首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Freshwater marshes are well‐known for their ecological functions in carbon sequestration, but complete carbon budgets that include both methane (CH4) and lateral carbon fluxes for these ecosystems are rarely available. To the best of our knowledge, this is the first full carbon balance for a freshwater marsh where vertical gaseous [carbon dioxide (CO2) and CH4] and lateral hydrologic fluxes (dissolved and particulate organic carbon) have been simultaneously measured for multiple years (2011–2013). Carbon accumulation in the sediments suggested that the marsh was a long‐term carbon sink and accumulated ~96.9 ± 10.3 (±95% CI) g C m?2 yr?1 during the last ~50 years. However, abnormal climate conditions in the last 3 years turned the marsh to a source of carbon (42.7 ± 23.4 g C m?2 yr?1). Gross ecosystem production and ecosystem respiration were the two largest fluxes in the annual carbon budget. Yet, these two fluxes compensated each other to a large extent and led to the marsh being a CO2 sink in 2011 (?78.8 ± 33.6 g C m?2 yr?1), near CO2‐neutral in 2012 (29.7 ± 37.2 g C m?2 yr?1), and a CO2 source in 2013 (92.9 ± 28.0 g C m?2 yr?1). The CH4 emission was consistently high with a three‐year average of 50.8 ± 1.0 g C m?2 yr?1. Considerable hydrologic carbon flowed laterally both into and out of the marsh (108.3 ± 5.4 and 86.2 ± 10.5 g C m?2 yr?1, respectively). In total, hydrologic carbon fluxes contributed ~23 ± 13 g C m?2 yr?1 to the three‐year carbon budget. Our findings highlight the importance of lateral hydrologic inflows/outflows in wetland carbon budgets, especially in those characterized by a flow‐through hydrologic regime. In addition, different carbon fluxes responded unequally to climate variability/anomalies and, thus, the total carbon budgets may vary drastically among years.  相似文献   

2.
The aquatic pathway is increasingly being recognized as an important component of catchment carbon and greenhouse gas (GHG) budgets, particularly in peatland systems due to their large carbon store and strong hydrological connectivity. In this study, we present a complete 5‐year data set of all aquatic carbon and GHG species from an ombrotrophic Scottish peatland. Measured species include particulate and dissolved forms of organic carbon (POC, DOC), dissolved inorganic carbon (DIC), CO2, CH4 and N2O. We show that short‐term variability in concentrations exists across all species and this is strongly linked to discharge. Seasonal cyclicity was only evident in DOC, CO2 and CH4 concentration; however, temperature correlated with monthly means in all species except DIC. Although the temperature correlation with monthly DOC and POC concentrations appeared to be related to biological productivity in the terrestrial system, we suggest the temperature correlation with CO2 and CH4 was primarily due to in‐stream temperature‐dependent solubility. Interannual variability in total aquatic carbon concentration was strongly correlated with catchment gross primary productivity (GPP) indicating a strong potential terrestrial aquatic linkage. DOC represented the largest aquatic carbon flux term (19.3 ± 4.59 g C m?2 yr?1), followed by CO2 evasion (10.0 g C m?2 yr?1). Despite an estimated contribution to the total aquatic carbon flux of between 8 and 48%, evasion estimates had the greatest uncertainty. Interannual variability in total aquatic carbon export was low in comparison with variability in terrestrial biosphere–atmosphere exchange, and could be explained primarily by temperature and precipitation. Our results therefore suggest that climatic change is likely to have a significant impact on annual carbon losses through the aquatic pathway, and as such, aquatic exports are fundamental to the understanding of whole catchment responses to climate change.  相似文献   

