首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Freshwater marshes are well‐known for their ecological functions in carbon sequestration, but complete carbon budgets that include both methane (CH4) and lateral carbon fluxes for these ecosystems are rarely available. To the best of our knowledge, this is the first full carbon balance for a freshwater marsh where vertical gaseous [carbon dioxide (CO2) and CH4] and lateral hydrologic fluxes (dissolved and particulate organic carbon) have been simultaneously measured for multiple years (2011–2013). Carbon accumulation in the sediments suggested that the marsh was a long‐term carbon sink and accumulated ~96.9 ± 10.3 (±95% CI) g C m?2 yr?1 during the last ~50 years. However, abnormal climate conditions in the last 3 years turned the marsh to a source of carbon (42.7 ± 23.4 g C m?2 yr?1). Gross ecosystem production and ecosystem respiration were the two largest fluxes in the annual carbon budget. Yet, these two fluxes compensated each other to a large extent and led to the marsh being a CO2 sink in 2011 (?78.8 ± 33.6 g C m?2 yr?1), near CO2‐neutral in 2012 (29.7 ± 37.2 g C m?2 yr?1), and a CO2 source in 2013 (92.9 ± 28.0 g C m?2 yr?1). The CH4 emission was consistently high with a three‐year average of 50.8 ± 1.0 g C m?2 yr?1. Considerable hydrologic carbon flowed laterally both into and out of the marsh (108.3 ± 5.4 and 86.2 ± 10.5 g C m?2 yr?1, respectively). In total, hydrologic carbon fluxes contributed ~23 ± 13 g C m?2 yr?1 to the three‐year carbon budget. Our findings highlight the importance of lateral hydrologic inflows/outflows in wetland carbon budgets, especially in those characterized by a flow‐through hydrologic regime. In addition, different carbon fluxes responded unequally to climate variability/anomalies and, thus, the total carbon budgets may vary drastically among years.  相似文献   

2.
European forests are an important carbon sink; however, the relative contributions to this sink of climate, atmospheric CO2 concentration ([CO2]), nitrogen deposition and forest management are under debate. We attributed the European carbon sink in forests using ORCHIDEE‐FM, a process‐based vegetation model that differs from earlier versions of ORCHIDEE by its explicit representation of stand growth and idealized forest management. The model was applied on a grid across Europe to simulate changes in the net ecosystem productivity (NEP) of forests with and without changes in climate, [CO2] and age structure, the three drivers represented in ORCHIDEE‐FM. The model simulates carbon stocks and volume increment that are comparable – root mean square error of 2 m3 ha?1 yr?1 and 1.7 kg C m?2 respectively – with inventory‐derived estimates at country level for 20 European countries. Our simulations estimate a mean European forest NEP of 175 ± 52 g C m?2 yr?1 in the 1990s. The model simulation that is most consistent with inventory records provides an upwards trend of forest NEP of 1 ± 0.5 g C m?2 yr?2 between 1950 and 2000 across the EU 25. Furthermore, the method used for reconstructing past age structure was found to dominate its contribution to temporal trends in NEP. The potentially large fertilizing effect of nitrogen deposition cannot be told apart, as the model does not explicitly simulate the nitrogen cycle. Among the three drivers that were considered in this study, the fertilizing effect of increasing [CO2] explains about 61% of the simulated trend, against 26% to changes in climate and 13% only to changes in forest age structure. The major role of [CO2] at the continental scale is due to its homogeneous impact on net primary productivity (NPP). At the local scale, however, changes in climate and forest age structure often dominate trends in NEP by affecting NPP and heterotrophic respiration.  相似文献   

