed to facilitate the comprehensive understanding of the rice genome. A rice centromere-specific satellite sequence, RCS2/TrsD/CentO, was used to screen P1-derived artificial chromosome (PAC) and bacterial artificial chromosome (BAC) genomic libraries derived from Oryza sativa L. ssp. japonica cultivar Nipponbare. Physical maps of the centromeric regions were constructed by DNA fingerprinting methods and the aligned clones were analyzed by end sequencing. BLAST analysis revealed the composition of genes, centromeric satellites and other repetitive elements, such as RIRE7/CRR, RIRE8, Squiq, Anaconda, CACTA and miniature inverted-repeat transposable elements. Fiber-fluorescent in situ hybridization analysis also indicated the presence of distinct clusters of RCS2/TrsD/CentO satellite interspersed with other elements, instead of a long homogeneous region. Several expressed genes, sequences representative of ancestral organellar insertions, relatively long simple sequence repeats (SSRs), and sequences corresponding to 5S and 45S ribosomal RNA genes were also identified. Thirty-one gene sequences showed high-similarity to rice full-length cDNA sequences that had not been matched to the published rice genome sequence in silico. These results suggest the presence of expressed genes within and around the clusters of RCS2/TrsD/CentO satellites in unsequenced centromeric regions of the rice chromosomes.  相似文献   

3.
Structural features of the rice chromosome 4 centromere   总被引:23,自引:0,他引:23       下载免费PDF全文
Zhang Y  Huang Y  Zhang L  Li Y  Lu T  Lu Y  Feng Q  Zhao Q  Cheng Z  Xue Y  Wing RA  Han B 《Nucleic acids research》2004,32(6):2023-2030
  相似文献   

4.
5.
6.
The centromere of eukaryotic chromosomes is essential for the faithful segregation and inheritance of genetic information. In the majority of eukaryotic species, centromeres are associated with highly repetitive DNA, and as a consequence, the boundary for a functional centromere is difficult to define. In this study, we demonstrate that the centers of rice centromeres are occupied by a 155-bp satellite repeat, CentO, and a centromere-specific retrotransposon, CRR. The CentO satellite is located within the chromosomal regions to which the spindle fibers attach. CentO is quantitatively variable among the 12 rice centromeres, ranging from 65 kb to 2 Mb, and is interrupted irregularly by CRR elements. The break points of 14 rice centromere misdivision events were mapped to the middle of the CentO arrays, suggesting that the CentO satellite is located within the functional domain of rice centromeres. Our results demonstrate that the CentO satellite may be a key DNA element for rice centromere function.  相似文献   

7.
Luzula spp, like the rest of the members of the Juncaceae family, have holocentric chromosomes. Using the rice 155-bp centromeric tandem repeat sequence (RCS2) as a probe, we have isolated and characterized a 178-bp tandem sequence repeat (LCS1) from Luzula nivea. The LCS1 sequence is present in all Luzula species tested so far (except L. pilosa) and like other satellite repeats found in heterochromatin, the cytosine residues are methylated within the LCS1 repeats. Using fluorescent in situ hybridization (FISH) experiments we have shown that there are at least 5 large clusters of LCS1 sequences distributed at heterochromatin regions along each of the 12 chromosomes of L. nivea. We have shown that a centromeric antibody Skp1 co-localizes with these heterochromatin regions and with the LCS1 sequences. This suggests that the LCS1 sequences are part of regions which function as centromeres on these holocentric chromosomes. Furthermore, using the BrdU assay to identify replication sites, we have shown that these heterochromatin sites containing LCS1 associate when being replicated in root interphase nuclei. Our results also show premeiotic chromosome association during anther development as indicated by single-copy BAC in situ and the presence of fewer LCS1 containing heterochromatin sites in these cells.  相似文献   

