首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adult rat hepatocytes were kept in primary culture for 48 h under different hormonal conditions to induce an enzyme pattern which with respect to carbohydrate metabolism approximated that of periportal and perivenous hepatocytes in vivo. 1. Glucagon-treated cells compared with control cells possessed a lower activity of glucokinase, a 4.5-fold higher activity of phosphoenolpyruvate carboxykinase and unchanged levels of glucose-6-phosphatase, phosphofructokinase, fructose-bisphosphatase and pyruvate kinase; they resembled in a first approximation the periportal cell type and are called for simplicity 'periportal'. Inversely, insulin-treated cells compared with control cells contained a 2.2-fold higher activity of glucokinase, a slightly decreased activity of phosphoenolpyruvate carboxykinase, increased activities of phosphofructokinase and pyruvate kinase and unaltered levels of glucose-6-phosphatase and fructose-bisphosphatase; they resembled perivenous cells and are called simply 'perivenous'. Gluconeogenesis and glycolysis were studied under various substrate and hormone concentrations. 2. Physiological concentrations of glucose (5 mM) and lactate (2 mM) gave about 80% saturation of gluconeogenesis from lactate and less than 15% saturation of glycolysis at a simultaneous 40% inhibition of the glycolytic rate by lactate. 3. Comparison of the two cell types showed that under identical assay conditions (5 mM glucose, 2 mM lactate, 0.5 nM insulin, 0.1 muM dexamethasone) gluconeogenesis was 1.5-fold faster in the 'periportal' cells and glycolysis was 2.4-fold faster in the 'perivenous' cells. 4. Metabolic rates were under short-term hormonal control. Insulin increased glycolysis three fold in both cell types with a half-maximal effect at about 0.4 nM, but did not influence the gluconeogenic rate. Glucagon inhibited glycolysis by 70% with a half-maximal effect at about 0.1 nM. Gluconeogenesis was stimulated by glucagon (half-maximal dose: 0.5 nM) 1.8-fold only in 'periportal' cells containing high phosphoenolpyruvate carboxykinase activity, not in the 'perivenous' cells with a low level of this enzyme. 5. A comparison of the two cell types showed that with maximally stimulating hormone concentrations gluconeogenesis was threefold faster in 'periportal' cells and glycolysis was eightfold faster in 'perivenous' cells. The results support the view that periportal and perivenous hepatocytes in vivo catalyse gluconeogenesis and glycolysis at inverse rates.  相似文献   

2.
The major role of insulin-like growth factor-1 (IGF-1) in the liver is to mediate glucose uptake in hepatocytes to synthesize glycogen and maintain blood glucose homeostasis. In this study, to evaluate the role of IGF-1 on gluconeogenesis and nutrient metabolism in dairy cattle, pyruvate carboxylase (PC) and phosphoenolpyruvate carboxykinase (PEPCK) expression and enzyme activity were evaluated in primary cultures of bovine hepatocytes treated with different concentrations of IGF-1 by quantitative polymerase chain reaction and spectrophotometry, respectively. The results showed that expression of PC and PEPCK were significantly lower in bovine hepatocytes by IGF-1 treatment in test group compare to the control group (P < 0.01). As IGF-1 concentration increased, PC and PEPCK enzyme activity in bovine hepatocytes decreased. Evaluating PC and PEPCK mRNA levels and enzyme activity may thus be useful to monitor subclinical ketosis in dairy cows.  相似文献   

3.
4.
The rates of glucose production from various substrates entering gluconeogenesis at different steps were investigated in hepatocytes isolated from term-fetus and newborn rabbits fasted during the first 2 days of life. The data were compared to the rate of glucose production measured in hepatocytes from young rabbits (50-60 days) starved for 48 h. The net production of glucose from substrates (lactate, pyruvate, propionate, alanine) entering gluconeogenesis below phosphoenolpyruvate was very low at birth and increased during the first day of life, in relation with an increased cytosolic phosphoenolpyruvate carboxykinase activity. The net production of glucose from precursors entering gluconeogenesis at the level of triose phosphates (dihydroxyacetone, fructose) was low at birth but a maximal capacity for gluconeogenesis was reached within 6 h after birth. This enhanced gluconeogenic capacity was associated with a fall in hepatic fructose 2,6-bisphosphate concentration and a reduced glycolytic flux. In contrast, a high glucose production from galactose was already present at birth and did not rise at 24 or 48 h after delivery. These results suggest that the development of gluconeogenic capacity in hepatocytes isolated from newborn rabbit is dependent upon two factors, a decrease in the F2,6-P2 concentration which reduces the glycolytic flux and an increase in the activity of cytosolic phosphoenolpyruvate carboxykinase.  相似文献   