3.
Livestock manure is applied to rangelands as an organic fertilizer to stimulate forage production, but the long‐term impacts of this practice on soil carbon (C) and greenhouse gas (GHG) dynamics are poorly known. We collected soil samples from manured and nonmanured fields on commercial dairies and found that manure amendments increased soil C stocks by 19.0 ± 7.3 Mg C ha?1 and N stocks by 1.94 ± 0.63 Mg N ha?1 compared to nonmanured fields (0–20 cm depth). Long‐term historical (1700–present) and future (present–2100) impacts of management on soil C and N dynamics, net primary productivity (NPP), and GHG emissions were modeled with DayCent. Modeled total soil C and N stocks increased with the onset of dairying. Nitrous oxide (N2O) emissions also increased by ~2 kg N2O‐N ha?1 yr?1. These emissions were proportional to total N additions and offset 75–100% of soil C sequestration. All fields were small net methane (CH4) sinks, averaging ?4.7 ± 1.2 kg CH4‐C ha?1 yr?1. Overall, manured fields were net GHG sinks between 1954 and 2011 (?0.74 ± 0.73 Mg CO2 e ha?1 yr?1, CO2e are carbon dioxide equivalents), whereas nonmanured fields varied around zero. Future soil C pools stabilized 40–60 years faster in manured fields than nonmanured fields, at which point manured fields were significantly larger sources than nonmanured fields (1.45 ± 0.52 Mg CO2e ha?1 yr?1 and 0.51 ± 0.60 Mg CO2e ha?1 yr?1, respectively). Modeling also revealed a large background loss of soil C from the passive soil pool associated with the shift from perennial to annual grasses, equivalent to 29.4 ± 1.47 Tg CO2e in California between 1820 and 2011. Manure applications increased NPP and soil C storage, but plant community changes and GHG emissions decreased, and eventually eliminated, the net climate benefit of this practice.  相似文献   

4.
Overviewing the European carbon (C), greenhouse gas (GHG), and non‐GHG fluxes, gross primary productivity (GPP) is about 9.3 Pg yr?1, and fossil fuel imports are 1.6 Pg yr?1. GPP is about 1.25% of solar radiation, containing about 360 × 1018 J energy – five times the energy content of annual fossil fuel use. Net primary production (NPP) is 50%, terrestrial net biome productivity, NBP, 3%, and the net GHG balance, NGB, 0.3% of GPP. Human harvest uses 20% of NPP or 10% of GPP, or alternatively 1‰ of solar radiation after accounting for the inherent cost of agriculture and forestry, for production of pesticides and fertilizer, the return of organic fertilizer, and for the C equivalent cost of GHG emissions. C equivalents are defined on a global warming potential with a 100‐year time horizon. The equivalent of about 2.4% of the mineral fertilizer input is emitted as N2O. Agricultural emissions to the atmosphere are about 40% of total methane, 60% of total NO‐N, 70% of total N2O‐N, and 95% of total NH3‐N emissions of Europe. European soils are a net C sink (114 Tg yr?1), but considering the emissions of GHGs, soils are a source of about 26 Tg CO2 C‐equivalent yr?1. Forest, grassland and sediment C sinks are offset by GHG emissions from croplands, peatlands and inland waters. Non‐GHGs (NH3, NOx) interact significantly with the GHG and the C cycle through ammonium nitrate aerosols and dry deposition. Wet deposition of nitrogen (N) supports about 50% of forest timber growth. Land use change is regionally important. The absolute flux values total about 50 Tg C yr?1. Nevertheless, for the European trace‐gas balance, land‐use intensity is more important than land‐use change. This study shows that emissions of GHGs and non‐GHGs significantly distort the C cycle and eliminate apparent C sinks.  相似文献   

5.
A major limiting factor in the development of algae as a feedstock for the bioenergy industry is the consistent production and supply of biomass. This study is the first to access the suitability of the freshwater macroalgal genus Oedogonium to supply biomass for bioenergy applications. Specifically, we quantified the effect of CO2 supplementation on the rate of biomass production, carbon capture, and feedstock quality of Oedogonium when cultured in large‐scale outdoor tanks. Oedogonium cultures maintained at a pH of 7.5 through the addition of CO2 resulted in biomass productivities of 8.33 (±0.51) g DW m?2 day?1, which was 2.5 times higher than controls which had an average productivity of 3.37 (±0.75) g DW m?2 day?1. Under these productivities, Oedogonium had a carbon content of 41–45% and a higher heating value of 18.5 MJ kg?1, making it an ideal biomass energy feedstock. The rate of carbon fixation was 1380 g C m?2 yr?1 and 1073.1 g C m?2 yr?1 for cultures maintained at a pH of 7.5 and 8.5, and 481 g C m?2 yr?1 for cultures not supplemented with CO2. This study highlights the potential of integrating the large‐scale culture of freshwater macroalgae with existing carbon waste streams, for example coal‐fired power stations, both as a tool for carbon sequestration and as an enhanced and sustainable source of bioenergy.  相似文献   