8.
Knowledge about the composition and structure of centromeres is critical for understanding how centromeres perform their functional roles. Here, we report the sequences of one centromere-associated bacterial artificial chromosome clone from a Coix lacryma-jobi library. Two Ty3/gypsy-class retrotransposons, centromeric retrotransposon of C. lacryma-jobi (CRC) and peri-centromeric retrotransposon of C. lacryma-jobi, and a (peri)centromere-specific tandem repeat with a unit length of 153 bp were identified. The CRC is highly homologous to centromere-specific retrotransposons reported in grass species. An 80-bp DNA region in the 153-bp satellite repeat was found to be conserved to centromeric satellite repeats from maize, rice, and pearl millet. Fluorescence in situ hybridization showed that the three repetitive sequences were located in (peri-)centromeric regions of both C. lacryma-jobi and Coix aquatica. However, the 153-bp satellite repeat was only detected on 20 out of the 30 chromosomes in C. aquatica. Immunostaining with an antibody against rice CENH3 indicates that the 153-bp satellite repeat and CRC might be both the major components for functional centromeres, but not all the 153-bp satellite repeats or CRC sequences are associated with CENH3. The evolution of centromeric repeats of C. lacryma-jobi during the polyploidization was discussed.  相似文献   

9.
植物着丝粒结构和功能的研究进展   总被引:1,自引:0,他引:1  
佘朝文  宋运淳 《遗传》2006,28(12):1597-1606
着丝粒是真核生物有丝分裂和减数分裂染色体正确分离和传递所必需的染色体区域。十多年来, 已对包括拟南芥、水稻、玉米在内的一些植物的着丝粒进行了较深入的分子生物学研究。在不同的植物间, 着丝粒DNA的保守性很低, 呈现快速进化, 但着丝粒的DNA序列类型和组织方式基本相似, 一般是由夹杂排列着的卫星DNA串联重复阵列和着丝粒专一的反转录转座子构成。与着丝粒DNA相反, 着丝粒/着丝点的结构性和瞬时蛋白质在包括植物在内的真核生物中保守。与其他真核生物的情况一样, 拥有含着丝粒组蛋白H3(CENH3)的核小体是植物功能着丝粒染色质最基本的特征, CENH3在着丝粒染色质的识别和保持中起着关键作用。  相似文献   

10.
Oryza officinalis (CC, 2n=24) and Oryza rhizomatis (CC, 2n=24) belong to the Oryza genus, which contains more than 20 identified wild rice species. Although much has been known about the molecular composition and organization of centromeres in Oryza sativa, relatively little is known of its wild relatives. In the present study, we isolated and characterized a 126-bp centromeric satellite (CentO-C) from three bacterial artificial chromosomes of O. officinalis. In addition to CentO-C, low abundance of CentO satellites is also present in O. officinalis. In order to determine the chromosomal locations and distributions of CentO-C (126-bp), CentO (155 bp) and TrsC (366 bp) satellite within O. officinalis, fluorescence in situ hybridization examination was done on pachytene or metaphase I chromosomes. We found that only ten centromeres (excluding centromere 7 and 2) contain CentO-C arrays in O. officinalis, while centromere 7 comprises CentO satellites, and centromere 2 is devoid of any detectable satellites. For TrsC satellites, it was detected at multiple subtelomeric regions in O. officinalis, however, in O. rhizomatis, TrsC sequences were detected both in the four centromeric regions (CEN 3, 4, 10, 11) and the multiple subtelomeric regions. Therefore, these data reveal the evolutionary diversification pattern of centromere DNA within/or between close related species, and could provide an insight into the dynamic evolutionary processes of rice centromere.  相似文献   

11.
Physical maps and recombination frequency of six rice chromosomes   总被引:2,自引:0,他引:2  
We constructed physical maps of rice chromosomes 1, 2, and 6-9 with P1-derived artificial chromosome (PAC) and bacterial artificial chromosome (BAC) clones. These maps, with only 20 gaps, cover more than 97% of the predicted length of the six chromosomes. We submitted a total of 193 Mbp of non-overlapping sequences to public databases. We analyzed the DNA sequences of 1316 genetic markers and six centromere-specific repeats to facilitate characterization of chromosomal recombination frequency and of the genomic composition and structure of the centromeric regions. We found marked changes in the relative recombination rate along the length of each chromosome. Chromosomal recombination at the centromere core and surrounding regions on the six chromosomes was completely suppressed. These regions have a total physical length of about 23 Mbp, corresponding to 11.4% of the entire size of the six chromosomes. Chromosome 6 has the longest quiescent region, with about 5.6 Mbp, followed by chromosome 8, with quiescent region about half this size. Repetitive sequences accounted for at least 40% of the total genomic sequence on the partly sequenced centromeric region of chromosome 1. Rice CentO satellite DNA is arrayed in clusters and is closely associated with the presence of Centromeric Retrotransposon of Rice (CRR)- and RIce RetroElement 7 (RIRE7)-like retroelement sequences. We also detected relatively small coldspot regions outside the centromeric region; their repetitive content and gene density were similar to those of regions with normal recombination rates. Sequence analysis of these regions suggests that either the amount or the organization patterns of repetitive sequences may play a role in the inactivation of recombination.  相似文献   

