首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Na^+/Ca^2+交换抑制剂在大鼠海马缺氧损伤中的作用   总被引:2,自引:0,他引:2  
本文以大鼠离体海马脑片和分散培养的海马神经元为标本,分别采用微电极记录技术和激光扫描共聚焦显微镜动态监测单个神经元[Ca2+]i的方法,研究Na+/Ca2+交换抑制剂Benzamil对缺氧后海马脑片损伤以及海马神经元[Ca2+]i变化的影响。结果显示,预先用Benzamil(50μmol)灌流的海马脑片缺氧后PV持续时间较对照组显著延长,提示其可延缓海马不可逆缺氧损伤的发生;共聚焦测[Ca2+]i实验进一步发现,急性缺氧可诱导海马神经元[Ca2+]i迅速升高,而Benzamil(20μmol)能显著抑制缺氧引起的[Ca2+]i升高。上述结果表明,抑制神经元Na+/Ca2+交换活动可提高海马脑片抗缺氧能力,其作用机制可能与抑制缺氧所致神经元[Ca2+]i升高有关,由此推测Na+/Ca2+交换体参于大鼠海马脑区缺氧损伤,它可能是导致缺氧后神经元[Ca2+]i升高的重要途径之一  相似文献   

2.
采用大鼠海马脑片体外缺氧模型,观察了Ca2 和氯胺酮对海马脑片Ca2 /CaMPKⅡ活性的影响,同时观察了缺氧对神经元胞外谷氨酸堆积的影响。结果如下:(1)有钙或无钙培养时,酶活性随缺氧时间的延长均下降,但前者比后者酶活性下降更显著,提示外ca2 在神经元缺氧损伤中起重要作用。(2)海马脑片在体外缺氧30min,谷氨酸在胞外的堆积增加2倍多。(3)单纯过量外源性谷氨酸能引起酶活性显著下降,提示脑缺氧时酶活性的抑制与兴奋毒性有关。(4)氯胺酮对缺氧和单纯外源性谷氨酸所诱导的酶活性抑制均有明显的拮抗作用,说明脑缺氧引起酶活性下降与NMDA受体介导有关。我们的结论是:脑缺氧时该酶活性的抑制是与下列途径有关:谷氨酸→NMDA受体→Ca2 →Ca2 靶酶。  相似文献   

3.
低氧预适应增强大鼠海马神经元的耐缺氧能力   总被引:6,自引:0,他引:6  
Zhao T  Yu S  Ding AS  Wang FZ  Fan M 《生理学报》2001,53(1):72-74
本研究对整体大鼠进行了模拟不同海拔高度(3000、5000m)的低氧预适应,然后观察了急性致死性缺氧对这些大鼠海马脑片诱发群锋电位的影响。结果显示,经低氧预适应的大鼠其海马脑片在给予急性缺氧后,CA1区缺氧损伤电位(hypoxic injury potential,HIP)出现时间以及突触前排放(presynaptic volley,PV)消失时间均明显延迟;其中5000m预适应组的延迟程度比3000m组明显。复氧后,PV的恢复率在3000m和5000m低氧预适应组均明显高于对照组。本研究结果提示,整体动物的低氧预适应可以增强离体海马脑片神经元的耐缺氧能力。  相似文献   

4.
钙离子在海马脑片缺氧损伤中的作用   总被引:1,自引:0,他引:1  
本工作用海马脑片缺氧模型,观察了无钙、高镁人工脑脊液以及钙通道阻断剂尼莫地平对缺氧后海马脑片CA1区锥体细胞诱发群锋电位(PS)的影响。发现用无钙与高镁人工脑脊液灌流脑片,可显著促进脑片缺氧后PS的恢复,而尼莫地平对缺氧脑片PS的恢复则无明显促进作用。结果表明:钙离子参与海马脑片缺氧后神经元及其突触传递的损伤过程,而电压敏感性钙通道L亚型在缺氧损伤中可能不起主要作用。  相似文献   

5.
在建立稳定的红藻氨酸(KA)诱发小鼠惊厥模型的基础上,用放射配体受体结合分析法,研究孕烯醇酮(Pe)及其拮抗剂孕烯醇酮硫酸盐(Pes)对小鼠下丘脑、大脑皮层、海马和小脑四个脑区--氨基丁酸A(GABAA)受体的调制作用。结果显示,Pe能增加某些脑区^3H-GABA与GABAA受体的结合量,下丘脑、海马和小脑差异显著(P<0.05或P<0.001),而大脑皮层差异不显著(P>0.05)。Pe对GABAA受体的调制作用能被印防已毒素(Pic)阻断,对KA的致惊效应具有抑制作用。Pes能显著降低各脑区GABAA受体的结合量(P<0.01或P<0.001),对陈词滥调厥有促进作用。实验结果提示:孕烯醇酮具有明显的镇静和抗厥效应,并且可能是通过GABAA受体介导的。  相似文献   