6.
Defined as the ratio between gross primary productivity (GPP) and evapotranspiration (ET), ecosystem‐scale water‐use efficiency (EWUE) is an indicator of the adjustment of vegetation photosynthesis to water loss. The processes controlling EWUE are complex and reflect both a slow evolution of plants and plant communities as well as fast adjustments of ecosystem functioning to changes of limiting resources. In this study, we investigated EWUE trends from 1982 to 2008 using data‐driven models derived from satellite observations and process‐oriented carbon cycle models. Our findings suggest positive EWUE trends of 0.0056, 0.0007 and 0.0001 g C m?2 mm?1 yr?1 under the single effect of rising CO2 (‘CO2’), climate change (‘CLIM’) and nitrogen deposition (‘NDEP’), respectively. Global patterns of EWUE trends under different scenarios suggest that (i) EWUE‐CO2 shows global increases, (ii) EWUE‐CLIM increases in mainly high latitudes and decreases at middle and low latitudes, (iii) EWUE‐NDEP displays slight increasing trends except in west Siberia, eastern Europe, parts of North America and central Amazonia. The data‐driven MTE model, however, shows a slight decline of EWUE during the same period (?0.0005 g C m?2 mm?1 yr?1), which differs from process‐model (0.0064 g C m?2 mm?1 yr?1) simulations with all drivers taken into account. We attribute this discrepancy to the fact that the nonmodeled physiological effects of elevated CO2 reducing stomatal conductance and transpiration (TR) in the MTE model. Partial correlation analysis between EWUE and climate drivers shows similar responses to climatic variables with the data‐driven model and the process‐oriented models across different ecosystems. Change in water‐use efficiency defined from transpiration‐based WUEt (GPP/TR) and inherent water‐use efficiency (IWUEt, GPP×VPD/TR) in response to rising CO2, climate change, and nitrogen deposition are also discussed. Our analyses will facilitate mechanistic understanding of the carbon–water interactions over terrestrial ecosystems under global change.  相似文献   

7.
Cultivation of bioenergy crops has been suggested as a promising option for reduction of greenhouse gas (GHG) emissions from arable organic soils (Histosols). Here, we report the annual net ecosystem exchange (NEE) fluxes of CO2 as measured with a dynamic closed chamber method at a drained fen peatland grown with reed canary grass (RCG) and spring barley (SB) in a plot experiment (= 3 for each cropping system). The CO2 flux was partitioned into gross photosynthesis (GP) and ecosystem respiration (RE). For the data analysis, simple yet useful GP and RE models were developed which introduce plot‐scale ratio vegetation index as an active vegetation proxy. The GP model captures the effect of temperature and vegetation status, and the RE model estimates the proportion of foliar biomass dependent respiration (Rfb) in the total RE. Annual RE was 1887 ± 7 (mean ± standard error, = 3) and 1288 ± 19 g CO2‐C m?2 in RCG and SB plots, respectively, with Rfb accounting for 32 and 22% respectively. Total estimated annual GP was ?1818 ± 42 and ?1329 ± 66 g CO2‐C m?2 in RCG and SB plots leading to a NEE of 69 ± 36 g CO2‐C m?2 yr?1 in RCG plots (i.e., a weak net source) and ?41 ± 47 g CO2‐C m?2 yr?1 in SB plots (i.e., a weak net sink). Standard errors related to spatial variation were small (as shown above), but more significant uncertainties were related to the modelling approach for establishment of annual budgets. In conclusion, the bioenergy cropping system was not more favourable than the food cropping system when looking at the atmospheric CO2 emissions during cultivation. However, in a broader GHG life‐cycle perspective, the lower fertilizer N input and the higher biomass yield in bioenergy cropping systems could be beneficial.  相似文献   