3.
Evasion of gaseous carbon (C) from streams is often poorly quantified in landscape C budgets. Even though the potential importance of the capillary network of streams as C conduits across the land–water–atmosphere interfaces is sometimes mentioned, low‐order streams are often left out of budget estimates due to being poorly characterized in terms of gas exchange and even areal surface coverage. We show that evasion of C is greater than all the total dissolved C (both organic and inorganic) exported downstream in the waters of a boreal landscape. In this study evasion of carbon dioxide (CO2) from running waters within a 67 km2 boreal catchment was studied. During a 4 year period (2006–2009) 13 streams were sampled on 104 different occasions for dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). From a locally determined model of gas exchange properties, we estimated the daily CO2 evasion with a high‐resolution (5 × 5 m) grid‐based stream evasion model comprising the entire ~100 km stream network. Despite the low areal coverage of stream surface, the evasion of CO2 from the stream network constituted 53% (5.0 (±1.8) g C m?2 yr?1) of the entire stream C flux (9.6 (±2.4) g C m?2 yr?1) (lateral as DIC, DOC, and vertical as CO2). In addition, 72% of the total CO2 loss took place already in the first‐ and second‐order streams. This study demonstrates the importance of including CO2 evasion from low‐order boreal streams into landscape C budgets as it more than doubled the magnitude of the aquatic conduit for C from this landscape. Neglecting this term will consequently result in an overestimation of the terrestrial C sink strength in the boreal landscape.  相似文献   

4.
Estimates of carbon leaching losses from different land use systems are few and their contribution to the net ecosystem carbon balance is uncertain. We investigated leaching of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and dissolved methane (CH4), at forests, grasslands, and croplands across Europe. Biogenic contributions to DIC were estimated by means of its δ13C signature. Leaching of biogenic DIC was 8.3±4.9 g m?2 yr?1 for forests, 24.1±7.2 g m?2 yr?1 for grasslands, and 14.6±4.8 g m?2 yr?1 for croplands. DOC leaching equalled 3.5±1.3 g m?2 yr?1 for forests, 5.3±2.0 g m?2 yr?1 for grasslands, and 4.1±1.3 g m?2 yr?1 for croplands. The average flux of total biogenic carbon across land use systems was 19.4±4.0 g C m?2 yr?1. Production of DOC in topsoils was positively related to their C/N ratio and DOC retention in subsoils was inversely related to the ratio of organic carbon to iron plus aluminium (hydr)oxides. Partial pressures of CO2 in soil air and soil pH determined DIC concentrations and fluxes, but soil solutions were often supersaturated with DIC relative to soil air CO2. Leaching losses of biogenic carbon (DOC plus biogenic DIC) from grasslands equalled 5–98% (median: 22%) of net ecosystem exchange (NEE) plus carbon inputs with fertilization minus carbon removal with harvest. Carbon leaching increased the net losses from cropland soils by 24–105% (median: 25%). For the majority of forest sites, leaching hardly affected actual net ecosystem carbon balances because of the small solubility of CO2 in acidic forest soil solutions and large NEE. Leaching of CH4 proved to be insignificant compared with other fluxes of carbon. Overall, our results show that leaching losses are particularly important for the carbon balance of agricultural systems.  相似文献   

5.
How strong is the current carbon sequestration of an Atlantic blanket bog?   总被引:1,自引:0,他引:1  
Although northern peatlands cover only 3% of the land surface, their thick peat deposits contain an estimated one‐third of the world's soil organic carbon (SOC). Under a changing climate the potential of peatlands to continue sequestering carbon is unknown. This paper presents an analysis of 6 years of total carbon balance of an almost intact Atlantic blanket bog in Glencar, County Kerry, Ireland. The three components of the measured carbon balance were: the land‐atmosphere fluxes of carbon dioxide (CO2) and methane (CH4) and the flux of dissolved organic carbon (DOC) exported in a stream draining the peatland. The 6 years C balance was computed from 6 years (2003–2008) of measurements of meteorological and eddy‐covariance CO2 fluxes, periodic chamber measurements of CH4 fluxes over 3.5 years, and 2 years of continuous DOC flux measurements. Over the 6 years, the mean annual carbon was ?29.7±30.6 (±1 SD) g C m?2 yr?1 with its components as follows: carbon in CO2 was a sink of ?47.8±30.0 g C m?2 yr?1; carbon in CH4 was a source of 4.1±0.5 g C m?2 yr?1 and the carbon exported as stream DOC was a source of 14.0±1.6 g C m?2 yr?1. For 2 out of the 6 years, the site was a source of carbon with the sum of CH4 and DOC flux exceeding the carbon sequestered as CO2. The average C balance for the 6 years corresponds to an average annual growth rate of the peatland surface of 1.3 mm yr?1.  相似文献   