6.
闫志强  徐英  李华  史有才  田刚  邢国祥  刘绍明 《生物磁学》2011,(22):4229-4231,4239
目的:探讨姜黄素(curcumin)预防高原缺氧大鼠认知功能障碍的电生理机制。方法:将30只成年雄性SD大鼠随机分为健康对照组、模型组(Model组)、姜黄索[按体重60rag/(kg·d)】治疗纽(curcumin组)。造模后,检测脑片水平的海马的LTP变化,并运用膜片钳技术检测海马CA1区神经元的电生理变化。结果(1)给予HFS刺激后各组均可诱发LTP并持续1h以上,与对照组比较模型组组HFS刺激后LTP明显被抑制(P〈0.05),姜黄素可减轻缺氧所致的LTP抑制(P〈0.05);(2)高原缺氧使海马CA1神经元阈电位升高,动作电位(AP)数量减少,兴奋性降低,姜黄素干预可明显减轻高原缺氧对细胞神经元的抑制。结论:姜黄素可显著改善高原缺氧大鼠认知功能障碍,其可能机制是通过维持海马CA1细胞的兴奋性减轻高原缺氧对认知功能的损伤。  相似文献   

7.
采用制霉菌素穿孔膜片箝技术,研究了锌离子(Zn2+)对急性分离的大鼠骶髓后连合核神经元GABAA受体介导电流的作用.结果表明:(1)在箝制电压为-40mV时,GABA可通过GABAA受体介导产生内向电流;(2)此电流可被Zn2+呈非电压依赖性可逆地阻断;(3)在Zn2+存在的情况下,GABA的浓度-效应曲线平行右移.上述结果提示,Zn2+可能通过变构调控机制对GABAA介导的反应产生抑制作用.  相似文献   

8.
目的:探讨下丘脑室旁核(PVN)内的γ-氨基丁酸(GABA)在中枢高渗刺激诱发的应激性心血管反应中的作用及其机制。方法:在清醒自由活动大鼠,用脑部微量透析法和高效液相色谱法观察中枢高渗刺激对PVN区域GABA含量的影响,并同时记录血压和心率的变化;用GABAA受体阻断剂Bicuculline或GABAB受体阻断剂Saelofen直接灌流PVN区并给予中枢高渗刺激,进一步探讨PVN区GABA在中枢高渗刺激诱发的应激性心血管反应中的作用。结果:①PVN局部灌流0.6mol/L盐水时,血压和心率都显著增加(均为P〈0.01),同时,PVN区细胞外液中GABA水平也明显增加到刺激前的561.96%±173.96%(P〈0.05);②PVN局部灌流Bicuculline或Saclofen的同时,给予0.6mol/L盐水的刺激,可使高渗刺激引起的血压增加幅度明显降低(均为P〈0.01),而心率的增加幅度未受明显影响(均为P〈0.05)。结论:中枢高渗刺激可引起PVN内GABA的分泌,而后者可通过GABAA和GABAB受体产生血压的升高反应。  相似文献   

9.
目的:观察坐骨神经慢性压榨损伤(CCI)致神经病理痛后,大鼠背根节神经元GABAA受体(γ-氨基丁酸A受体)激活电流的变化。方法:运用全细胞膜片钳技术记录CCI模型手术侧、手术对侧及假手术组大鼠背根神经节细胞GABAx受体激活电流,比较坐骨神经慢性压榨损伤后GABAA受体激活电流的变化。结果:①CCI模型组大鼠手术侧DRG神经元在不同浓度(0.1-1000μmol/L)GABAA受体激活电流幅值均显著小于假手术组。②CCI模型组大鼠手术对侧DRG神经元在不同浓度(0.01-1000μmol/L)GABAA受体激活电流幅值均显著大于手术同侧及假手术组。结论:在坐骨神经慢性压榨损伤的过程中,不仅损伤侧的DRG神经元GABAA受体激活电流显著减小,这种损伤同时还引起了手术对侧的DRG神经元GABA激活电流代偿性的增强,GABAA受体功能的改变导致的突触前抑制作用的减弱可能是神经病理痛产生的根本原因之一。  相似文献   