8.
Nine years (2003–2011) of carbon dioxide (CO2) flux were measured at a black spruce forest in interior Alaska using the eddy covariance method. Seasonal and interannual variations in the gross primary productivity (GPP) and ecosystem respiration (RE) were associated primarily with air temperature: warmer conditions enhanced GPP and RE. Meanwhile, interannual variation in annual CO2 balance was controlled predominantly by RE, and not GPP. During these 9 years of measurement, the annual CO2 balance shifted from a CO2 sink to a CO2 source, with a 9‐year average near zero. The increase in autumn RE was associated with autumn warming and was mostly attributed to a shift in the annual CO2 balance. The increase in autumn air temperature (0.22 °C yr?1) during the 9 years of study was 15 times greater than the long‐term warming trend between 1905 and 2011 (0.015 °C yr?1) due to decadal climate oscillation. This result indicates that most of the shifts in observed CO2 fluxes were associated with decadal climate variability. Because the natural climate varies in a cycle of 10–30 years, a long‐term study covering at least one full cycle of decadal climate oscillation is important to quantify the CO2 balance and its interaction with the climate.  相似文献   

9.
We estimated the long‐term carbon balance [net biome production (NBP)] of European (EU‐25) croplands and its component fluxes, over the last two decades. Net primary production (NPP) estimates, from different data sources ranged between 490 and 846 gC m?2 yr?1, and mostly reflect uncertainties in allocation, and in cropland area when using yield statistics. Inventories of soil C change over arable lands may be the most reliable source of information on NBP, but inventories lack full and harmonized coverage of EU‐25. From a compilation of inventories we infer a mean loss of soil C amounting to 17 g m?2 yr?1. In addition, three process‐based models, driven by historical climate and evolving agricultural technology, estimate a small sink of 15 g C m?2 yr?1 or a small source of 7.6 g C m?2 yr?1. Neither the soil C inventory data, nor the process model results support the previous European‐scale NBP estimate by Janssens and colleagues of a large soil C loss of 90 ± 50 gC m?2 yr?1. Discrepancy between measured and modeled NBP is caused by erosion which is not inventoried, and the burning of harvest residues which is not modeled. When correcting the inventory NBP for the erosion flux, and the modeled NBP for agricultural fire losses, the discrepancy is reduced, and cropland NBP ranges between ?8.3 ± 13 and ?13 ± 33 g C m?2 yr?1 from the mean of the models and inventories, respectively. The mean nitrous oxide (N2O) flux estimates ranges between 32 and 37 g C Eq m?2 yr?1, which nearly doubles the CO2 losses. European croplands act as small CH4 sink of 3.3 g C Eq m?2 yr?1. Considering ecosystem CO2, N2O and CH4 fluxes provides for the net greenhouse gas balance a net source of 42–47 g C Eq m?2 yr?1. Intensifying agriculture in Eastern Europe to the same level Western Europe amounts is expected to result in a near doubling of the N2O emissions in Eastern Europe. N2O emissions will then become the main source of concern for the impact of European agriculture on climate.  相似文献   

10.
The effect of a transition from grassland to second‐generation (2G) bioenergy on soil carbon and greenhouse gas (GHG) balance is uncertain, with limited empirical data on which to validate landscape‐scale models, sustainability criteria and energy policies. Here, we quantified soil carbon, soil GHG emissions and whole ecosystem carbon balance for short rotation coppice (SRC) bioenergy willow and a paired grassland site, both planted at commercial scale. We quantified the carbon balance for a 2‐year period and captured the effects of a commercial harvest in the SRC willow at the end of the first cycle. Soil fluxes of nitrous oxide (N2O) and methane (CH4) did not contribute significantly to the GHG balance of these land uses. Soil respiration was lower in SRC willow (912 ± 42 g C m?2 yr?1) than in grassland (1522 ± 39 g C m?2 yr?1). Net ecosystem exchange (NEE) reflected this with the grassland a net source of carbon with mean NEE of 119 ± 10 g C m?2 yr?1 and SRC willow a net sink, ?620 ± 18 g C m?2 yr?1. When carbon removed from the ecosystem in harvested products was considered (Net Biome Productivity), SRC willow remained a net sink (221 ± 66 g C m?2 yr?1). Despite the SRC willow site being a net sink for carbon, soil carbon stocks (0–30 cm) were higher under the grassland. There was a larger NEE and increase in ecosystem respiration in the SRC willow after harvest; however, the site still remained a carbon sink. Our results indicate that once established, significant carbon savings are likely in SRC willow compared with the minimally managed grassland at this site. Although these observed impacts may be site and management dependent, they provide evidence that land‐use transition to 2G bioenergy has potential to provide a significant improvement on the ecosystem service of climate regulation relative to grassland systems.  相似文献   

