首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The G-protein gamma-subunit-like (GGL) domain present within a subfamily of RGS proteins binds specifically to Gbeta5. This interaction and resulting biological effect impacts the standard model of heterotrimeric G-protein signaling. It has been hypothesized that the RGS/Gbeta5 may potentially substitute for Gbetagamma in the heterotrimeric complex. Saccharomyces cerevisiae pheromone responsive mating signaling pathway is primarily driven by Gbetagamma. We evaluated GGL containing RGS9 and RGS7 for functional complementation in a RGS (sst2Delta) knockout yeast strain. The potential of Gbeta5 to augment the function of these RGS proteins was also evaluated. While Gbeta5 had no effect on RGS7, coexpression of Gbeta5 with RGS9 enhanced cell cycle arrest, suggesting that under certain conditions, RGS9 and Gbeta5 may possibly function as betagamma dimer. Furthermore, we demonstrate that Gbeta5 can complement a ste4Delta, the yeast beta-subunit, thus providing the first evidence of functional complementation of a mammalian Gbeta.  相似文献   

2.
Regulator of G-protein signaling (RGS) proteins are GTPase activating proteins (GAPs) of heterotrimeric G-proteins that alter the amplitude and kinetics of receptor-promoted signaling. In this study we defined the G-protein alpha-subunit selectivity of purified Sf9 cell-derived R7 proteins, a subfamily of RGS proteins (RGS6, -7, -9, and -11) containing a Ggamma-like (GGL) domain that mediates dimeric interaction with Gbeta(5). Gbeta(5)/R7 dimers stimulated steady state GTPase activity of Galpha-subunits of the G(i) family, but not of Galpha(q) or Galpha(11), when added to proteoliposomes containing M2 or M1 muscarinic receptor-coupled G-protein heterotrimers. Concentration effect curves of the Gbeta(5)/R7 proteins revealed differences in potencies and efficacies toward Galpha-subunits of the G(i) family. Although all four Gbeta(5)/R7 proteins exhibited similar potencies toward Galpha(o), Gbeta(5)/RGS9 and Gbeta(5)/RGS11 were more potent GAPs of Galpha(i1), Galpha(i2), and Galpha(i3) than were Gbeta(5)/RGS6 and Gbeta(5)/RGS7. The maximal GAP activity exhibited by Gbeta(5)/RGS11 was 2- to 4-fold higher than that of Gbeta(5)/RGS7 and Gbeta(5)/RGS9, with Gbeta(5)/RGS6 exhibiting an intermediate maximal GAP activity. Moreover, the less efficacious Gbeta(5)/RGS7 and Gbeta(5)/RGS9 inhibited Gbeta(5)/RGS11-stimulated GTPase activity of Galpha(o). Therefore, R7 family RGS proteins are G(i) family-selective GAPs with potentially important differences in activities.  相似文献   

3.
The R7 family of RGS proteins (RGS6, -7, -9, -11) is characterized by the presence of three domains: DEP, GGL, and RGS. The RGS domain interacts with Galpha subunits and exhibits GAP activity. The GGL domain permanently associates with Gbeta5. The DEP domain interacts with the membrane anchoring protein, R7BP. Here we provide evidence for a novel interaction within this complex: between the DEP domain and Gbeta5. GST fusion of the RGS7 DEP domain (GST-R7DEP) binds to both native and recombinant Gbeta5-RGS7, recombinant Gbetagamma complexes, and monomeric Gbeta5 and Gbeta1 subunits. Co-immunoprecipitation and FRET assays supported the GST pull-down experiments. GST-R7DEP reduced FRET between CFP-Gbeta5 and YFP-RGS7, indicating that the DEP-Gbeta5 interaction is dynamic. In transfected cells, R7BP had no effect on the Gbeta5/RGS7 pull down by GST-R7DEP. The DEP domain of RGS9 did not bind to Gbeta5. Substitution of RGS7 Glu-73 and Asp-74 for the corresponding Ser and Gly residues (ED/SG mutation) of RGS9 diminished the DEP-Gbeta5 interaction. In the absence of R7BP both the wild-type RGS7 and the ED/SG mutant attenuated muscarinic M3 receptor-mediated Ca2+ mobilization. In the presence of R7BP, wild-type RGS7 lost this inhibitory activity, whereas the ED/SG mutant remained active. Taken together, our results are consistent with the following model. The Gbeta5-RGS7 molecule can exist in two conformations: "closed" and "open", when the DEP domain and Gbeta5 subunit either do or do not interact. The closed conformation appears to be less active with respect to its effect on Gq-mediated signaling than the open conformation.  相似文献   