5.
Dairy cows experience an increased demand for glucose to support milk production. However, negative energy balance is a common condition in peripartum cows. In response, fat mobilization provides non-esterified fatty acids (NEFAs) for oxidation in the liver to generate ATP. To investigate the effects of NEFAs on gluconeogenesis, the expression and enzyme activity of pyruvate carboxylase (PC) and phosphoenolpyruvate carboxylase (PEPCK) in cultured bovine hepatocytes were evaluated by quantitative polymerase chain reaction and spectrophotometry, respectively. The results showed that PC and PEPCK mRNA levels were marked decreased when the NEFAs concentrations exceeded 0.5 and 1.5?mmol/l, respectively. The PC and PEPCK enzyme activity showed significantly decreased when the NEFAs concentrations exceeded 1.5 and 0.5?mmol/l, respectively. These findings indicate that high circulating levels of NEFAs inhibit hepatocyte gluconeogenesis, thereby promoting negative energy balance.  相似文献   

6.
7.
Rat offspring exposed to ethanol (EtOH rats) during pregnancy are insulin resistant, but it is unknown whether they have increased gluconeogenesis. To address this issue, we determined blood glucose and liver gluconeogenic genes, proteins, and enzyme activities before and after insulin administration in juvenile and adult EtOH rats and submitted adult EtOH rats to a pyruvate challenge. In juvenile rats, basal glucose; peroxisome proliferator-activated receptor-coactivator-1alpha protein and mRNA; and phosphoenolpyruvate carboxykinase enzyme activity, protein, and mRNA were similar between groups. After insulin injection, these parameters failed to decrease in EtOH rats, but glucose decreased by 30% and gluconeogenic enzymes, proteins, and mRNAs decreased by 50-70% in control rats. In adult offspring, basal peroxisome proliferator-activated receptor-coactivator-1alpha protein and mRNA levels were 40-80% higher in EtOH rats than in controls. Similarly, basal phosphoenolpyruvate carboxykinase activity, protein, and mRNA were approximately 1.8-fold greater in EtOH rats than in controls. These parameters decreased by approximately 50% after insulin injection in control rats, but they remained unchanged in EtOH rats. After insulin injection in the adult rats, glucose decreased by 60% in controls but did not decrease significantly in EtOH rats. A subset of adult EtOH rats had fasting hyperglycemia and an exaggerated glycemic response to pyruvate compared with controls. The data indicate that, after prenatal EtOH exposure, the expression of gluconeogenic genes is exaggerated in adult rat offspring and is insulin resistant in both juvenile and adult rats, explaining increased gluconeogenesis. These alterations persist through adulthood and may contribute to the pathogenesis of Type 2 diabetes after exposure to EtOH in utero.  相似文献   

8.
Suspensions of rat hepatocytes were separated by Ficoll discontinuous density gradient into four fractions. About 85% of the total quantity of cells sedimented within the range from 1.044 to 1.126 g/ml. The activity of key enzymes of glycolysis and gluconeogenesis were measured to determine the acinar origin of hepatocyte subpopulations. The activity of the gluconeogenic enzyme, phosphoenolpyruvate carboxykinase, in hepatocytes with the density of 1.044 g/ml was twice as high as in hepatocytes with the density of 1.073 g/ml. In contrast, glycolytic enzyme, hexokinase, was 3 times more active in heavy than in light cells. The results indicate that light and heavy cells correspond to periportal and centrilobular hepatocytes, respectively.  相似文献   