11.
We present a new synthesis, based on a suite of complementary approaches, of the primary production and carbon sink in forests of the 25 member states of the European Union (EU‐25) during 1990–2005. Upscaled terrestrial observations and model‐based approaches agree within 25% on the mean net primary production (NPP) of forests, i.e. 520±75 g C m?2 yr?1 over a forest area of 1.32 × 106 km2 to 1.55 × 106 km2 (EU‐25). New estimates of the mean long‐term carbon forest sink (net biome production, NBP) of EU‐25 forests amounts 75±20 g C m?2 yr?1. The ratio of NBP to NPP is 0.15±0.05. Estimates of the fate of the carbon inputs via NPP in wood harvests, forest fires, losses to lakes and rivers and heterotrophic respiration remain uncertain, which explains the considerable uncertainty of NBP. Inventory‐based assessments and assumptions suggest that 29±15% of the NBP (i.e., 22 g C m?2 yr?1) is sequestered in the forest soil, but large uncertainty remains concerning the drivers and future of the soil organic carbon. The remaining 71±15% of the NBP (i.e., 53 g C m?2 yr?1) is realized as woody biomass increments. In the EU‐25, the relatively large forest NBP is thought to be the result of a sustained difference between NPP, which increased during the past decades, and carbon losses primarily by harvest and heterotrophic respiration, which increased less over the same period.  相似文献   

12.
Inland waters transport and emit into the atmosphere large amounts of carbon (C), which originates from terrestrial ecosystems. The effect of land cover and land‐use practises on C export from terrestrial ecosystems to inland waters is not fully understood, especially in heterogeneous landscapes under human influence. We sampled for dissolved C species in five tributaries with well‐determined subcatchments (total size 174.5 km2), as well as in various points of two of the subcatchments draining to a boreal lake in southern Finland over a full year. Our aim was to find out how land cover and land‐use affect C export from the catchments, as well as CH4 and CO2 concentrations of the streams, and if the origin of C in stream water can be determined from proxies for quality of dissolved organic matter (DOM). We further estimated the gas evasion from stream surfaces and the role of aquatic fluxes in regional C cycling. The export rate of C from the terrestrial system through an aquatic conduit was 19.3 g C m?2(catchment) yr?1, which corresponds to 19% of the estimated terrestrial net ecosystem exchange of the catchment. Most of the C load to the recipient lake consisted of dissolved organic carbon (DOC, 6.1 ± 1.0 g C m?2 yr?1); the share of dissolved inorganic carbon (DIC) was much smaller (1.0 ± 0.2 g C m?2 yr?1). CO2 and CH4 emissions from stream and ditch surfaces were 7.0 ± 2.4 g C m?2 yr?1 and 0.1 ± 0.04 g C m?2 yr?1, respectively, C emissions being thus equal with C load to the lake. The proportion of peatland in the catchment and the drainage density of peatland increased DOC in streams, whereas the proportion of agricultural land in the catchment decreased it. The opposite was true for DIC. Drained peatlands were an important CH4 source for streams.  相似文献   