10.
钙离子在海马脑片缺氧损伤的作用   总被引:3,自引:0,他引:3  
本工作用海马脑片缺氧模型,观察了无钙、高镁人工脑脊液以及钙通道阻断剂尼莫地平对缺氧后海马脑片CA1区锥体细胞诱发群锋电位(PS0的影响。发现用无钙与高镁人工脑脊液流脑片,可显著促进脑片缺氧后PS的恢复,而尼莫地对缺氧脑片PS的则无明显促进作用。结果表明:钙离子参与海马脑片缺氧后神经元及其突触传递的损伤过程,而电压敏感性通道L亚型在缺氧损伤中可能不起主要作用。  相似文献   

11.
The primary goal of this study was to establish whether inhibition of GABA synthesis was sufficient to induce network hyperexcitability in a rat hippocampal slice model comparable to that seen with GABA receptor blockade. We used field and intracellular recordings from the CA1 region of rat hippocampal slices to determine the physiological effects of blocking GABA synthesis with the convulsant, 3-mercaptoproprionic acid (MPA). We measured the rate of synthesis of GABA and glutamate in slices using 2-13C-glucose as a label source and liquid chromatography-tandem mass spectrometry. There was little effect of 3.5mM MPA on evoked events under control recording conditions. Tissue excitability was enhanced following a series of stimulus trains; this effect was enhanced when GABA transport was blocked. Evoked inhibitory potentials (IPSPs) failed following repetitive stimulation and MPA. Spontaneous epileptiform activity was seen reliably with elevated extracellular potassium (5mM). GABA synthesis decreased by 49% with MPA alone and 45% with the combination of MPA and excess potassium; GABA content was not substantially altered. Our data indicate: (1) GABAergic inhibition cannot be significantly compromised by MPA without network activation; (2) GABAergic synaptic inhibition is mediated by newly synthesized GABA; (3) there is a depletable pool of GABA that can sustain GABAergic inhibition when synthesis is impaired under basal, but not activated conditions; (4) overt hyperexcitability is only seen when newly synthesized GABA levels are low.  相似文献   

12.
An antagonistic effect of calcium on the action of morphine was studied in rat hippocampal slices. The effect of repeated administration of morphine on gamma-aminobutyric acid (GABA) release and binding of [3H]nitrendipine, a calcium antagonist, was also examined. (1) In rat brain hippocampal slices, morphine enlarged the amplitude of the field potentials evoked in pyramidal neurons, disinhibiting them through basket cells. When the calcium concentration was elevated, potentiation of the field potentials by morphine was reduced. Decrease of the calcium concentration, on the other hand, enhanced the potentiating effect of morphine. Following repeated administration of morphine, its enhancing effect on the field potentials in slices was not observed. (2) In hippocampal membrane fractions obtained from rats repeatedly treated with morphine, enhancement of [3H]nitrendipine binding was observed. (3) In hippocampal slice preparations from rats receiving morphine repeatedly, K+ (45 mM)-stimulated [3H]GABA efflux was enhanced. The above results indicate that morphine antagonizes calcium, thereby reducing the release of transmitters. Furthermore, increase in calcium channels following repeated treatment of rats with morphine may explain the mechanism underlying development of tolerance.  相似文献   

13.
The comparative effects of antiinflammatory cytokine interleukin-10 on the epileptiform activity development in CA1 hippocampal neurons were studied in different functional models of epileptogenesis that are not accompanied the visible morphological disturbances in the brain cells: --in vitro hypoxic model in the rat hippocampal slices; 2--in vitro disinhibitory model with using GABAA antagonist, bicuculline, in the rat hippocampal slices; 3--partial hippocampal kindling model in freely moving rats. Interleukin-10 (1 ng/ml) depressed the posthypoxic hyperexcitability in CA1 pyramidal neurons of the rat hippocampal slices through a decrease of the effectiveness of hypoxia to depresses the functional neuronal activity in the rat hippocampal slices during hypoxic episode. On the other hand, interleukin-10 (1 ng/ml) did not affect an initiation of epileptiform activity in CA1 pyramidal neurons of the rat hippocampal slices induced by bicuculline. Interleukin-10 (1 ng/5 microl) applied to the dorsal hippocampus in awake rats depressed an initiation of focal seizures ("ictal"-like components of afterdischarges) induced by hippocampal kindling during the first six hours after an application. However, this cytokine did not affect neither the duration of "interictal"-like component of afterdischarges nor motor seizure development. Thus, our findings showed that antiinflammatory cytokine interleukin-10, in addition to its antihypoxic action, exert the neuroprotective effect on the initiation of "ictal"-like, but not "interictal"-like, epileptiform discharges.  相似文献   