6.
Peatland streams have repeatedly been shown to be highly supersaturated in both CO2 and CH4 with respect to the atmosphere, and in combination with dissolved (DOC) and particulate organic carbon (POC) represent a potentially important pathway for catchment greenhouse gas (GHG) and carbon (C) losses. The aim of this study was to create a complete C and GHG (CO2, CH4, N2O) budget for Auchencorth Moss, an ombrotrophic peatland in southern Scotland, by combining flux tower, static chamber and aquatic flux measurements from 2 consecutive years. The sink/source strength of the catchment in terms of both C and GHGs was compared to assess the relative importance of the aquatic pathway. During the study period (2007–2008) the catchment functioned as a net sink for GHGs (352 g CO2‐Eq m?2 yr?1) and C (69.5 g C m?2 yr?1). The greatest flux in both the GHG and C budget was net ecosystem exchange (NEE). Terrestrial emissions of CH4 and N2O combined returned only 4% of CO2 equivalents captured by NEE to the atmosphere, whereas evasion of GHGs from the stream surface returned 12%. DOC represented a loss of 24% of NEE C uptake, which if processed and evaded downstream, outside of the catchment, may lead to a significant underestimation of the actual catchment‐derived GHG losses. The budgets clearly show the importance of aquatic fluxes at Auchencorth Moss and highlight the need to consider both the C and GHG budgets simultaneously.  相似文献   

7.
The effect of a transition from grassland to second‐generation (2G) bioenergy on soil carbon and greenhouse gas (GHG) balance is uncertain, with limited empirical data on which to validate landscape‐scale models, sustainability criteria and energy policies. Here, we quantified soil carbon, soil GHG emissions and whole ecosystem carbon balance for short rotation coppice (SRC) bioenergy willow and a paired grassland site, both planted at commercial scale. We quantified the carbon balance for a 2‐year period and captured the effects of a commercial harvest in the SRC willow at the end of the first cycle. Soil fluxes of nitrous oxide (N2O) and methane (CH4) did not contribute significantly to the GHG balance of these land uses. Soil respiration was lower in SRC willow (912 ± 42 g C m?2 yr?1) than in grassland (1522 ± 39 g C m?2 yr?1). Net ecosystem exchange (NEE) reflected this with the grassland a net source of carbon with mean NEE of 119 ± 10 g C m?2 yr?1 and SRC willow a net sink, ?620 ± 18 g C m?2 yr?1. When carbon removed from the ecosystem in harvested products was considered (Net Biome Productivity), SRC willow remained a net sink (221 ± 66 g C m?2 yr?1). Despite the SRC willow site being a net sink for carbon, soil carbon stocks (0–30 cm) were higher under the grassland. There was a larger NEE and increase in ecosystem respiration in the SRC willow after harvest; however, the site still remained a carbon sink. Our results indicate that once established, significant carbon savings are likely in SRC willow compared with the minimally managed grassland at this site. Although these observed impacts may be site and management dependent, they provide evidence that land‐use transition to 2G bioenergy has potential to provide a significant improvement on the ecosystem service of climate regulation relative to grassland systems.  相似文献   

8.
Agricultural drainage of organic soils has resulted in vast soil subsidence and contributed to increased atmospheric carbon dioxide (CO2) concentrations. The Sacramento‐San Joaquin Delta in California was drained over a century ago for agriculture and human settlement and has since experienced subsidence rates that are among the highest in the world. It is recognized that drained agriculture in the Delta is unsustainable in the long‐term, and to help reverse subsidence and capture carbon (C) there is an interest in restoring drained agricultural land‐use types to flooded conditions. However, flooding may increase methane (CH4) emissions. We conducted a full year of simultaneous eddy covariance measurements at two conventional drained agricultural peatlands (a pasture and a corn field) and three flooded land‐use types (a rice paddy and two restored wetlands) to assess the impact of drained to flooded land‐use change on CO2 and CH4 fluxes in the Delta. We found that the drained sites were net C and greenhouse gas (GHG) sources, releasing up to 341 g C m?2 yr?1 as CO2 and 11.4 g C m?2 yr?1 as CH4. Conversely, the restored wetlands were net sinks of atmospheric CO2, sequestering up to 397 g C m?2 yr?1. However, they were large sources of CH4, with emissions ranging from 39 to 53 g C m?2 yr?1. In terms of the full GHG budget, the restored wetlands could be either GHG sources or sinks. Although the rice paddy was a small atmospheric CO2 sink, when considering harvest and CH4 emissions, it acted as both a C and GHG source. Annual photosynthesis was similar between sites, but flooding at the restored sites inhibited ecosystem respiration, making them net CO2 sinks. This study suggests that converting drained agricultural peat soils to flooded land‐use types can help reduce or reverse soil subsidence and reduce GHG emissions.  相似文献   