13.
The greenhouse gas (GHG) balance of European grasslands (EU‐28 plus Norway and Switzerland), including CO2, CH4 and N2O, is estimated using the new process‐based biogeochemical model ORCHIDEE‐GM over the period 1961–2010. The model includes the following: (1) a mechanistic representation of the spatial distribution of management practice; (2) management intensity, going from intensively to extensively managed; (3) gridded simulation of the carbon balance at ecosystem and farm scale; and (4) gridded simulation of N2O and CH4 emissions by fertilized grassland soils and livestock. The external drivers of the model are changing animal numbers, nitrogen fertilization and deposition, land‐use change, and variable CO2 and climate. The carbon balance of European grassland (NBP) is estimated to be a net sink of 15 ± 7 g C m?2 year?1 during 1961–2010, equivalent to a 50‐year continental cumulative soil carbon sequestration of 1.0 ± 0.4 Pg C. At the farm scale, which includes both ecosystem CO2 fluxes and CO2 emissions from the digestion of harvested forage, the net C balance is roughly halved, down to a small sink, or nearly neutral flux of 8 g C m?2 year?1. Adding CH4 and N2O emissions to net ecosystem exchange to define the ecosystem‐scale GHG balance, we found that grasslands remain a net GHG sink of 19 ± 10 g C‐CO2 equiv. m?2 year?1, because the CO2 sink offsets N2O and grazing animal CH4 emissions. However, when considering the farm scale, the GHG balance (NGB) becomes a net GHG source of ?50 g C‐CO2 equiv. m?2 year?1. ORCHIDEE‐GM simulated an increase in European grassland NBP during the last five decades. This enhanced NBP reflects the combination of a positive trend of net primary production due to CO2, climate and nitrogen fertilization and the diminishing requirement for grass forage due to the Europe‐wide reduction in livestock numbers.  相似文献   

14.
Canada's forests play an important role in the global carbon (C) cycle because of their large and dynamic C stocks. Detailed monitoring of C exchange between forests and the atmosphere and improved understanding of the processes that affect the net ecosystem exchange of C are needed to improve our understanding of the terrestrial C budget. We estimated the C budget of Canada's 2.3 × 106 km2 managed forests from 1990 to 2008 using an empirical modelling approach driven by detailed forestry datasets. We estimated that average net primary production (NPP) during this period was 809 ± 5 Tg C yr?1 (352 g C m?2 yr?1) and net ecosystem production (NEP) was 71 ± 9 Tg C yr?1 (31 g C m?2 yr?1). Harvesting transferred 45 ± 4 Tg C yr?1 out of the ecosystem and 45 ± 4 Tg C yr?1 within the ecosystem (from living biomass to dead organic matter pools). Fires released 23 ± 16 Tg C yr?1 directly to the atmosphere, and fires, insects and other natural disturbances transferred 52 ± 41 Tg C yr?1 from biomass to dead organic matter pools, from where C will gradually be released through decomposition. Net biome production (NBP) was only 2 ± 20 Tg C yr?1 (1 g C m?2 yr?1); the low C sequestration ratio (NBP/NPP=0.3%) is attributed to the high average age of Canada's managed forests and the impact of natural disturbances. Although net losses of ecosystem C occurred during several years due to large fires and widespread bark beetle outbreak, Canada's managed forests were a sink for atmospheric CO2 in all years, with an uptake of 50 ± 18 Tg C yr?1 [net ecosystem exchange (NEE) of CO2=?22 g C m?2 yr?1].  相似文献   

15.
Analysis of growth and biomass turnover in natural forests of Eucalyptus regnans, the world's tallest angiosperm, reveals it is also the world's most productive forest type, with fire disturbance an important mediator of net primary productivity (NPP). A comprehensive empirical database was used to calculate the averaged temporal pattern of NPP from regeneration to 250 years age. NPP peaks at 23.1 ± 3.8 (95% interquantile range) Mg C ha?1 year?1 at age 14 years, and declines gradually to about 9.2 ± 0.8 Mg C ha?1 year?1 at 130 years, with an average NPP over 250 years of 11.4 ± 1.1 Mg C ha?1 year?1, a value similar to the most productive temperate and tropical forests around the world. We then applied the age‐class distribution of E. regnans resulting from relatively recent historical fires to estimate current NPP for the forest estate. Values of NPP were 40% higher (13 Mg C ha?1 year?1) than if forests were assumed to be at maturity (9.2 Mg C ha?1 year?1). The empirically derived NPP time series for the E. regnans estate was then compared against predictions from 21 global circulation models, showing that none of them had the capacity to simulate a post‐disturbance peak in NPP, as found in E. regnans. The potential importance of disturbance impacts on NPP was further tested by applying a similar approach to the temperate forests of conterminous United States and of China. Allowing for the effects of disturbance, NPP summed across both regions was on average 11% (or 194 Tg C/year) greater than if all forests were assumed to be in a mature state. The results illustrate the importance of accounting for past disturbance history and growth stage when estimating forest primary productivity, with implications for carbon balance modelling at local to global scales.  相似文献   

