首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Aphelocoma jays have become an important touchstone in behavioural ecology and biogeography – the corpus of studies of this genus makes it an important point of reference. Aphelocoma evolutionary history, nevertheless, has been the subject of two papers reaching opposite conclusions, even though they were based on the same allozyme data set. Herein, we present a second molecular data set – 500 bases of the ND2 gene – and analyse it cladistically to arrive at a new hypothesis of phylogenetic relationships. Recent hypotheses by other investigators of a hybrid origin of Aphelocoma populations are strongly contradicted. The ecological context within which these evolutionary processes are taking place is characterized using new tools for modelling ecological niches of species along a spectrum from humid tropical to dry temperate habitats. Evolutionary patterns of ecological niches are shown to consist of drastic departures from rate-uniformity and ecological niche conservatism.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 80 , 369–383.  相似文献   

2.
Climatic niche conservatism, the tendency of species‐climate associations to remain unchanged across space and time, is pivotal for forecasting the spread of invasive species and biodiversity changes. Indeed, it represents one of the key assumptions underlying species distribution models (SDMs), the main tool currently available for predicting range shifts of species. However, to date, no comprehensive assessment of niche conservatism is available for the marine realm. We use the invasion by Indo‐Pacific tropical fishes into the Mediterranean Sea, the world's most invaded marine basin, to examine the conservatism of the climatic niche. We show that tropical invaders may spread far beyond their native niches and that SDMs do not predict their new distributions better than null models. Our results suggest that SDMs may underestimate the potential spread of invasive species and call for prudence in employing these models in order to forecast species invasion and their response to environmental change.  相似文献   

3.
洲际入侵植物生态位稳定性研究进展   总被引:2,自引:0,他引:2  
朱丽  马克平 《生物多样性》2010,18(6):547-S184
人类活动引起的大规模洲际物种交换与生物入侵, 改变了当地生态系统结构与功能, 使生物多样性受到日益严重的威胁。本文通过综合分析主要国家和地区入侵植物的地理起源, 发现洲际入侵主要包括东亚—北美、东亚—南美、欧洲—南非、欧洲—北美、欧洲—东亚、北美—大洋洲等, 这些洲际入侵造成的后果往往比陆内入侵更为严重。利用物种分布模型(SDMs)预测入侵物种潜在分布范围是有效管理和提早预防生物入侵的重要依据, 但这些模型的一个关键假定是: 入侵物种的生态位在空间和时间上是保守的、稳定的。然而, 对于远离原产地种群并能快速适应新生境的洲际入侵植物来说, 生态位可能发生显著的变化。入侵种能否在入侵地保持原有的生态位, 取决于制约其生态分布的限制因素和生态过程在不同地区间是否发生变化。本文中作者总结了洲际入侵与陆内入侵的生态与进化过程的异同点, 认为这些限制物种原产地分布的因素如扩散限制、种间互作、适应性进化、生态可塑性和种群遗传特性等均可能导致入侵物种生态位的改变。建议下一步的研究应该重视: (1)对生态位属性进行多尺度的研究, 包括时间、空间、环境或系统发育等几个方面; (2)对比生态位稳定与发生偏移的物种特性, 确定什么样的入侵物种更容易改变原有的生态位; (3)进行生态位时间动态格局研究, 探讨生态位变化的倾向、历史速率和偏移程度, 以便判定生态位变化趋势。这些研究结果将会进一步提高物种分布模型的预测能力, 有助于更为准确地揭示气候变化和物种入侵对生物多样性的影响。  相似文献   

4.
Ecological niche models (ENMs) are commonly used to calculate habitat suitability from species’ occurrence and macroecological data. In invasive species biology, ENMs can be applied to anticipate whether invasive species are likely to establish in an area, to identify critical routes and arrival points, to build risk maps and to predict the extent of potential spread following an introduction. Most studies using ENMs focus on terrestrial organisms and applications in the marine realm are still relatively rare. Here, we review some common methods to build ENMs and their application in seaweed invasion biology. We summarize methods and concepts involved in the development of niche models, show examples of how they have been applied in studies on algae and discuss the application of ENMs in invasive algae research and to predict effects of climate change on seaweed distributions.  相似文献   

5.