9.
Uncertainty in soil carbon (C) fluxes across different land‐use transitions is an issue that needs to be addressed for the further deployment of perennial bioenergy crops. A large‐scale short‐rotation coppice (SRC) site with poplar (Populus) and willow (Salix) was established to examine the land‐use transitions of arable and pasture to bioenergy. Soil C pools, output fluxes of soil CO2, CH4, dissolved organic carbon (DOC) and volatile organic compounds, as well as input fluxes from litter fall and from roots, were measured over a 4‐year period, along with environmental parameters. Three approaches were used to estimate changes in the soil C. The largest C pool in the soil was the soil organic carbon (SOC) pool and increased after four years of SRC from 10.9 to 13.9 kg C m?2. The belowground woody biomass (coarse roots) represented the second largest C pool, followed by the fine roots (Fr). The annual leaf fall represented the largest C input to the soil, followed by weeds and Fr. After the first harvest, we observed a very large C input into the soil from high Fr mortality. The weed inputs decreased as trees grew older and bigger. Soil respiration averaged 568.9 g C m?2 yr?1. Leaching of DOC increased over the three years from 7.9 to 14.5 g C m?2. The pool‐based approach indicated an increase of 3360 g C m?2 in the SOC pool over the 4‐year period, which was high when compared with the ?27 g C m?2 estimated by the flux‐based approach and the ?956 g C m?2 of the combined eddy‐covariance + biometric approach. High uncertainties were associated to the pool‐based approach. Our results suggest using the C flux approach for the assessment of the short‐/medium‐term SOC balance at our site, while SOC pool changes can only be used for long‐term C balance assessments.  相似文献   

10.
Natural soil pipes, which have been widely reported in peatlands, have been shown to contribute significantly to total stream flow. Here, using measurements from eight pipe outlets, we consider the role of natural pipes in the transport of fluvial carbon within a 17.4‐ha blanket‐peat‐covered catchment. Concentrations of dissolved and particulate organic carbon (DOC and POC) from pipe waters varied greatly between pipes and over time, ranging between 5.3 and 180.6 mg L?1 for DOC and 0.08 and 220 mg L?1 for POC. Pipes were important pathways for peatland fluvial carbon export, with fluxes varying between 0.6 and 67.8 kg yr?1 (DOC) and 0.1 and 14.4 kg yr?1 (POC) for individual pipes. Pipe DOC flux was equivalent to 20% of the annual DOC flux from the stream outlet while the POC flux from pipes was equivalent to 56% of the annual stream POC flux. The proportion of different forms of aquatic carbon to total aquatic carbon flux varied between pipes, with DOC ranging between 80.0% and 91.2%, POC from 3.6% to 17.1%, dissolved CO2‐C from 2.4% to 11.1% and dissolved CH4‐C from 0.004% to 1.3%. The total flux of dissolved CO2‐C and CH4‐C scaled up to all pipe outlets in the study catchment was estimated to be 89.4 and 3.6 kg yr?1 respectively. Overall, pipe outlets produced discharge equivalent to 14% of the discharge in the stream but delivered an amount of aquatic carbon equivalent to 22% of the aquatic carbon flux at the catchment outlet. Pipe densities in blanket peatlands are known to increase when peat is affected by drainage or drying. Hence, environmental change in many peatlands may lead to an increase in aquatic carbon fluxes from natural pipes, thereby influencing the peatland carbon balance and downstream ecological processes.  相似文献   