4.
5.
Regulator of G protein signaling (RGS) proteins contain an RGS domain that inhibits G(alpha) signaling by activating G(alpha) GTPase activity. Certain RGS proteins also contain a Ggamma-like (GGL) domain and a poorly characterized but conserved N-terminal region. We assessed the functions of these subregions in the Caenorhabditis elegans RGS proteins EGL-10 and EAT-16, which selectively inhibit GOA-1 (G(alpha)(o)) and EGL-30 (G(alpha)(q)), respectively. Using transgenes in C. elegans, we expressed EGL-10, EAT-16, their subregions, or EGL-10/EAT-16 chimeras. The chimeras showed that the GGL/RGS region of either protein can act on either GOA-1 or EGL-30 and that a key factor determining G(alpha) target selectivity is the manner in which the N-terminal and GGL/RGS regions are linked. We also found that coexpressing N-terminal and GGL/RGS fragments of EGL-10 gave full EGL-10 activity, whereas either fragment alone gave little activity. Biochemical analysis showed that coexpressing the two fragments caused both to increase in abundance and also caused the GGL/RGS fragment to move to the membrane, where the N-terminal fragment is localized. By coimmunoprecipitation, we found that the N-terminal fragment complexes with the C-terminal fragment and its associated Gbeta subunit, GPB-2. We conclude that the N-terminal region directs inhibition of G(alpha) signaling by forming a complex with the GGL/RGS region and affecting its stability, membrane localization, and G(alpha) target specificity.  相似文献   

6.
A member of the RGS (regulators of G protein signaling) family, RGS9-2 is a critical regulator of G protein signaling pathways that control locomotion and reward signaling in the brain. RGS9-2 is specifically expressed in striatal neurons where it forms complexes with its newly discovered partner, R7BP (R7 family binding protein). Interaction with R7BP is important for the subcellular targeting of RGS9-2, which in native neurons is found in plasma membrane and its specializations, postsynaptic densities. Here we report that R7BP plays an additional important role in determining proteolytic stability of RGS9-2. We have found that co-expression with R7BP dramatically elevates the levels of RGS9-2 and its constitutive subunit, Gbeta5. Measurement of the RGS9-2 degradation kinetics in cells indicates that R7BP markedly reduces the rate of RGS9-2.Gbeta5 proteolysis. Lentivirus-mediated RNA interference knockdown of the R7BP expression in native striatal neurons results in the corresponding decrease in RGS9-2 protein levels. Analysis of the molecular determinants that mediate R7BP/RGS9-2 binding to result in proteolytic protection have identified that the binding site for R7BP in RGS proteins is formed by pairing of the DEP (Disheveled, EGL-10, Pleckstrin) domain with the R7H (R7 homology), a domain of previously unknown function that interacts with four putative alpha-helices of the R7BP core. These findings provide a mechanism for the regulation of the RGS9 protein stability in the striatal neurons.  相似文献   

7.
BACKGROUND: Gbeta proteins have traditionally been thought to complex with Ggamma proteins to function as subunits of G protein heterotrimers. The divergent Gbeta(5) protein, however, can bind either Ggamma proteins or regulator of G protein signaling (RGS) proteins that contain a G gamma-like (GGL) domain. RGS proteins inhibit G protein signaling by acting as Galpha GTPase activators. While Gbeta(5) appears to bind RGS proteins in vivo, its association with Ggamma proteins in vivo has not been clearly demonstrated. It is unclear how Gbeta(5) might influence RGS activity. In C. elegans there are exactly two GGL-containing RGS proteins, EGL-10 and EAT-16, and they inhibit Galpha(o) and Galpha(q) signaling, respectively. RESULTS: We knocked out the gene encoding the C. elegans Gbeta(5) ortholog, GPB-2, to determine its physiological roles in G protein signaling. The gpb-2 mutation reduces the functions of EGL-10 and EAT-16 to levels comparable to those found in egl-10 and eat-16 null mutants. gpb-2 knockout animals are viable, and exhibit no obvious defects beyond those that can be attributed to a reduction of EGL-10 or EAT-16 function. GPB-2 protein is nearly absent in eat-16; egl-10 double mutants, and EGL-10 protein is severely diminished in gpb-2 mutants. CONCLUSIONS: Gbeta(5) functions in vivo complexed with GGL-containing RGS proteins. In the absence of Gbeta(5), these RGS proteins have little or no function. The formation of RGS-Gbeta(5) complexes is required for the expression or stability of both the RGS and Gbeta(5) proteins. Appropriate RGS-Gbeta(5) complexes regulate both Galpha(o) and Galpha(q) proteins in vivo.  相似文献   