14.
Zhang XB  Jiang P  Gong N  Hu XL  Fei D  Xiong ZQ  Xu L  Xu TL 《PloS one》2008,3(10):e3386
Menthol is a widely-used cooling and flavoring agent derived from mint leaves. In the peripheral nervous system, menthol regulates sensory transduction by activating TRPM8 channels residing specifically in primary sensory neurons. Although behavioral studies have implicated menthol actions in the brain, no direct central target of menthol has been identified. Here we show that menthol reduces the excitation of rat hippocampal neurons in culture and suppresses the epileptic activity induced by pentylenetetrazole injection and electrical kindling in vivo. We found menthol not only enhanced the currents induced by low concentrations of GABA but also directly activated GABA(A) receptor (GABA(A)R) in hippocampal neurons in culture. Furthermore, in the CA1 region of rat hippocampal slices, menthol enhanced tonic GABAergic inhibition although phasic GABAergic inhibition was unaffected. Finally, the structure-effect relationship of menthol indicated that hydroxyl plays a critical role in menthol enhancement of tonic GABA(A)R. Our results thus reveal a novel cellular mechanism that may underlie the ambivalent perception and psychophysical effects of menthol and underscore the importance of tonic inhibition by GABA(A)Rs in regulating neuronal activity.  相似文献   

15.
Gamma-aminobutyric acid (GABA) is as an excitatory neurotransmitter during brain development. Activation of GABA(A) receptors in neonatal rat hippocampus results in chloride efflux and membrane depolarization sufficient to open voltage sensitive calcium channels. As development progresses, there is a decline in the magnitude of calcium influx subsequent to GABA(A) receptor activation and the number of cells that respond to GABA with excitation. By the second postnatal week in the rat, GABA action in the hippocampus is predominantly inhibitory. The functional consequences and endogenous regulation of developmental GABA-mediated excitation remains under-explored. Hippocampal neurons in the newborn male and female rat respond to GABA(A) receptor activation with increased intracellular calcium and are susceptible to GABA-mediated damage -- both being indicative of the excitatory nature of GABA. In the present study we observed that by postnatal day 7, only males are susceptible to GABA(A) agonist-induced damage and respond to GABA(A) agonist administration with elevated levels of intracellular calcium in cultured hippocampal neurons. By postnatal day 14, GABA(A) agonist administration was without effect on intracellular calcium in both males and females. The age-related sex difference in the impact of GABA(A) receptor activation correlates with a sex difference in chloride co-transporter expression. Males have elevated protein levels of pNKCC1 on PN0 and PN7, with no sex difference by PN14. In contrast, females displayed elevated levels of KCC2 on PN7. This converging evidence infers that sex affects the duration of GABA(A) receptor-mediated excitation during normal hippocampal development, and provides a mechanism by which the effect is mediated.  相似文献   

16.
gamma-Aminobutyric acid (GABA)-stimulated release of L-glutamate from various neuronal regions of acute mouse hippocampal slices was detected with a patch sensor that responds to L-glutamate at the sub-micromolar level. The response of the patch sensor to L-glutamate was evaluated in terms of an integrated current. The integrated current increased with the concentration of L-glutamate ranging from 0.50 to 5.0 microM. By using the patch sensor, GABA-induced L-glutamate release from acute mouse hippocampal slices was detected. The effect of antagonists for GABA(A) and GABA(B) receptors on the L-glutamate release was also investigated. The GABA (25 microM) stimulation induced the release of L-glutamate via GABA(A) receptor in the CA1 region, but GABA did not induce L-glutamate release in the CA3 region. However, in the presence of the GABA(B) receptor antagonist (3-aminopropyl)(diethoxymethyl)phosphinic acid (CGP-35348), release of L-glutamate in the CA3 region was evoked by GABA stimulation. The glutamate release was completely suppressed when both GABA(A) and GABA(B) receptor were inhibited. The current results show that the glutamate release in the CA3 region occurs via a GABA(A) pathway when GABA(B) receptors are inhibited.  相似文献   

17.
Chronic in vivo or in vitro application of GABA(A) receptor agonists alters GABA(A) receptor peptide expression and function. Furthermore, chronic in vitro application of N-methyl-D-aspartate (NMDA) agonists and antagonists alters GABA(A) receptor function and mRNA expression. However, it is unknown if chronic in vivo blockade of NMDA receptors alters GABA(A) receptor function and peptide expression in brain. Male Sprague-Dawley rats were chronically administered the noncompetitive NMDA receptor antagonist MK-801 (0.40 mg/kg, twice daily) for 14 days. Chronic blockade of NMDA receptors significantly increased hippocampal GABA(A) receptor alpha4 and gamma2 subunit expression while significantly decreasing hippocampal GABA(A) receptor alpha2 and beta2/3 subunit expression. Hippocampal GABA(A) receptor alpha1 subunit peptide expression was not altered. In contrast, no significant alterations in GABA(A) receptor subunit expression were found in cerebral cortex. Chronic MK-801 administration also significantly decreased GABA(A) receptor-mediated hippocampal Cl- uptake, whereas no change was found in GABA(A) receptor-mediated cerebral cortical Cl- uptake. Finally, chronic MK-801 administration did not alter NMDA receptor NR1, NR2A, or NR2B subunit peptide expression in either the cerebral cortex or the hippocampus. These data demonstrate heterogeneous regulation of GABA(A) receptors by glutamatergic activity in rat hippocampus but not cerebral cortex, suggesting a new mechanism of GABA(A) receptor regulation in brain.  相似文献   