9.
The effect of oleate, palmitate, and octanoate on glucose formation was studied with lactate or pyruvate as substrate. Octanoate was much more quickly oxidized and utilized for ketone body production than were oleate and palmitate. Among fatty acids studied, only octanoate resulted in a marked increase of the 3-hydroxybutyrate/acetoacetate (3-OHBAcAc) ratio. Each of the fatty acids studied stimulated glucose synthesis from pyruvate. The enhancement of gluconeogenesis by long-chain fatty acids was abolished after the addition of ammonia. As concluded from the “crossover” plot, the stimulatory effect of fatty acids was due to: (i) a stimulation of pyruvate carboxylation, (ii) a provision of reducing equivalents for glyceraldehyde phosphate dehydrogenase, and (iii) an acceleration of flux through hexose diphosphatase. Moreover, palmitate and oleate resulted in an increased generation of mitochondrial phosphpenolpyruvate, while in the presence of octanoate, the activity of mitochondrial phosphoenolpyruvate carboxykinase was diminished. When lactate was used as the glucose precursor, palmitate and oleate increased glucose production by about 50% but did not affect the contribution of mitochondrial phosphoenolpyruvate carboxykinase to gluconeogenesis. In contrast, in spite of the stimulation of both pyruvate carboxylase and hexose diphosphatase, as judged from the crossover plot, the addition of octanoate resulted in a marked inhibition of both glucose formation and mitochondrial generation of phosphoenolpyruvate. The inhibitory effect of octanoate was reversed by ammonia. Results indicate that fatty acids and ammonia are potent regulatory factors of both the rate of glucose formation and the contribution of mitochondrial phosphoenolpyruvate carboxykinase to gluconeogenesis in hepatocytes of the fasted rabbit.  相似文献   

10.
Therapeutic effect of rosiglitazone has been reported to result from an improvement of insulin sensitivity and inhibition of glucose synthesis. As the latter process occurs in both liver and kidney cortex the aim of this study was to elucidate the rosiglitazone action on glucose formation in both tissues. Primary cultured cells of both liver and kidney cortex grown in defined medium were use throughout. To identify the mechanism responsible for drug-induced changes, intracellular gluconeogenic intermediates and enzyme activities were determined. In contrast to hepatocytes, the administration of a 10 micromol/L concentration of rosiglitazone to renal tubules resulted in about a 70% decrease in the rate of gluconeogenesis, accompanied by an approximately 75% decrease in alanine utilization and a 35% increase in lactate synthesis. The effect of rosiglitazone was not abolished by GW9662, the PPAR-gamma irreversible antagonist, indicating that this action is not dependent on PPAR-gamma activation. In view of rosiglitazone-induced changes in gluconeogenic intermediates and a diminished incorporation of 14CO2 into pyruvate, it is likely that the drug causes a decline in flux through pyruvate carboxylase and (or) phosphoenolpyruvate carboxykinase. It is likely that the hypoglycemic action of rosiglitazone is PPAR-gamma independent and results mainly from its inhibitory effects on renal gluconeogenesis.  相似文献   

11.
3- Aminopicolinate , a hyperglycemic agent that activates purified phosphoenolpyruvate carboxykinase in the presence of Fe2+, inhibits glucose synthesis from lactate, pyruvate, asparagine, monomethyl succinate, or glutamine but does not affect that from fructose, dihydroxyacetone, sorbitol, or glycerol in hepatocytes isolated from rats fasted for 24 h. Lactate production from monomethyl succinate by hepatocytes is also inhibited by 3- aminopicolinate . This compound elevates the concentrations of pyruvate, malate, and aspartate but decreases that of phosphoenolpyruvate in hepatocytes incubated with lactate plus pyruvate. In rats, the ability of 3- aminopicolinate to elevate blood glucose concentration is unimpaired by renalectomy . The drug does not significantly affect glycemia in functionally hepatectomized rats but accelerates blood lactate and pyruvate accumulation to higher maximum concentrations even when kidney function is also ablated. It is concluded that 3- aminopicolinate inhibits phosphoenolpyruvate carboxykinase in hepatocytes, that the reported stimulation of renal glutaminase and glutamine gluconeogenesis by this compound does not contribute significantly to its hyperglycemic property, and that the drug increases gluconeogenic substrate supply from peripheral tissues.  相似文献   