Aquanirmus australis n. sp., from the New Zealand dabchick (Podiceps rufopectus Gray), is described and illustrated. Although showing affinities with both the emersoni and bahli species groups, it is distinguished from the former by the female head length, which is less than 25 % of the total body length, and from the latter by the male terminal tergite, which does not extend beyond the sternal margin.  相似文献   

6.
Abstract

Correlative techniques for estimating environmental requirements of species – variably termed ecological niche modeling or species distribution modeling – are becoming very popular tools for ecologists and biogeographers in understanding diverse aspects of biodiversity. These tools, however, are frequently applied in ways that do not fit well into knowledge frameworks in population ecology and biogeography, or into the realities of sampling biodiversity over real-world landscapes. We offer 10 “fixes” – adjustments to typical methodologies that will take into account population ecological and biogeographic frameworks to produce better models.  相似文献   

7.
Aim Niche‐based distribution models are often used to predict the spread of invasive species. These models assume niche conservation during invasion, but invasive species can have different requirements from populations in their native range for many reasons, including niche evolution. I used distribution modelling to investigate niche conservatism for the Asian tiger mosquito (Aedes albopictus Skuse) during its invasion of three continents. I also used this approach to predict areas at risk of invasion from propagules originating from invasive populations. Location Models were created for Southeast Asia, North and South America, and Europe. Methods I used maximum entropy (Maxent ) to create distribution models using occurrence data and 18 environmental datasets. One native model was created for Southeast Asia; this model was projected onto North America, South America and Europe. Three models were created independently for the non‐native ranges and projected onto the native range. Niche overlap between native and non‐native predictions was evaluated by comparing probability surfaces between models using real data and random models generated using a permutation approach. Results The native model failed to predict an entire region of occurrences in South America, approximately 20% of occurrences in North America and nearly all Italian occurrences of A. albopictus. Non‐native models poorly predict the native range, but predict additional areas at risk for invasion globally. Niche overlap metrics indicate that non‐native distributions are more similar to the native niche than a random prediction, but they are not equivalent. Multivariate analyses support modelled differences in niche characteristics among continents, and reveal important variables explaining these differences. Main conclusions The niche of A. albopictus has shifted on invaded continents relative to its native range (Southeast Asia). Statistical comparisons reveal that the niche for introduced distributions is not equivalent to the native niche. Furthermore, reciprocal models highlight the importance of controlling bi‐directional dispersal between native and non‐native distributions.  相似文献   

8.
Calanus finmarchicus is a key‐structural species of the North Atlantic polar biome. The species plays an important trophic role in subpolar and polar ecosystems as a grazer of phytoplankton and as a prey for higher trophic levels such as the larval stages of many fish species. Here, we used a recently developed ecological niche model to assess the ecological niche (sensu Hutchinson) of C. finmarchicus and characterize its spatial distribution. This model explained about 65% of the total variance of the observed spatial distribution inferred from an independent dataset (data of the continuous plankton recorder survey). Comparisons with other types of models (structured population and ecophysiological models) revealed a clear similarity between modeled spatial distributions at the scale of the North Atlantic. Contemporary models coupled with future projections indicated a progressive reduction of the spatial habitat of the species at the southern edge and a more pronounced one in the Georges Bank, the Scotian Shelf and the North Sea and a potential increase in abundance at the northern edge of its spatial distribution, especially in the Barents Sea. These major changes will probably lead to a major alteration of the trophodynamics of North Atlantic ecosystems affecting the trophodynamics and the biological carbon pump.  相似文献   