8.
Regulators of G protein signaling (RGS) proteins that contain DEP (disheveled, EGL-10, pleckstrin) and GGL (G protein gamma subunit-like) domains form a subfamily that includes the mammalian RGS proteins RGS6, RGS7, RGS9, and RGS11. We describe the cloning of RGS6 cDNA, the specificity of interaction of RGS6 and RGS7 with G protein beta subunits, and certain biochemical properties of RGS6/beta5 and RGS7/beta5 complexes. After expression in Sf9 cells, complexes of both RGS6 and RGS7 with the Gbeta5 subunit (but not Gbetas 1-4) are found in the cytosol. When purified, these complexes are similar to RGS11/beta5 in that they act as GTPase-activating proteins specifically toward Galpha(o). Unlike conventional G(betagamma) complexes, RGS6/beta5 and RGS7/beta5 do not form heterotrimeric complexes with either Galpha(o)-GDP or Galpha(q)-GDP. Neither RGS6/beta5 nor RGS7/beta5 altered the activity of adenylyl cyclases types I, II, or V, nor were they able to activate either phospholipase C-beta1 or -beta2. However, the RGS/beta5 complexes inhibited beta(1)gamma(2)-mediated activation of phospholipase C-beta2. RGS/beta5 complexes may contribute to the selectivity of signal transduction initiated by receptors coupled to G(i) and G(o) by binding to phospholipase C and stimulating the GTPase activity of Galpha(o).  相似文献   

9.
10.
The complex between the photoreceptor-specific regulator of G protein signaling (RGS) protein, RGS9-1, and type 5 G protein beta-subunit, Gbeta5L, regulates the duration of the cellular response to light by stimulating the GTPase activity of G protein, transducin. An important property of RGS9-1.Gbeta5L is that it interacts specifically with transducin bound to its effector, cGMP phosphodiesterase, rather than with transducin alone. The minimal structure within the RGS9-1.Gbeta5L complex capable of activating transducin GTPase is the catalytic domain of RGS9. This domain itself is also able to discriminate between free and effector-bound transducin but to a lesser degree than RGS9-1.Gbeta5L. The goal of this study was to determine whether other, noncatalytic domains of RGS9-1.Gbeta5L enhance the intrinsic specificity of the catalytic domain or whether they set the specificity of RGS9-1.Gbeta5L regardless of the specificity of its catalytic domain. We found that a double L353E/R360P amino acid substitution reversed the specificity of the recombinant catalytic domain but did not reverse the specificity of RGS9-1.Gbeta5L. However, the degree of discrimination between free and effector-bound transducin was reduced. Therefore, noncatalytic domains of RGS9-1.Gbeta5L play a decisive role in establishing its substrate specificity, yet the high degree of this specificity observed under physiological conditions requires an additional contribution from the catalytic domain.  相似文献   