16.
Growing concerns about energy and the environment have led to worldwide use of bioenergy. Switching from food crops to biofuel crops is an option to meet the fast‐growing need for biofuel feedstocks. This land use change consequently affects the ecosystem carbon balance. In this study, we used a biogeochemistry model, the Terrestrial Ecosystem Model, to evaluate the impacts of this change on the carbon balance, bioenergy production, and agricultural yield, assuming that several land use change scenarios from corn, soybean, and wheat to biofuel crops of switchgrass and Miscanthus will occur. We found that biofuel crops have much higher net primary production (NPP) than soybean and wheat crops. When food crops from current agricultural lands were changed to different biofuel crops, the national total NPP increased in all cases by a range of 0.14–0.88 Pg C yr?1, except while switching from corn to switchgrass when a decrease of 14% was observed. Miscanthus is more productive than switchgrass, producing about 2.5 times the NPP of switchgrass. The net carbon loss ranges from 1.0 to 6.3 Tg C yr?1 if food crops are changed to switchgrass, and from 0.4 to 6.7 Tg C yr?1 if changed to Miscanthus. The largest loss was observed when soybean crops were replaced with biofuel crops. Soil organic carbon increased significantly when land use changed, reaching 100 Mg C ha?1 in biofuel crop ecosystems. When switching from food crops to Miscanthus, the per unit area croplands produced a larger amount of ethanol than that of original food crops. In comparison, the land use change from wheat to Miscanthus produced more biomass and sequestrated more carbon. Our study suggests that Miscanthus could better serve as an energy crop than food crops or switchgrass, considering both economic and environmental benefits.  相似文献   

17.
Grassland ecosystems act as a crucial role in the global carbon cycle and provide vital ecosystem services for many species. However, these low‐productivity and water‐limited ecosystems are sensitive and vulnerable to climate perturbations and human intervention, the latter of which is often not considered due to lack of spatial information regarding the grassland management. Here by the application of a model tree ensemble (MTE‐GRASS) trained on local eddy covariance data and using as predictors gridded climate and management intensity field (grazing and cutting), we first provide an estimate of global grassland gross primary production (GPP). GPP from our study compares well (modeling efficiency NSE = 0.85 spatial; NSE between 0.69 and 0.94 interannual) with that from flux measurement. Global grassland GPP was on average 11 ± 0.31 Pg C yr?1 and exhibited significantly increasing trend at both annual and seasonal scales, with an annual increase of 0.023 Pg C (0.2%) from 1982 to 2011. Meanwhile, we found that at both annual and seasonal scale, the trend (except for northern summer) and interannual variability of the GPP are primarily driven by arid/semiarid ecosystems, the latter of which is due to the larger variation in precipitation. Grasslands in arid/semiarid regions have a stronger (33 g C m?2 yr?1/100 mm) and faster (0‐ to 1‐month time lag) response to precipitation than those in other regions. Although globally spatial gradients (71%) and interannual changes (51%) in GPP were mainly driven by precipitation, where most regions with arid/semiarid climate zone, temperature and radiation together shared half of GPP variability, which is mainly distributed in the high‐latitude or cold regions. Our findings and the results of other studies suggest the overwhelming importance of arid/semiarid regions as a control on grassland ecosystems carbon cycle. Similarly, under the projected future climate change, grassland ecosystems in these regions will be potentially greatly influenced.  相似文献   