11.
A major limiting factor in the development of algae as a feedstock for the bioenergy industry is the consistent production and supply of biomass. This study is the first to access the suitability of the freshwater macroalgal genus Oedogonium to supply biomass for bioenergy applications. Specifically, we quantified the effect of CO2 supplementation on the rate of biomass production, carbon capture, and feedstock quality of Oedogonium when cultured in large‐scale outdoor tanks. Oedogonium cultures maintained at a pH of 7.5 through the addition of CO2 resulted in biomass productivities of 8.33 (±0.51) g DW m?2 day?1, which was 2.5 times higher than controls which had an average productivity of 3.37 (±0.75) g DW m?2 day?1. Under these productivities, Oedogonium had a carbon content of 41–45% and a higher heating value of 18.5 MJ kg?1, making it an ideal biomass energy feedstock. The rate of carbon fixation was 1380 g C m?2 yr?1 and 1073.1 g C m?2 yr?1 for cultures maintained at a pH of 7.5 and 8.5, and 481 g C m?2 yr?1 for cultures not supplemented with CO2. This study highlights the potential of integrating the large‐scale culture of freshwater macroalgae with existing carbon waste streams, for example coal‐fired power stations, both as a tool for carbon sequestration and as an enhanced and sustainable source of bioenergy.  相似文献   

12.
The eutrophication of lowland lakes in Europe by excess nitrogen (N) and phosphorus (P) is severe because of the long history of land‐cover change and agricultural intensification. The ecological and socio‐economic effects of eutrophication are well understood but its effect on organic carbon (OC) sequestration by lakes and its change overtime has not been determined. Here, we compile data from ~90 culturally impacted European lakes [~60% are eutrophic, Total P (TP) >30 μg P l?1] and determine the extent to which OC burial rates have increased over the past 100–150 years. The average focussing corrected, OC accumulation rate (C ARFC) for the period 1950–1990 was ~60 g C m?2 yr?1, and for lakes with >100 μg TP l?1 the average was ~100 g C m?2 yr?1. The ratio of post‐1950 to 1900–1950 C AR is low (~1.5) indicating that C accumulation rates have been high throughout the 20th century. Compared to background estimates of OC burial (~5–10 g C m?2 yr?1), contemporary rates have increased by at least four to fivefold. The statistical relationship between C ARFC and TP derived from this study (r2 = 0.5) can be used to estimate OC burial at sites lacking estimates of sediment C‐burial. The implications of eutrophication, diagenesis, lake morphometry and sediment focussing as controls of OC burial rates are considered. A conservative interpretation of the results of the this study suggests that lowland European meso‐ to eutrophic lakes with >30 μg TP l?1 had OC burial rates in excess of 50 g C m?2 yr?1 over the past century, indicating that previous estimates of regional lake OC burial have seriously underestimated their contribution to European carbon sequestration. Enhanced OC burial by lakes is one positive side‐effect of the otherwise negative impact of the anthropogenic disruption of nutrient cycles.  相似文献   

13.
Floodplain lakes may play an important role in the cycling of organic matter at the landscape scale. For those lakes on the middle and lower reaches of the Yangtze (MLY) floodplain which are subjected to intense anthropogenic disturbance, carbon burial rates should, theoretically, be substantial due to the high nutrient input, increased primary production and high sediment accumulation rates. There are more than 600 lakes >1 km2 on the Yangtze floodplain including 18 lakes >100 km2 and most are shallow and eutrophic. 210Pb‐dated cores were combined with total organic carbon (TOC) analyses to determine annual C accumulation rates (C AR; g C m?2 yr?1) and the total C stock (since ~1850). The sediment TOC content is relatively low with an average <2% in most lakes. C AR ranged from ~5 to 373 g C m?2 yr?1, resulting in C standing stocks of 0.60–15.3 kg C m?2 (mean: ~5 kg C m?2) since ~1850. A multicore study of Chaohu lake (770 km2) indicated that spatial variability of C burial was not a significant problem for regional upscaling. The possible effect of changes in lake size and catchment land use on C burial was examined at Taibai lake and indicated that lake shrinkage and declining arable agriculture had limited effects on C AR. The organic C standing stock in individual lakes is, however, significantly dependent on lake size, allowing a simple linear scaling for all the MLY lakes. Total regional C sequestration was ~80 Tg C since ~1850, equivalent to ~11% of C sequestration by soils, but in ~3% of the land area. Shallow lakes from MLY are a substantial regional C sink, although strong mineralization occurs due to their shallow nature and their role as C sinks is threatened due to lake drainage.  相似文献   