12.
AimsPhosphoenolpyruvate carboxykinase (PEPCK) is the rate limiting enzyme for gluconeogenesis, and plays a key role in recycling lactate for glucose production. It is synthesized as two separate isoforms; cytosolic (PEPCK-C, gene code; PCK1) and mitochondrial (PEPCK-M, gene code; PCK2). Previous studies of gluconeogenesis in endotoxemia have focused solely on PCK1. We investigated the relative roles of the two isoforms in hepatic and renal gluconeogenesis in a rat model of endotoxic shock, and in cultured hepatocytes.Main methodsRats were administered lipopolysaccharide (6 mg/kg; LPS) for 6 h. Cultured cells were incubated with lactate (5 mM) with or without tumor necrosis factor alpha (1 – 10 ng/ml). Rat liver and kidney samples as well as cultured cells were subjected to subcellular fractionation to produce mitochondrial and cytosolic fractions for PEPCK activity assay. PCK1 and PCK2 mRNA levels were measured using quantitative RT-PCR.Key findingsIn rat endotoxemia, hepatic PCK2 mRNA and PEPCK-M enzyme activity decreased by 53% and 38%, compared to sham controls. Hepatic PCK1 mRNA levels increased by 44%, but PEPCK-C enzyme activity remained unchanged. The changes in hepatic PEPCK-M coincided with a marked hypoglycemia and hyperlactatemia as well as elevated plasma interleukin 1 beta (IL1beta). Incubation of cultured hepatocytes with TNF-alpha inhibited lactate-induced increases in glucose production, PCK2 mRNA levels and PEPCK-M enzyme activity but had no effect on PCK1 mRNA levels or PEPCK-C activity.SignificanceThese results indicate that decreases in hepatic PEPCK-M play a key role in the manifestation of hyperlactatemia and hypoglycemia in endotoxemia.  相似文献   

13.
Summary The specific performance of the adult hepatic parenchymal cell is maintained and controlled by factors deriving from the stromal bed; the chemical nature of these factors is unknown. This study aimed to develop a serum-free hierarchical hepatocyte-nonparenchymal (stromal) cell coculture system. Hepatic stromal cells proliferated on crosslinked collagen in serum-free medium with epidermal growth factor, basic fibroblast growth factor, and hepatocyte-conditioned medium; cell type composition changed during the 2-wk culture period. During the first wk, the culture consisted of proliferating sinusoidal endothelial cells with well-preserved sieve plates, proliferating hepatic stellate cells, and partially activated Kupffer cells. The number of endothelial cells declined thereafter; stellate cells and Kupffer cells became the prominent cell types after 8 d. Hepatocytes were seeded onto stromal cells precultured for 4–14 d; they adhered to stellate and Kupffer cells, but spared the islands of endothelial cells. Stellate cells spread out on top of the hepatocytes; Kupffer cell extensions established multiple contacts to hepatocytes and stellate cells. Hepatocyte viability was maintained by coculture; the positive influence of stromal cell signals on hepatocyte differentiation became evident after 48 h; a strong improvement of cell responsiveness toward hormones could be observed in cocultured hepatocytes. Hierarchial hepatocyte coculture enhanced the glucagon-dependent increases in phosphoenolpyruvate carboxykinase activity and messenger ribonucleic acid (mRNA) content three- and twofold, respectively; glucagon-activated urea production was elevated twofold. Coculturing also stimulated glycogen deposition; basal synthesis was increased by 30% and the responsiveness toward insulin and glucose was elevated by 100 and 55%, respectively. The insulin-dependent rise in the glucokinase mRNA content was increased twofold in cocultured hepatocytes. It can be concluded that long-term signals from stromal cells maintain hepatocyte differentiation. This coculture model should, therefore, provide the technical basis for the investigation of stroma-derived differentiation factors.  相似文献   

14.
Isolated kidney tubules synthesize glucose actively from fructose, lactate, glycerol and pyruvate and, to a lesser extent, from a variety of amino acids. Ethanol stimulated gluconeogenesis from pyruvate and inhibited it from lactate. The aminotransferase inhibitor, aminooxyacetate, greatly reduced synthesis from lactate but not from pyruvate. Quinolinate inhibited gluconeogenesis from both precursors, indicating an active role for cytosolic phosphoenolpyruvate carboxykinase (PEPCK) in the gluconeogenic pathway. Incorporation of lactate or glucose into triglycerides was relatively low, and since no fatty acid synthase (FAS) activity could be detected, probably represented chain elongation or reesterification.  相似文献   