18.
Wetlands can influence global climate via greenhouse gas (GHG) exchange of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). Few studies have quantified the full GHG budget of wetlands due to the high spatial and temporal variability of fluxes. We report annual open‐water diffusion and ebullition fluxes of CO2, CH4, and N2O from a restored emergent marsh ecosystem. We combined these data with concurrent eddy‐covariance measurements of whole‐ecosystem CO2 and CH4 exchange to estimate GHG fluxes and associated radiative forcing effects for the whole wetland, and separately for open‐water and vegetated cover types. Annual open‐water CO2, CH4, and N2O emissions were 915 ± 95 g C‐CO2 m?2 yr?1, 2.9 ± 0.5 g C‐CH4 m?2 yr?1, and 62 ± 17 mg N‐N2O m?2 yr?1, respectively. Diffusion dominated open‐water GHG transport, accounting for >99% of CO2 and N2O emissions, and ~71% of CH4 emissions. Seasonality was minor for CO2 emissions, whereas CH4 and N2O fluxes displayed strong and asynchronous seasonal dynamics. Notably, the overall radiative forcing of open‐water fluxes (3.5 ± 0.3 kg CO2‐eq m?2 yr?1) exceeded that of vegetated zones (1.4 ± 0.4 kg CO2‐eq m?2 yr?1) due to high ecosystem respiration. After scaling results to the entire wetland using object‐based cover classification of remote sensing imagery, net uptake of CO2 (?1.4 ± 0.6 kt CO2‐eq yr?1) did not offset CH4 emission (3.7 ± 0.03 kt CO2‐eq yr?1), producing an overall positive radiative forcing effect of 2.4 ± 0.3 kt CO2‐eq yr?1. These results demonstrate clear effects of seasonality, spatial structure, and transport pathway on the magnitude and composition of wetland GHG emissions, and the efficacy of multiscale flux measurement to overcome challenges of wetland heterogeneity.  相似文献   

19.
Phenology, by controlling the seasonal activity of vegetation on the land surface, plays a fundamental role in regulating photosynthesis and other ecosystem processes, as well as competitive interactions and feedbacks to the climate system. We conducted an analysis to evaluate the representation of phenology, and the associated seasonality of ecosystem‐scale CO2 exchange, in 14 models participating in the North American Carbon Program Site Synthesis. Model predictions were evaluated using long‐term measurements (emphasizing the period 2000–2006) from 10 forested sites within the AmeriFlux and Fluxnet‐Canada networks. In deciduous forests, almost all models consistently predicted that the growing season started earlier, and ended later, than was actually observed; biases of 2 weeks or more were typical. For these sites, most models were also unable to explain more than a small fraction of the observed interannual variability in phenological transition dates. Finally, for deciduous forests, misrepresentation of the seasonal cycle resulted in over‐prediction of gross ecosystem photosynthesis by +160 ± 145 g C m?2 yr?1 during the spring transition period and +75 ± 130 g C m?2 yr?1 during the autumn transition period (13% and 8% annual productivity, respectively) compensating for the tendency of most models to under‐predict the magnitude of peak summertime photosynthetic rates. Models did a better job of predicting the seasonality of CO2 exchange for evergreen forests. These results highlight the need for improved understanding of the environmental controls on vegetation phenology and incorporation of this knowledge into better phenological models. Existing models are unlikely to predict future responses of phenology to climate change accurately and therefore will misrepresent the seasonality and interannual variability of key biosphere–atmosphere feedbacks and interactions in coupled global climate models.  相似文献   

20.
Evasion of gaseous carbon (C) from streams is often poorly quantified in landscape C budgets. Even though the potential importance of the capillary network of streams as C conduits across the land–water–atmosphere interfaces is sometimes mentioned, low‐order streams are often left out of budget estimates due to being poorly characterized in terms of gas exchange and even areal surface coverage. We show that evasion of C is greater than all the total dissolved C (both organic and inorganic) exported downstream in the waters of a boreal landscape. In this study evasion of carbon dioxide (CO2) from running waters within a 67 km2 boreal catchment was studied. During a 4 year period (2006–2009) 13 streams were sampled on 104 different occasions for dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). From a locally determined model of gas exchange properties, we estimated the daily CO2 evasion with a high‐resolution (5 × 5 m) grid‐based stream evasion model comprising the entire ~100 km stream network. Despite the low areal coverage of stream surface, the evasion of CO2 from the stream network constituted 53% (5.0 (±1.8) g C m?2 yr?1) of the entire stream C flux (9.6 (±2.4) g C m?2 yr?1) (lateral as DIC, DOC, and vertical as CO2). In addition, 72% of the total CO2 loss took place already in the first‐ and second‐order streams. This study demonstrates the importance of including CO2 evasion from low‐order boreal streams into landscape C budgets as it more than doubled the magnitude of the aquatic conduit for C from this landscape. Neglecting this term will consequently result in an overestimation of the terrestrial C sink strength in the boreal landscape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号