14.
Bioenergy crop cultivation on former peat extraction areas is a potential after‐use option that provides a source of renewable energy while mitigating climate change through enhanced carbon (C) sequestration. This study investigated the full C and greenhouse gas (GHG) balances of fertilized (RCG‐F) and nonfertilized (RCG‐C) reed canary grass (RCG; Phalaris arundinacea) cultivation compared to bare peat (BP) soil within an abandoned peat extraction area in western Estonia during a dry year. Vegetation sampling, static chamber and lysimeter measurements were carried out to estimate above‐ and belowground biomass production and allocation, fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) in cultivated strips and drainage ditches as well as the dissolved organic carbon (DOC) export, respectively. Heterotrophic respiration was determined from vegetation‐free trenched plots. Fertilization increased the above‐ to belowground biomass production ratio and the autotrophic to heterotrophic respiration ratio. The full C balance (incl. CO2, CH4 and DOC fluxes from strips and ditches) was 96, 215 and 180 g C m?2 yr?1 in RCG‐F, RCG‐C and BP, respectively, suggesting that all treatments acted as C sources during the dry year. The C balance was driven by variations in the net CO2 exchange, whereas the combined contribution of CH4 and DOC fluxes was <5%. The GHG balances were 3.6, 7.9 and 6.6 t CO2 eq ha?1 yr?1 in RCG‐F, RCG‐C and BP, respectively. The CO2 exchange was also the dominant component of the GHG balance, while the contributions of CH4 and N2O were <1% and 1–6%, respectively. Overall, this study suggests that maximizing plant growth and the associated CO2 uptake through adequate water and nutrient supply is a key prerequisite for ensuring sustainable high yields and climate benefits in RCG cultivations established on organic soils following drainage and peat extraction.  相似文献   

15.
The purpose of this study was to evaluate 10 process‐based terrestrial biosphere models that were used for the IPCC fifth Assessment Report. The simulated gross primary productivity (GPP) is compared with flux‐tower‐based estimates by Jung et al. [Journal of Geophysical Research 116 (2011) G00J07] (JU11). The net primary productivity (NPP) apparent sensitivity to climate variability and atmospheric CO2 trends is diagnosed from each model output, using statistical functions. The temperature sensitivity is compared against ecosystem field warming experiments results. The CO2 sensitivity of NPP is compared to the results from four Free‐Air CO2 Enrichment (FACE) experiments. The simulated global net biome productivity (NBP) is compared with the residual land sink (RLS) of the global carbon budget from Friedlingstein et al. [Nature Geoscience 3 (2010) 811] (FR10). We found that models produce a higher GPP (133 ± 15 Pg C yr?1) than JU11 (118 ± 6 Pg C yr?1). In response to rising atmospheric CO2 concentration, modeled NPP increases on average by 16% (5–20%) per 100 ppm, a slightly larger apparent sensitivity of NPP to CO2 than that measured at the FACE experiment locations (13% per 100 ppm). Global NBP differs markedly among individual models, although the mean value of 2.0 ± 0.8 Pg C yr?1 is remarkably close to the mean value of RLS (2.1 ± 1.2 Pg C yr?1). The interannual variability in modeled NBP is significantly correlated with that of RLS for the period 1980–2009. Both model‐to‐model and interannual variation in model GPP is larger than that in model NBP due to the strong coupling causing a positive correlation between ecosystem respiration and GPP in the model. The average linear regression slope of global NBP vs. temperature across the 10 models is ?3.0 ± 1.5 Pg C yr?1 °C?1, within the uncertainty of what derived from RLS (?3.9 ± 1.1 Pg C yr?1 °C?1). However, 9 of 10 models overestimate the regression slope of NBP vs. precipitation, compared with the slope of the observed RLS vs. precipitation. With most models lacking processes that control GPP and NBP in addition to CO2 and climate, the agreement between modeled and observation‐based GPP and NBP can be fortuitous. Carbon–nitrogen interactions (only separable in one model) significantly influence the simulated response of carbon cycle to temperature and atmospheric CO2 concentration, suggesting that nutrients limitations should be included in the next generation of terrestrial biosphere models.  相似文献   