11.
Ulens C  Daenens P  Tytgat J 《Life sciences》2000,67(19):2305-2317
The effect of RGS4, a GTPase-activating protein, on the deactivation kinetics and basal activity of GIRK1/GIRK2 channels activated by the human kappa-opioid receptor (hKOR) was investigated. Co-expression in Xenopus oocytes of RGS4 reduces the basal GIRK1/GIRK2 current and strongly increases the percentage agonist-evoked K+ conductance. RGS4 reconstitutes the native gating kinetics by accelerating GIRK1/GIRK2 channel deactivation, a phenomenon also seen after activation with other 7 TM receptors (e.g. muscarine type). In the absence of RGS4, the GIRK1/GIRK2 conductance was increased by approx. 50% after hKOR stimulation with the kappa-selective opioid receptor ligand, U69593; however more importantly, at the end of the washout period it was dramatically reduced to about 60% of the basal conductance as measured before receptor stimulation. Furthermore, we found that repeated receptor stimulation causes an increase of the agonist-gated deactivation kinetics, without affecting the maximal and minimal conductance levels of GIRK1/GIRK2 channels during and after agonist application. Unlike in the absence of RGS4, coexpression with RGS4 completely abolished the reduction of basal conductance after agonist washout and the deactivation kinetics remained unaffected upon repeated agonist application. The results presented here clearly indicate that previous stimulation by agonists activating G protein-coupled receptors may have long-lasting, strong consequences on the following responses. Therefore, our study provides evidence for a novel modulation of deactivation kinetics of GIRK1/GIRK2 currents in the absence of RGS4.  相似文献   

12.
13.
Regulators of G protein signaling RGS4 and RGS7 accelerate the kinetics of K(+) channels (GIRKs) in the Xenopus oocyte system. Here, via quantitative analysis of RGS expression, we reveal biphasic effects of RGSs on GIRK regulation. At low concentrations, RGS4 inhibited basal GIRK activity, but stimulated it at high concentrations. RGS7, which is associated with the G protein subunit G beta 5, is regulated by G beta 5 by two distinct mechanisms. First, G beta 5 augments RGS7 activity, and second, it increases its expression. These dual effects resolve previous controversies regarding RGS4 and RGS7 function and indicate that they modulate signaling by mechanisms supplementary to their GTPase-activating protein activity.  相似文献   

14.
RGS proteins comprise a large family of proteins named for their ability to negatively regulate heterotrimeric G protein signaling. RGS6 is a member of the R7 RGS protein subfamily endowed with DEP (disheveled, Egl-10, pleckstrin) and GGL (G protein gamma subunit-like) domains in addition to the RGS domain present in all RGS proteins. RGS6 exists in multiple splice variant forms with identical RGS domains but possessing complete or incomplete GGL domains and distinct N- and C-terminal domains. Here we report that RGS6 interacts with SCG10, a neuronal growth-associated protein. Using yeast two-hybrid analysis to map protein interaction domains, we identified the GGL domain of RGS6 as the SCG10-interacting region and the stathmin domain of SCG10 as the RGS6-interacting region. Pull-down studies in COS-7 cells expressing SCG10 and RGS6 splice variants revealed that SCG10 co-precipitated RGS6 proteins with complete GGL domains but not those with incomplete GGL domains, and vice versa. Expression of SCG10-interacting forms of RGS6 with SCG10 in PC12 or COS-7 cells resulted in co-localization of both proteins. RGS6 potentiated the ability of SCG10 to disrupt microtubule organization in PC12 and COS-7 cells. Furthermore, expression of SCG10 and RGS6 each enhanced NGF-induced PC12 cell differentiation, and co-expression of SCG10 with RGS6 produced synergistic effects on NGF-induced PC12 differentiation. These effects of RGS6 on microtubules and neuronal differentiation were observed only with RGS6 proteins with complete GGL domains. Mutation of a critical residue required for interaction of RGS proteins with G proteins did not affect the ability of RGS6 to induce neuronal differentiation. These findings identify SCG10 as a binding partner for the GGL domain of RGS6 and provide the first evidence for regulatory effects of an RGS protein on neuronal differentiation. Our results suggest that RGS6 induces neuronal differentiation by a novel mechanism involving interaction of SCG10 with its GGL domain and independent of RGS6 interactions with heterotrimeric G proteins.  相似文献   