9.
Studies on niche evolution allow us to establish how species niches have changed over time and to identify how long‐term evolutionary processes have led to present‐day species distributions. Here, we investigate the patterns of climatic niche evolution in Tynanthus (Bignonieae, Bignoniaceae), a genus of narrowly distributed species. We test the hypothesis that niche conservatism has played an important role in the history of this group of Neotropical lianas. We perform univariate and multivariate comparisons between climatic niches of species and associated environmental data with information on phylogenetic relationships. We encountered considerable divergence in niches among species, indicating that niche conservatism in climatic variables does not seem to have played a key role in the history of the genus. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 95–109.  相似文献   

10.
A recent set of discussion papers in the Journal of Biogeography by McInerny and Etienne (henceforth M&E) questions the value of niche concepts in relation to a diverse group of practices collectively labelled species distribution modelling (SDM), and specifically the usefulness of the idea of a fundamental niche. In this Correspondence, I argue that certain types of SDM may indeed dispense with niche concepts, but that such is not the case for an important class of SDM‐based activities, including transferring predictions in space and time. Using a single term (SDM) to denote diverse objectives and practices does not help to clarify issues; I discuss this point. I also review several criticisms raised by M&E about the use of the concept of fundamental niche in the context of modelling species' distributions and their environments.  相似文献   

11.
The relationship between species’ niche breadth (i.e. the range of environmental conditions under which a species can persist) and range size (i.e. the extent of its spatial distribution) has mostly been tested within geographically restricted areas but rarely at the global extent. Here, we not only tested the relationship between range size (derived from species’ distribution data) and niche breadth (derived from species’ distribution and co‐occurrence data) of 1255 plant species at the regional extent of the European Alps, but also at the global extent and across both spatial scales for a subset of 180 species. Using correlation analyses, linear models and variation partitioning, we found that species’ realized niche breadth estimated at the regional level is a weak predictor of species’ global niche breadth and range size. Against our expectations, distribution‐derived niche breadth was a better predictor for species’ range size than the co‐occurrence‐based estimate, which should, theoretically, account for more than the climatically determined niche dimensions. Our findings highlight that studies focusing on the niche breadth vs range size relationship must explicitly consider spatial mismatches that might have confounded and diminished previously reported relationships.  相似文献   

12.
Despite the numerous studies which have been conducted during the past decade on species ranges and their relationship to the environment, our understanding of how environmental conditions shape species distribution is still far from complete. Yet, some process-based species distribution models have been able to simulate plants and insects distribution at a global scale. These models strongly rely on the completion of the annual cycle of the species and therefore on their accomplished phenology. In particular, they have shown that the northern limit of species'' ranges appears to be caused mainly by the inability to undergo full fruit maturation, while the southern limit appears to be caused by the inability to flower or unfold leaves owing to a lack of chilling temperatures that are necessary to break bud dormancy. I discuss here why phenology is a key adaptive trait in shaping species distribution using mostly examples from plant species, which have been the most documented. After discussing how phenology is involved in fitness and why it is an adaptive trait susceptible to evolve quickly in changing climate conditions, I describe how phenology is related to fitness in species distribution process-based models and discuss the fate of species under climate change scenarios using model projections and experimental or field studies from the literature.  相似文献   

13.
14.
To test ecological niche theory, this study investigated the spatial patterns and the environmental niches of native and non-native fishes within the invaded Great Fish River system, South Africa. For the native fishes, there were contrasting environmental niche breadths that varied from being small to being large and overlapped for most species, except minnows that were restricted to headwater tributaries. In addition, there was high niche overlap in habitat association among fishes with similar distribution. It was therefore inferred that habitat filtering-driven spatial organisation was important in explaining native species distribution patterns. In comparison, most non-native fishes were found to have broad environmental niches and these fishes showed high tolerance to environmental conditions, which generally supported the niche opportunity hypothesis. The proliferation of multiple non-native fishes in the mainstem section suggest that they form a functional assemblage that is probably facilitated by the anthropogenic modification of flow regimes through inter-basin water transfer. Based on the distribution patterns observed in the study, it was inferred that there was a likelihood of negative interactions between native and non-native fishes. Such effects are likely to be exacerbated by altered flow regime that was likely to have negative implications for native ichthyofauna.  相似文献   