16.
Permafrost thaw in peatlands has the potential to alter catchment export of dissolved organic carbon (DOC) and thus influence downstream aquatic C cycling. Subarctic peatlands are often mosaics of different peatland types, where permafrost conditions regulate the hydrological setting of each type. We show that hydrological setting is key to observed differences in magnitude, timing, and chemical composition of DOC export between permafrost and nonpermafrost peatland types, and that these differences influence the export of DOC of larger catchments even when peatlands are minor catchment components. In many aspects, DOC export from a studied peatland permafrost plateau was similar to that of a forested upland catchment. Similarities included low annual export (2–3 g C m?2) dominated by the snow melt period (~70%), and how substantial DOC export following storms required wet antecedent conditions. Conversely, nonpermafrost fens had higher DOC export (7 g C m?2), resulting from sustained hydrological connectivity during summer. Chemical composition of catchment DOC export arose from the mixing of highly aromatic DOC from organic soils from permafrost plateau soil water and upland forest surface horizons with nonaromatic DOC from mineral soil groundwater, but was further modulated by fens. Increasing aromaticity from fen inflow to outlet was substantial and depended on both water residence time and water temperature. The role of fens as catchment biogeochemical hotspots was further emphasized by their capacity for sulfate retention. As a result of fen characteristics, a 4% fen cover in a mixed catchment was responsible for 34% higher DOC export, 50% higher DOC concentrations and ~10% higher DOC aromaticity at the catchment outlet during summer compared to a nonpeatland upland catchment. Expansion of fens due to thaw thus has potential to influence landscape C cycling by increasing fen capacity to act as biogeochemical hotspots, amplifying aquatic C cycling, and increasing catchment DOC export.  相似文献   

17.
Livestock manure is applied to rangelands as an organic fertilizer to stimulate forage production, but the long‐term impacts of this practice on soil carbon (C) and greenhouse gas (GHG) dynamics are poorly known. We collected soil samples from manured and nonmanured fields on commercial dairies and found that manure amendments increased soil C stocks by 19.0 ± 7.3 Mg C ha?1 and N stocks by 1.94 ± 0.63 Mg N ha?1 compared to nonmanured fields (0–20 cm depth). Long‐term historical (1700–present) and future (present–2100) impacts of management on soil C and N dynamics, net primary productivity (NPP), and GHG emissions were modeled with DayCent. Modeled total soil C and N stocks increased with the onset of dairying. Nitrous oxide (N2O) emissions also increased by ~2 kg N2O‐N ha?1 yr?1. These emissions were proportional to total N additions and offset 75–100% of soil C sequestration. All fields were small net methane (CH4) sinks, averaging ?4.7 ± 1.2 kg CH4‐C ha?1 yr?1. Overall, manured fields were net GHG sinks between 1954 and 2011 (?0.74 ± 0.73 Mg CO2 e ha?1 yr?1, CO2e are carbon dioxide equivalents), whereas nonmanured fields varied around zero. Future soil C pools stabilized 40–60 years faster in manured fields than nonmanured fields, at which point manured fields were significantly larger sources than nonmanured fields (1.45 ± 0.52 Mg CO2e ha?1 yr?1 and 0.51 ± 0.60 Mg CO2e ha?1 yr?1, respectively). Modeling also revealed a large background loss of soil C from the passive soil pool associated with the shift from perennial to annual grasses, equivalent to 29.4 ± 1.47 Tg CO2e in California between 1820 and 2011. Manure applications increased NPP and soil C storage, but plant community changes and GHG emissions decreased, and eventually eliminated, the net climate benefit of this practice.  相似文献   

18.
Northern peatlands contain up to 25% of the world's soil carbon (C) and have an estimated annual exchange of CO2‐C with the atmosphere of 0.1–0.5 Pg yr−1 and of CH4‐C of 10–25 Tg yr−1. Despite this overall importance to the global C cycle, there have been few, if any, complete multiyear annual C balances for these ecosystems. We report a 6‐year balance computed from continuous net ecosystem CO2 exchange (NEE), regular instantaneous measurements of methane (CH4) emissions, and export of dissolved organic C (DOC) from a northern ombrotrophic bog. From these observations, we have constructed complete seasonal and annual C balances, examined their seasonal and interannual variability, and compared the mean 6‐year contemporary C exchange with the apparent C accumulation for the last 3000 years obtained from C density and age‐depth profiles from two peat cores. The 6‐year mean NEE‐C and CH4‐C exchange, and net DOC loss are −40.2±40.5 (±1 SD), 3.7±0.5, and 14.9±3.1 g m−2 yr−1, giving a 6‐year mean balance of −21.5±39.0 g m−2 yr−1 (where positive exchange is a loss of C from the ecosystem). NEE had the largest magnitude and variability of the components of the C balance, but DOC and CH4 had similar proportional variabilities and their inclusion is essential to resolve the C balance. There are large interseasonal and interannual ranges to the exchanges due to variations in climatic conditions. We estimate from the largest and smallest seasonal exchanges, quasi‐maximum limits of the annual C balance between 50 and −105 g m−2 yr−1. The net C accumulation rate obtained from the two peatland cores for the interval 400–3000 bp (samples from the anoxic layer only) were 21.9±2.8 and 14.0±37.6 g m−2 yr−1, which are not significantly different from the 6‐year mean contemporary exchange.  相似文献   