12.
13.
着丝粒在真核生物有丝分裂和减数分裂染色体正常的分离和传递中起着重要的作用。通过构建5个稻属二倍体野生种的基因组BAC文库, 采用菌落杂交和FISH技术, 筛选和鉴定了各染色体组着丝粒克隆, 并且分析了这些克隆在不同基因组间的共杂交情况, 结果表明: (1) C染色体组的野生种O. officinalis 和F染色体组的野生种O. brachyantha具有各自着丝粒特异的卫星DNA序列, 并且O. brachyantha着丝粒还具有特异的逆转座子序列; (2) A、B和E染色体组的野生稻O. glaberrima、O. punctata和O. australiensis着丝粒区域都含有与栽培稻着丝粒重复序列CentO和CRR同源的序列; (3) C染色体组野生稻O. officinalis的2条体细胞染色体着丝粒具有CentO的同源序列, 同时也发现其所有着丝粒区域都包含栽培稻CRR的同源序列。这些结果对克隆稻属不同染色体组的着丝粒序列、研究不同染色体组间着丝粒的进化关系和稻属不同着丝粒DNA序列与功能之间的关系均具有重要意义。  相似文献   

14.
Qi He  Lei Chen  Yu Xu  Weichang Yu 《Proteomics》2013,13(5):826-832
Centromeres and telomeres are DNA/protein complexes and essential functional components of eukaryotic chromosomes. Previous studies have shown that rice centromeres and telomeres are occupied by CentO (rice centromere satellite DNA) satellite and G‐rich telomere repeats, respectively. However, the protein components are not fully understood. DNA‐binding proteins associated with centromeric or telomeric DNAs will most likely be important for the understanding of centromere and telomere structure and functions. To capture DNA‐specific binding proteins, affinity pull‐down technique was applied in this study to isolate rice centromeric and telomeric DNA‐binding proteins. Fifty‐five proteins were identified for their binding affinity to rice CentO repeat, and 80 proteins were identified for their binding to telomere repeat. One CentO‐binding protein, Os02g0288200, was demonstrated to bind to CentO specifically by in vitro assay. A conserved domain, DUF573 with unknown functions was identified in this protein, and proven to be responsible for the specific binding to CentO in vitro. Four proteins identified as telomere DNA‐binding proteins in this study were reported by different groups previously. These results demonstrate that DNA affinity pull‐down technique is effective in the isolation of sequence‐specific binding proteins and will be applicable in future studies of centromere and telomere proteins.  相似文献   

15.
16.
Guyot B  Mouchiroud G 《Gene》2002,289(1-2):151-159
The deletion of a 260-kb segment containing all the coding DNA sequences (CDS) of chromosome 1 of Leishmania major Friedlin strain was performed through homologous recombination during a transfection experiment. This allowed the selection of a mutant clone containing a linear extra chromosome sizing 155 kb (XC155). The structure of XC155 was determined by restriction analysis and DNA cloning and sequencing of the gel-purified chromosome: it is made of a 'mirror' inverted duplication of the 'right' end of chromosome 1a (approximately 25 kb at each end), and in its central part of a complex tandem amplification of the linearized transfection vector containing the hygromycin resistance gene (over approximately 105 kb). No sequence of the coding region of chromosome 1 (including the 1.6-kb 'switch' region) was found. By contrast, XC155 contains two large (approximately 13 kb) clusters of tandemly repeated subtelomeric sequences (272-bp 'satellite' DNA) as well as telomeric hexamer repeats. This extra chromosome was found to be mitotically stable after >150 generations without selective pressure in vitro. Two sequence elements are considered which may have an effect on mitotic stability and participate to centromeric function in this extra chromosome: the amplification of the input vector and the 272-bp 'satellite' DNA bound by telomeric repeats.  相似文献   