15.
Published in 2001, The Unified Neutral Theory of Biodiversity and Biogeography (UNTB) emphasizes the importance of stochastic processes in ecological community structure, and has challenged the traditional niche‐based view of ecology. While neutral models have since been applied to a broad range of ecological and macroecological phenomena, the majority of research relating to neutral theory has focused exclusively on the species abundance distribution (SAD). Here, we synthesize the large body of work on neutral theory in the context of the species abundance distribution, with a particular focus on integrating ideas from neutral theory with traditional niche theory. First, we summarize the basic tenets of neutral theory; both in general and in the context of SADs. Second, we explore the issues associated with neutral theory and the SAD, such as complications with fitting and model comparison, the underlying assumptions of neutral models, and the difficultly of linking pattern to process. Third, we highlight the advances in understanding of SADs that have resulted from neutral theory and models. Finally, we focus consideration on recent developments aimed at unifying neutral‐ and niche‐based approaches to ecology, with a particular emphasis on what this means for SAD theory, embracing, for instance, ideas of emergent neutrality and stochastic niche theory. We put forward the argument that the prospect of the unification of niche and neutral perspectives represents one of the most promising future avenues of neutral theory research.  相似文献   

16.
Furcraea foetida (Asparagaceae) is a native plant of Central America and northern South America but there is no information about its country of origin. The species was introduced into Brazil and is now considered invasive, particularly in coastal ecosystems. To date, nothing is known about the environmental factors that constrain its distribution and there is only inconclusive information about its location of origin. We used reciprocal distribution models (RDM) to assess invasion risk of F. foetida across Brazil and to identify source regions in its native range. We also tested the niche conservatism hypothesis using Principal Components Analyses and statistical tests of niche equivalency and similarity between its native and invaded ranges. For RDM analysis, we built two models using maximum entropy, one using records in the native range to predict the invaded distribution (forward‐Ecological Niche Model or forward‐ENM) and one using records in the invaded range to predict the native distribution (reverse‐ENM). Forward‐ENM indicated invasion risk in the Cerrado region and the innermost region of the Atlantic Forest, however, failed to predict the current occurrence in southern Brazil. Reverse‐ENM supported an existing hypothesis that F. foetida originated in the Orinoco river basin, Amazon basin and Caribbean islands. Prediction errors in the RDM and multivariate analysis indicated that the species expanded its realized niche in Brazil. The niche similarity test further suggested that the niche differences are because of differences in habitat availability between the two ranges, not because of evolutionary changes. We hypothesize that physiological pre‐adaptation (especially, the crassulacean acid metabolism), human‐driven propagule pressure and high competitive ability are the main factors determining the current spatial distribution of the species in Brazil. Our study highlights the need to include F. foetida in plant invasion monitoring programs, especially in priority conservation areas where the species has still not been introduced.  相似文献   