19.
Natural wetlands are critically important to global change because of their role in modulating atmospheric concentrations of CO2, CH4, and N2O. One 4‐year continuous observation was conducted to examine the exchanges of CH4 and N2O between three wetland ecosystems and the atmosphere as well as the ecosystem respiration in the Sanjiang Plain in Northeastern China. From 2002 to 2005, the mean annual budgets of CH4 and N2O, and ecosystem respiration were 39.40 ± 6.99 g C m?2 yr?1, 0.124 ± 0.05 g N m?2 yr?1, and 513.55 ± 8.58 g C m?2 yr?1 for permanently inundated wetland; 4.36 ± 1.79 g C m?2 yr?1, 0.11 ± 0.12 g N m?2 yr?1, and 880.50 ± 71.72 g C m?2 yr?1 for seasonally inundated wetland; and 0.21 ± 0.1 g C m?2 yr?1, 0.28 ± 0.11 g N m?2 yr?1, and 1212.83 ± 191.98 g C m?2 yr?1 for shrub swamp. The substantial interannual variation of gas fluxes was due to the significant climatic variability which underscores the importance of long‐term continuous observations. The apparent seasonal pattern of gas emissions associated with a significant relationship of gas fluxes to air temperature implied the potential effect of global warming on greenhouse gas emissions from natural wetlands. The budgets of CH4 and N2O fluxes and ecosystem respiration were highly variable among three wetland types, which suggest the uncertainties in previous studies in which all kinds of natural wetlands were treated as one or two functional types. New classification of global natural wetlands in more detailed level is highly expected.  相似文献   

20.
Wetlands can influence global climate via greenhouse gas (GHG) exchange of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). Few studies have quantified the full GHG budget of wetlands due to the high spatial and temporal variability of fluxes. We report annual open‐water diffusion and ebullition fluxes of CO2, CH4, and N2O from a restored emergent marsh ecosystem. We combined these data with concurrent eddy‐covariance measurements of whole‐ecosystem CO2 and CH4 exchange to estimate GHG fluxes and associated radiative forcing effects for the whole wetland, and separately for open‐water and vegetated cover types. Annual open‐water CO2, CH4, and N2O emissions were 915 ± 95 g C‐CO2 m?2 yr?1, 2.9 ± 0.5 g C‐CH4 m?2 yr?1, and 62 ± 17 mg N‐N2O m?2 yr?1, respectively. Diffusion dominated open‐water GHG transport, accounting for >99% of CO2 and N2O emissions, and ~71% of CH4 emissions. Seasonality was minor for CO2 emissions, whereas CH4 and N2O fluxes displayed strong and asynchronous seasonal dynamics. Notably, the overall radiative forcing of open‐water fluxes (3.5 ± 0.3 kg CO2‐eq m?2 yr?1) exceeded that of vegetated zones (1.4 ± 0.4 kg CO2‐eq m?2 yr?1) due to high ecosystem respiration. After scaling results to the entire wetland using object‐based cover classification of remote sensing imagery, net uptake of CO2 (?1.4 ± 0.6 kt CO2‐eq yr?1) did not offset CH4 emission (3.7 ± 0.03 kt CO2‐eq yr?1), producing an overall positive radiative forcing effect of 2.4 ± 0.3 kt CO2‐eq yr?1. These results demonstrate clear effects of seasonality, spatial structure, and transport pathway on the magnitude and composition of wetland GHG emissions, and the efficacy of multiscale flux measurement to overcome challenges of wetland heterogeneity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号