15.
Physiological actions of regulators of G-protein signaling (RGS) proteins   总被引:5,自引:0,他引:5  
Ishii M  Kurachi Y 《Life sciences》2003,74(2-3):163-171
Regulators of G-protein signaling (RGS) proteins are a family of proteins, which accelerate GTPase-activity intrinsic to the alpha subunits of heterotrimeric G-proteins and play crucial roles in the physiological control of G-protein signaling. If RGS proteins were active unrestrictedly, they would completely suppress various G-protein-mediated cell signaling as has been shown in the over-expression experiments of various RGS proteins. Thus, physiologically the modes of RGS-action should be under some regulation. The regulation can be achieved through the control of either the protein function and/or the subcellular localization. Examples for the former are as follows: (i) Phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) inhibits RGS-action, which can be recovered by Ca(2+)/calmodulin. This underlies a voltage-dependent "relaxation" behavior of G-protein-gated K(+) channels. (ii) A modulatory protein, 14-3-3, binds to the RGS proteins phosphorylated by PKA and inhibits their actions. For the latter mechanism, additional regulatory modules, such as PDZ, PX, and G-protein gamma subunit-like (GGL) domains, identified in several RGS proteins may be responsible: (i) PDZ domain of RGS12 interacts with a G-protein-coupled chemokine receptor, CXCR2, and thus facilitates its GAP action on CXCR2-mediated G-protein signals. (ii) RGS9 forms a complex with a type of G-protein beta-subunit (Gbeta5) via its GGL domain, which facilitates the GAP function of RGS9. Both types of regulations synergistically control the mode of action of RGS proteins in the physiological conditions, which contributes to fine tunings of G-protein signalings.  相似文献   

16.
The RGS7 (R7) family of G protein regulators, Gbeta5, and R7BP form heterotrimeric complexes that potently regulate the kinetics of G protein-coupled receptor signaling. Reversible palmitoylation of R7BP regulates plasma membrane/nuclear shuttling of R7*Gbeta5*R7BP heterotrimers. Here we have investigated mechanisms whereby R7BP controls the function of the R7 family. We show that unpalmitoylated R7BP undergoes nuclear/cytoplasmic shuttling and that a C-terminal polybasic motif proximal to the palmitoylation acceptor sites of R7BP mediates nuclear localization, palmitoylation, and plasma membrane targeting. These results suggest a novel mechanism whereby palmitoyltransferases and nuclear import receptors both utilize the C-terminal domain of R7BP to determine the trafficking fate of R7*Gbeta5*R7BP heterotrimers. Analogous mechanisms may regulate other signaling proteins whose distribution between the plasma membrane and nucleus is controlled by palmitoylation. Lastly, we show that cytoplasmic RGS7*Gbeta5*R7BP heterotrimers and RGS7*Gbeta5 heterodimers are equivalently inefficient regulators of G protein-coupled receptor signaling relative to plasma membrane-bound heterotrimers bearing palmitoylated R7BP. Therefore, R7BP augments the function of the complex by a palmitoylation-regulated plasma membrane-targeting mechanism.  相似文献   

17.
Voltage-gated Ca2+ channels of the N-, P/Q-, and R-type and G protein inwardly rectifying K+ channels (GIRK) are modulated via direct binding of G proteins. The modulation is mediated by G protein betagamma subunits. By using electrophysiological recordings and fluorescence resonance energy transfer, we characterized the modulatory domains of the G protein beta subunit on the recombinant P/Q-type channel and GIRK channel expressed in HEK293 cells and on native non-L-type Ca2+ currents of cultured hippocampal neurons. We found that Gbeta2 subunit-derived deletion constructs and synthesized peptides can either induce or inhibit G protein modulation of the examined ion channels. In particular, the 25-amino acid peptide derived from the Gbeta2 N terminus inhibits G protein modulation, whereas a 35-amino acid peptide derived from the Gbeta2 C terminus induced modulation of voltage-gated Ca2+ channels and GIRK channels. Fluorescence resonance energy transfer (FRET) analysis of the live action of these peptides revealed that the 25-amino acid peptide diminished the FRET signal between G protein beta2gamma3 subunits, indicating a reorientation between G protein beta2gamma3 subunits in the presence of the peptide. In contrast, the 35-amino acid peptide increased the FRET signal between GIRK1,2 channel subunits, similarly to the Gbetagamma-mediated FRET increase observed for this GIRK subunit combination. Circular dichroism spectra of the synthesized peptides suggest that the 25-amino acid peptide is structured. These results indicate that individual G protein beta subunit domains can act as independent, separate modulatory domains to either induce or inhibit G protein modulation for several effector proteins.  相似文献   