18.
The synaptic receptor sites for the neurotransmitter gamma-aminobutyric acid (GABA) can be assayed in vitro with several radiolabeled agonists and one antagonist. Numerous criteria of specificity have been met for these binding sites. All of the ligands show heterogeneity in binding affinities. The subpopulations thus defined have a remarkably similar specificity for GABA analogs, which suggests an intimate relationship and possible interconvertibility. Modulation of GABA receptor binding by barbiturates, anions, and other membrane treatments that affect agonists and antagonists in an opposite manner suggests a three-state model of interconvertible affinities. The complex of GABA receptor and chloride ion channel contains modulatory sites for barbiturates and benzodiazepines, drugs that enhance GABA responses in neurons. The receptor complex can be solubilized in detergent with the three mutually interacting receptor activities intact. The complex has an apparent molecular weight of 355,000 and has been partially purified. GABA agonist function has been assayed at the biochemical level by measuring the activation of 36Cl- efflux from preloaded hippocampal slices by GABA, muscimol, and barbiturates. This response is blocked by the antagonists of the GABA site (bicuculline) and the barbiturate site (picrotoxin). Comparison of binding and function on the same tissue should be useful in analyzing the mechanism of action of GABA.  相似文献   

19.
The involvement of glutamate receptors in GABA release in ischemia was investigated in hippocampal slices from adult (3-month-old) and developing (7-day-old) mice. For in vitro ischemia, the slices were superfused in glucose-free media under nitrogen. Ionotropic glutamate receptor agonists failed to affect the ischemia-induced basal GABA release at either age. The K(+)-stimulated release in the immature hippocampus was potentiated by N-methyl-D-aspartate receptors, whereas in adults this release was reduced by both kainate and 2-amino-3-hydroxy-5-methyl-4-isoxazoleproprionate receptor activation. The group I metabotropic receptor agonist (1+/-)-1-aminocyclopentane-trans-1,3-dicarboxylate enhanced the basal ischemic GABA release in a receptor-mediated manner in adults, this being concordant with the positive modulation of GABAergic neurotransmission by group I metabotropic glutamate receptors. (1 +/-)-1-Aminocyclopentane-trans-1,3-dicarboxylate and (S)-3,5-dihydroxyphenylglycine also enhanced the K(+)-stimulated release in the developing hippocampus in a receptor-mediated manner. Because group I receptors generally increase neuronal excitability, the enhanced GABA release may attenuate hyperexcitation or strengthen inhibition, being thus neuroprotective, particularly under ischemic conditions. Group III metabotropic glutamate receptors were not at all involved in ischemic GABA release in the immature mice, but in adults their activation by O-phospho-L-serine potentiated the basal release and reduced the K(+)-stimulated release. These opposite effects were abolished by the antagonist (RS)-2-cyclopropyl-4-phosphonophenylglycine. Metabotropic glutamate receptors, namely group I and III receptors, are able to modify the release of GABA from hippocampal slices under ischemic conditions, both positive and negative effects being discernible, depending on the age and type of receptor activated.  相似文献   

20.
The aim of the study was to investigate the effect of interleukin-10 (IL-10) (1 and 10 ng/ml) on the development of epileptiform activity induced by brief hypoxic episodes in CA1 area of rat hippocampal slices. Three three-minute hypoxic episodes induced a sustained decrease in the threshold of evoked population spike (PS) burst and an increase in the number of PSs in the PS response. IL-10 (1 ng/ml) completely abolished the development of epileptiform activity whereas the effect of IL-10 (10 ng/ml) was weaker. The protective effect of IL-10 on the hyperexcitability of the local neuronal network in hippocampal slices indicate that this cytokine can function as an intercellular mediator in the brain. The present results are the first experimental evidence of a protective role of anti-inflammatory IL-10 in the development of epileptiform events induced by brief episodes of hypoxia in the hippocampus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号