17.
To investigate the comparative abilities of six different bioclimatic models in an independent area, utilizing the distribution of eight different species available at a global scale and in Australia. Global scale and Australia. We tested a variety of bioclimatic models for eight different plant species employing five discriminatory correlative species distribution models (SDMs) including Generalized Linear Model (GLM), MaxEnt, Random Forest (RF), Boosted Regression Tree (BRT), Bioclim, together with CLIMEX (CL) as a mechanistic niche model. These models were fitted using a training dataset of available global data, but with the exclusion of Australian locations. The capabilities of these techniques in projecting suitable climate, based on independent records for these species in Australia, were compared. Thus, Australia is not used to calibrate the models and therefore it is as an independent area regarding geographic locations. To assess and compare performance, we utilized the area under the receiver operating characteristic (ROC) curves (AUC), true skill statistic (TSS), and fractional predicted areas for all SDMs. In addition, we assessed satisfactory agreements between the outputs of the six different bioclimatic models, for all eight species in Australia. The modeling method impacted on potential distribution predictions under current climate. However, the utilization of sensitivity and the fractional predicted areas showed that GLM, MaxEnt, Bioclim, and CL had the highest sensitivity for Australian climate conditions. Bioclim calculated the highest fractional predicted area of an independent area, while RF and BRT were poor. For many applications, it is difficult to decide which bioclimatic model to use. This research shows that variable results are obtained using different SDMs in an independent area. This research also shows that the SDMs produce different results for different species; for example, Bioclim may not be good for one species but works better for other species. Also, when projecting a “large” number of species into novel environments or in an independent area, the selection of the “best” model/technique is often less reliable than an ensemble modeling approach. In addition, it is vital to understand the accuracy of SDMs' predictions. Further, while TSS, together with fractional predicted areas, are appropriate tools for the measurement of accuracy between model results, particularly when undertaking projections on an independent area, AUC has been proved not to be. Our study highlights that each one of these models (CL, Bioclim, GLM, MaxEnt, BRT, and RF) provides slightly different results on projections and that it may be safer to use an ensemble of models.  相似文献   

18.
物种分布模型理论研究进展   总被引:35,自引:12,他引:23  
李国庆  刘长成  刘玉国  杨军  张新时  郭柯 《生态学报》2013,33(16):4827-4835
利用物种分布模型估计物种的真实和潜在分布区,已成为区域生态学与生物地理学中非常活跃的研究领域。然而,到目前为止,这项技术的理论基础仍然存在不足之处,一些关键的生态过程未能被有效纳入到物种分布模型的理论框架中,从而为解释物种分布模型预测的结果带来了诸多困惑。鉴于此,总结了物种分布模型的理论基础;系统探讨了物种分布模型与物种分布区的关系;特别指出了物种分布模型研究中存在的理论问题;重点阐述了物种分布模型未来的发展方向。研究认为,物种分布模型与生态位理论、源-库理论、种群动态理论、集合种群理论、进化理论等具有重要的联系;正确理解物种分布模型的预测结果与物种分布区的关系,有赖于对影响物种分布的3个主要因素(环境条件、物种相互作用与物种迁移能力)做出定量的分离;目前物种分布模型主要存在的问题是未能将物种的相互作用和物种的迁移能力有效纳入到模型的构建过程中;未来物种分布模型的发展应该加强模型背后理论框架的研究,并进一步加强整合物种相互作用过程、种群动态过程、迁移过程和物种进化过程等内容。研究还认为,从更高的理论层次模拟功能群和群落结构将是未来物种分布模型的重要发展方向。  相似文献   

19.
20.
甘肃草地4种毒杂草潜在入侵区预测研究   总被引:1,自引:0,他引:1  
王文婷  高思雨  王淑璠 《生态学报》2019,39(14):5301-5307
针对4种著名的草原毒杂草:醉马草,黄花棘豆,狼毒和露蕊乌头,应用生态位模型分别研究其在甘肃的潜在扩散区域。首先,通过最近邻体距离法和相关性分析分别选取样本数据和环境变量,接着应用最大熵方法(Maxent)建立生态位模型,预测了4种毒杂草的潜在分布区。最后通过Matlab和ENMTools计算了地理分布重心、平均海拔、等级分布区比例、生态位宽度、生态位重合度和地理分布重合度。研究结果表明:4种毒杂草中醉马草和狼毒的环境适应能力较强,但醉马草的分布范围更为广泛,从祁连山脉一直延伸到甘南草原,扩散重心基本在祁连山西侧,而狼毒分布范围主要在甘肃南部,地理分布重心大致位于兰州地区。黄花棘豆的分布范围主要集中在祁连山脉,而露蕊乌头更偏向甘南草原地区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号