18.
A subfamily of regulators of G protein signaling (RGS) proteins consisting of RGS6, -7, -9, and -11 is characterized by the presence of a unique Ggamma-like domain through which they form obligatory dimers with the G protein subunit Gbeta5 in vivo. In Caenorhabditis elegans, orthologs of Gbeta5.RGS dimers are implicated in regulating both Galphai and Galphaq signaling, and in cell-based assays these dimers regulate Galphai/o- and Galphaq/11-mediated pathways. However, initial studies with purified Gbeta5.RGS6 or Gbeta5.RGS7 showed that they only serve as GTPase activating proteins for Galphao. Pull-down assays and co-immunoprecipitation with these dimers failed to detect their binding to either Galphao or Galphaq, indicating that the interaction might require additional factors present in vivo. Here, we asked if the RGS7.Gbeta5 complex binds to Galphaq using fluorescence resonance energy transfer (FRET) in transiently transfected mammalian cells. RGS7, Gbeta5, and Galpha subunits were tagged with yellow variants of green fluorescent protein. First we confirmed the functional activity of the fusion proteins by co-immunoprecipitation and also their effect on signaling. Second, we again demonstrate the interaction between RGS7 and Gbeta5 using FRET. Finally, using both FRET spectroscopy on cell suspensions and microscopy of individual cells, we showed FRET between the yellow fluorescence protein-tagged RGS7.Gbeta5 complex and cyan fluorescence protein-tagged Galphaq, indicating a direct interaction between these molecules.  相似文献   

19.
The duration of the photoreceptor's response to a light stimulus determines the speed at which an animal adjusts to ever-changing conditions of the visual environment. One critical component which regulates the photoresponse duration on the molecular level is the complex between the ninth member of the regulators of G protein signaling family (RGS9-1) and its partner, type 5 G protein beta-subunit (Gbeta5L). RGS9-1.Gbeta5L is responsible for the activation of the GTPase activity of the photoreceptor-specific G protein, transducin. Importantly, this function of RGS9-1.Gbeta5L is regulated by its membrane anchor, R9AP, which drastically potentiates the ability of RGS9-1.Gbeta5L to activate transducin GTPase. In this study, we address the kinetic mechanism of R9AP action and find that it consists primarily of a direct increase in the RGS9-1.Gbeta5L activity. We further showed that the binding site for RGS9-1.Gbeta5L is located within the N-terminal putative trihelical domain of R9AP, and even though this domain is sufficient for binding, it takes the entire R9AP molecule to potentiate the activity of RGS9-1.Gbeta5L. The mechanism revealed in this study is different from and complements another well-established mechanism of regulation of RGS9-1.Gbeta5L by the effector enzyme, cGMP phosphodiesterase, which is based entirely on the enhancement in the affinity between RGS9-1.Gbeta5L and transducin. Together, these mechanisms ensure timely transducin inactivation in the course of the photoresponse, a requisite for normal vision.  相似文献   

20.
Reversible attachment and removal of palmitate or other long-chain fatty acids on proteins has been hypothesized, like phosphorylation, to control diverse biological processes. Indeed, palmitate turnover regulates Ras trafficking and signaling. Beyond this example, however, the functions of palmitate turnover on specific proteins remain poorly understood. Here, we show that a mechanism regulating G protein-coupled receptor signaling in neuronal cells requires palmitate turnover. We used hexadecyl fluorophosphonate or palmostatin B to inhibit enzymes in the serine hydrolase family that depalmitoylate proteins, and we studied R7 regulator of G protein signaling (RGS)-binding protein (R7BP), a palmitoylated allosteric modulator of R7 RGS proteins that accelerate deactivation of Gi/o class G proteins. Depalmitoylation inhibition caused R7BP to redistribute from the plasma membrane to endomembrane compartments, dissociated R7BP-bound R7 RGS complexes from Gi/o-gated G protein-regulated inwardly rectifying K+ (GIRK) channels and delayed GIRK channel closure. In contrast, targeting R7BP to the plasma membrane with a polybasic domain and an irreversibly attached lipid instead of palmitate rendered GIRK channel closure insensitive to depalmitoylation inhibitors. Palmitate turnover therefore is required for localizing R7BP to the plasma membrane and facilitating Gi/o deactivation by R7 RGS proteins on GIRK channels. Our findings broaden the scope of biological processes regulated by palmitate turnover on specific target proteins. Inhibiting R7BP depalmitoylation may provide a means of enhancing GIRK activity in neurological disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号