17.
The constitution of the centromeric portions of the sex chromosomes of the red-necked wallaby, Macropus rufogriseus (family Macropodidae, subfamily Macropodinae), was investigated to develop an overview of the sequence composition of centromeres in a marsupial genome that harbors large amounts of centric and pericentric heterochromatin. The large, C-band-positive centromeric region of the X chromosome was microdissected and the isolated DNA was microcloned. Further sequence and cytogenetic analyses of three representative clones show that all chromosomes in this species carry a 178-bp satellite sequence containing a CENP-B DNA binding domain (CENP-B box) shown herein to selectively bind marsupial CENP-B protein. Two other repeats isolated in this study localize specifically to the sex chromosomes yet differ in copy number and intrachromosomal distribution. Immunocytohistochemistry assays with anti-CENP-E, anti-CREST, anti-CENP-B, and anti-trimethyl-H3K9 antibodies defined a restricted point localization of the outer kinetochore at the functional centromere within an enlarged pericentric and heterochromatic region. The distribution of these repeated sequences within the karyotype of this species, coupled with the apparent high copy number of these sequences, indicates a capacity for retention of large amounts of centromere-associated DNA in the genome of M. rufogriseus.  相似文献   

18.
Zhang W  Yi C  Bao W  Liu B  Cui J  Yu H  Cao X  Gu M  Liu M  Cheng Z 《Plant physiology》2005,139(1):306-315
Centromeres are required for faithful segregation of chromosomes in cell division. It is not clear what kind of sequences act as functional centromeres and how centromere sequences are organized in Oryza punctata, a BB genome species. In this study, we found that the CentO centromeric satellites in O. punctata share high homology with the CentO satellites in O. sativa. The O. punctata centromeres are characterized by megabase tandem arrays that are flanked by centromere-specific retrotransposons. Immunostaining with an antibody specific to CENH3 indicates that the 165-bp CentO satellites are the major component for functional centromeres. Moreover, both strands of CentO satellites are highly methylated and transcribed and produce small interfering RNA, which may be important for the maintenance of centromeric heterochromatin and centromere function.  相似文献   

19.
Using comparative genetics, genes, repetitive DNA sequences and chromosomes were studied in the Oryzeae in order to more fully exploit the rice genome sequence data. Of particular focus was Zizania palustris L., n = 15, commonly known as American wildrice. Previous work has shown that rice chromosomes 1, 4 and 9 are duplicated in wildrice. The Adh1 and Adh2 genes were sequenced and, based on phylogenetic analyses, found to be duplicated in wildrice. The majority of the sequence diversity in the Adh sequences was in intron 3, in which were found several MITE insertions. Cytological and molecular approaches were used to analyze the evolution of rDNA and centromeric repetitive sequences in the Oryzeae. In wildrice, copies of the 5S rDNA monomer were found at two loci on two different chromosomes near the centromeres, as in rice. One nucleolar organizer region (NOR) locus was found adjacent to the telomere, as in rice. RCS1, a middle repetitive sequence in rice, was present in all of the centromeres of wildrice. RCS2/CentO, the highly repetitive component of Oryza sativa L. centromeres, was conserved in eight of the Oryza species examined, but was not found in wildrice. Three other middle repetitive centromeric sequences (RCH1, RCH2/CentO and RCH3) were also examined and found to have variable evolutionary patterns between species of Oryza and Zizania.Communicated by B. Friebe  相似文献   

20.
A complete understanding of chromosomal disjunction during mitosis and meiosis in complex genomes such as the human genome awaits detailed characterization of both the molecular structure and genetic behavior of the centromeric regions of chromosomes. Such analyses in turn require knowledge of the organization and nature of DNA sequences associated with centromeres. The most prominent class of centromeric DNA sequences in the human genome is the alpha satellite family of tandemly repeated DNA, which is organized as distinct chromosomal subsets. Each subset is characterized by a particular multimeric higher-order repeat unit consisting of tandemly reiterated, diverged alpha satellite monomers of approximately 171 base pairs. The higher-order repeat units are themselves tandemly reiterated and represent the most recently amplified or fixed alphoid sequences. We present evidence that there are at least two independent domains of alpha satellite DNA on chromosome 7, each characterized by their own distinct higher-order repeat structure. We determined the complete nucleotide sequences of a 6-monomer higher-order repeat unit, which is present in approximately 500 copies per chromosome 7, as well as those of a less-abundant (approximately 10 copies) 16-monomer higher-order repeat unit. Sequence analysis indicated that these repeats are evolutionarily distinct. Genomic hybridization experiments established that each is maintained in relatively homogeneous tandem arrays with no detectable interspersion. We propose mechanisms by which multiple unrelated higher-order repeat domains may be formed and maintained within a single chromosomal subset.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号