15.
Polymicrobial sepsis is characterized by an early, hyperdynamic phase followed by a late hypodynamic phase. Adrenomedullin (AM), a vasodilatory peptide, inhibits this transition from the early phase to the late phase. Adrenomedullin binding protein-1 (AMBP-1) enhances AM-mediated activities. The decrease of AMBP-1 levels in late sepsis reduces the vascular response to AM and produces the hypodynamic phase. Studies have indicated that the administration of LPS downregulates AMBP-1 production in the liver. Since hepatocytes are the primary source of AMBP-1 biosynthesis in the liver, we employed a co-culture strategy using hepatocyte and Kupffer cells to determine whether LPS directly or by increasing pro-inflammatory cytokines from Kupffer cells downregulates AMBP-1 production. Hepatocytes and Kupffer cells isolated from rats were co-cultured and treated with LPS for 24 h. LPS significantly attenuated AMBP-1 protein expression in a dose-dependent manner. Since AMBP-1 is basically a secretory protein, cell supernatants from co-culture cells treated with LPS were examined for AMBP-1 protein levels. LPS treatment caused a dose related decrease in AMBP-1 protein secretion. Similarly, LPS treatment produced a significant decrease in AMBP-1 protein expression in hepatocytes and Kupffer cells cultured using transwell inserts. LPS had no direct effect on AMBP-1 levels in cultured hepatocytes or Kupffer cells alone. To confirm that the observed effects in co-culture were due to the cytokines released from Kupffer cells, hepatocytes were treated with IL-1beta or TNF-alpha for 24 h and AMBP-1 expression was examined. The results indicated that both cytokines significantly inhibited AMBP-1 protein levels. Thus, pro-inflammatory cytokines released from Kupffer cells are responsible for downregulation of AMBP-1.  相似文献   

16.
Direct effects of leptin on gluconeogenesis in rat hepatocytes are equivocal, and model systems from other species have not been extensively explored in assessing the regulation of glucose metabolism by leptin. Therefore, the goal of the present study was to compare the effects of leptin on gluconeogenesis in pig and rat hepatocyte cultures as well as to investigate an underlying mechanism of action at the level of phosphoenolpyruvate carboxykinase (PEPCK). In rat hepatocytes, leptin exposure (3 h, 50 and 100 nM) attenuated glucagon-stimulated hepatic gluconeogenesis by 35 and 38% (P < 0.05), respectively. However, leptin did not produce any significant acute effect in pig hepatocytes. Leptin exposure for 24 h failed to produce any significant effect on gluconeogenesis in either rat or pig hepatocytes cultured in the presence of glucagon or dexamethasone. Mechanistically, there was a 25-35% decrease (P < 0.05) in glucagon-induced PEPCK mRNA levels in rat but not pig hepatocytes cultured with leptin. This effect on PEPCK mRNA was not due to an alteration in the relative abundance of the leptin receptor or the ability of PEPCK to respond to cAMP. The nonuniformity of the effects of leptin on gluconeogenesis in pig and rat hepatocytes indicates differences in leptin action between species. Furthermore, the unique action of leptin in porcine hepatocytes points to the utility of this model system for biomedical research and also underscores the value of comparative studies.  相似文献   

17.
During prolonged sepsis, impairment of glucose supply by the liver leads to hypoglycemia. Our aim was to investigate whether proinflammatory cytokine interleukin-6, a major mediator of the hepatic acute phase reaction, could contribute to this impairment by inhibiting hepatic glucose production stimulated by glucagon or isoproterenol in rat hepatocytes. Interleukin-6 inhibited the stimulation of glucose formation from glycogen by glucagon but not by isoproterenol in cultured rat hepatocytes. This was confirmed in the perfused rat liver. In cultured hepatocytes, the increase in cyclic adenosine-3',5'-monophosphate formation by glucagon was inhibited by interleukin-6, which was probably due to attenuation of glucagon binding to the glucagon receptor. The increase in cyclic adenosine-3',5'-monophosphate stimulated by isoproterenol was not affected by interleukin-6. However, the cytokine inhibited both expression of the key gluconeogenic control enzyme, phosphoenolpyruvate carboxykinase, stimulated by glucagon and isoproterenol. Thus, while increased glucose demand during the acute-phase reaction might initially be accomplished by catecholamine-mediated stimulation of glucose formation from glycogen, inhibition of gluconeogenesis by interleukin-6 may contribute to the impairment of glucose homeostasis during the prolonged acute phase reaction.  相似文献   

18.
Control properties of the gluconeogenic pathway in hepatocytes isolated from starved rats were studied in the presence of glucose. The following observations were made. (1) Glucose stimulated the rate of glucose production from 20 mM-glycerol, from a mixture of 20 mM-lactate and 2 mM-pyruvate, or from pyruvate alone; no stimulation was observed with 20 mM-alanine or 20 mM-dihydroxyacetone. Maximal stimulation was obtained between 2 and 5 mM-glucose, depending on the conditions. At concentrations above 6 mM, gluconeogenesis declined again, so that at 10 mM-glucose the glucose production rate became equal to that in its absence. (2) With glycerol, stimulation of gluconeogenesis by glucose was accompanied by oxidation of cytosolic NADH and reduction of mitochondrial NAD+ and was insensitive to the transaminase inhibitor amino-oxyacetate; this indicated that glucose accelerated the rate of transport of cytosolic reducing equivalents to the mitochondria via the glycerol 1-phosphate shuttle. (3) With lactate plus pyruvate (10:1) as substrates, stimulation of gluconeogenesis by glucose was almost additive to that obtained with glucagon. From an analysis of the effect of glucose on the curves relating gluconeogenic flux and the steady-state intracellular concentrations of gluconeogenic intermediates under various conditions, in the absence and presence of glucagon, it was concluded that addition of glucose stimulated both phosphoenolpyruvate carboxykinase and pyruvate carboxylase activity.  相似文献   

19.
1. Glucose production from L-lactate was completely inhibited 24h after carbon tetrachloride treatment in liver from 48h-starved rats. The activities of phosphoenolpyruvate carboxykinase, fructose diphosphatase and glucose 6-phosphatase were decreased by this treatment in fed and starved rats, whereas lactate dehydrogenase activity was only decreased in fed animals. 2. The production of glucose by renal cortical slices from fed rats previously treated with carbon tetrachloride was enhanced when L-lactate, pyruvate and glutamine but not fructose were used as glucose precursors. Renal phosphoenolpyruvate carboxykinase activity was increased in this condition. 3. This increase was counteracted by cycloheximide or actinomycin D, suggesting that the effect was due to the synthesis de novo of the enzyme. 4. The pattern of hepatic gluconeogenic metabolites in treated animals was characterized by an increase in lactate, pyruvate, malate and citrate as well as a decrease in glucose 6-phosphate, suggesting an impairment of liver gluconeogenesis in vivo. 5. In contrast, the profile of renal metabolites suggested that gluconeogenesis was operative in the treated rats, as indicated by the marked increase in the content of phosphoenolpyruvate, 2-phosphoglycerate, 3-phosphoglycerate and glucose 6-phosphate. 6. It is postulated that renal gluconeogenesis could contribute to the maintenance of glycaemia in carbon tetrachloride-treated rats.  相似文献   

20.
Plasma VLDL accumulation in Gram-negative sepsis is partly ascribed to an increased hepatic VLDL production driven by pro-inflammatory cytokines. We previously showed that hepatocytes of the Kupffer cell (KC)-rich periportal area are major contributors to enhanced VLDL production in lipopolysaccharide (LPS)-injected rats. However, it remains to be established whether KC generated products directly affect the number (apoB) and composition of secreted VLDL. Using rat primary cells, we show here that hepatocytes respond to stimulation by soluble mediators released by LPS-stimulated Kupffer cells with enhanced secretion of apoB and triglycerides in phospholipid-rich VLDL particles. Unstimulated KC products also augmented the secretion of normal VLDL, doubling apoB mRNA abundance. IL-1beta treatment resulted in concentration-dependent increases of hepatocyte apoB mRNA and protein secretion, increases that were greater, but not additive, when combined with IL-6 and TNF-alpha. Lipid secretion and MTP mRNA levels were unaffected by cytokines. In summary: (i) enhanced secretion of phospholipid-rich VLDL particles is a net hepatocyte response to LPS-stimulated KC products, which gives a clue about the local role of Kupffer cells in septic dyslipidemia induction; and (ii) pro-inflammatory cytokines act redundantly to enhance apoB secretion involving translational apoB up-regulation, but other humoral components or KC mediators are necessary to accomplish increased lipid association.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号