首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
The human alpha-tectorin (TECTA) gene has recently been cloned and proposed to be involved in autosomal dominant non-syndromic hearing impairment (NSHI) in two families linked to the DFNA12 locus. We have studied a Swedish pedigree with autosomal dominant NSHI with possible digenic inheritance of the disease, involving locus DFNA12 in chromosome 11 and locus DFNA2 in chromosome 1. Mutation analysis of the TECTA gene in this family has identified eight nucleotide substitutions indicating that TECTA is highly polymorphic. One of the changes results in a cysteine to serine (C 1057 S) mutation, in the zonadhesin domain of TECTA; this segregates with the disease haplotype on chromosome 11 and is not present in a control population. The mutation results in the replacement of a cysteine in one of the repeats of the zonadhesin/Von Willebrand domain of the protein and might cause a change in the crosslinking of the polypeptide. These findings add support to the involvement of TECTA in hearing disabilities. However, the three families carrying different TECTA mutations also show phenotypic differences: the hearing loss ranges from prelingual to progressive with late onset. The explanation for the different phenotypes and some clues regarding the functions of TECTA may lie in the localization of the mutations in the different modules of the protein. Another possibility is that the phenotype in the Swedish family is the result of two defective genes.  相似文献   

2.
Tectorial membrane, an extracellular matrix of the cochlea, plays a crucial role in the transmission of sound to the sensory hair cells. Alpha-tectorin is the most important noncollagenous component of the tectorial membrane and the otolith membrane in the maculae of the vestibular system. Defects in TECTA, the gene encodes alpha-tectorin, are cause of both dominant (DFNA8/12) and recessive (DFNB21) forms of deafness. Here, we report a three-generation Chinese family characterized by prelingual progressive sensorineural hearing impairment. We mapped the disease locus to chromosome 11q23-24 region, overlapping with the DFNA8/12 locus. Sequencing of candidate gene TECTA revealed a heterozygous c.5945C>A substitution in exon 19, causing amino acid substitution of Ala to Asp at a conservative position 1982. The A1982D substitution is consistent with hearing loss in this Chinese family and has not been found in 200 random control chromosomes. To our knowledge, this is the first TECTA mutation identified in Chinese population. Our data provides additional molecular and clinical information for establishing a better genotype–phenotype understanding of DFNA8/12.  相似文献   

3.
A mutation in human DFNA5 is associated with autosomal dominant nonsyndromic hearing impairment. The function of DFNA5 protein remains unknown and no experimental model has been described so far. Here we describe fission yeast Schizosaccharomyces pombe as a model organism for studying the function of heterologously expressed DFNA5. We have expressed wild-type as well as mutant DFNA5 alleles under control of regulatable nmt1 promoter. Yeast cells tolerated expression of wild-type DFNA5, while expression of the mutant DFNA5 allele, which is responsible for nonsyndromic autosomal dominant hearing impairment, led to cell cycle arrest. We identified new rat and horse DFNA5 homologues and we describe a domain of homology shared between DFNA5 and the Mcm10 family of DNA replication proteins. Genetic interactions between heterologously expressed DFNA5 and a fission yeast cdc23 (mcm10) mutant support a possible link between DFNA5 and Mcm10 proteins.  相似文献   

4.
Yu C  Meng X  Zhang S  Zhao G  Hu L  Kong X 《Genomics》2003,82(5):575-579
Nonsyndromic inherited hearing impairment is genetically heterogeneous. Up to now, approximately 51 autosomal dominant loci implicated in nonsyndromic forms of hearing impairment have been reported in humans and 17 causative genes have been identified. Skipping of exon 8 in the DFNA5 gene has been shown to cause hearing impairment in a Dutch family. To our knowledge, no other DFNA5 mutation has been reported in familial or sporadic hearing impairment. Here, we report another mutation in DFNA5, a CTT deletion in the polypyrimidine tract of intron 7. This mutation, just like the previously reported mutation in the Dutch family, leads to skipping of exon 8 of DFNA5. In addition, we prove the existence of a recently identified short isoform of DFNA5, but the 3-nucleotide deletion reported here seems not to affect the function of this short isoform. Because no other mutation in any other part of DFNA5 has ever been described, this finding might indicate that exon 8 of DFNA5 is indispensable for the development of hearing impairment.  相似文献   

5.
Thirty-two genes causing non-syndromic hearing impairment (NSHI) have been cloned, including GJB2 and GJB6 encoding the gap junction subunits connexin 26 and connexin 30, respectively. One mutation in GJB2, 35delG, accounts for a large percentage of GJB2 hearing impairment in Southern Europe whereas a considerably lower frequency has been reported from Northern European populations. Recently, a 342-kb deletion implicating GJB6 was found in 22 out of 44 NSHI patients of Spanish origin with only one mutated allele of GJB2. We report the first study of GJB2 and GJB6 mutations in Danish patients with NSHI. We tested 165 individuals and found GJB2 mutations in 16 individuals. The deletion implicating GJB6 was found in two individuals out of 9 heterozygous for GJB2 mutation. Furthermore, we screened 509 unselected samples from the Danish newborn population for the 35delG mutation in GJB2. We found 9 samples heterozygous for 35delG and 11 samples heterozygous for mutations leading to amino acid variants in GJB2 protein. In conclusion, our data are in accordance with results from other Northern European populations. Furthermore, our data on the GJB6 deletion suggest that routine screening for this deletion could help to explain hearing impairment in some Northern European NSHI patients heterozygous for a mutation in GJB2.  相似文献   

6.
Nonsyndromic hearing loss is one of the most genetically heterogeneous traits known. A total of 30 autosomal dominant nonsyndromic hearing-loss loci have been mapped, and 11 genes have been isolated. In the majority of cases, autosomal dominant nonsyndromic hearing loss is postlingual and progressive, with the exception of hearing impairment in families in which the impairment is linked to DFNA3, DFNA8/12, and DFNA24, the novel locus described in this report. DFNA24 was identified in a large Swiss German kindred with a history of autosomal dominant hearing loss that dates back to the middle of the 19th century. The hearing-impaired individuals in this kindred have prelingual, nonprogressive, bilateral sensorineural hearing loss affecting mainly mid and high frequencies. The DFNA24 locus maps to 4q35-qter. A maximum multipoint LOD score of 11.6 was obtained at 208.1 cM at marker D4S1652. The 3.0-unit support interval for the map position of this locus ranges from 205.8 cM to 211.7 cM (5.9 cM).  相似文献   

7.
In a Dutch family with an X-linked postlingual progressive hearing impairment, a critical linkage interval was determined to span a region of 12.9 Mb flanked by the markers DXS7108 and DXS7110. This interval overlaps with the previously described DFNX4 locus and contains 75 annotated genes. Subsequent next-generation sequencing (NGS) detected one variant within the linkage interval, a nonsense mutation in SMPX. SMPX encodes the small muscle protein, X-linked (SMPX). Further screening was performed on 26 index patients from small families for which X-linked inheritance of nonsyndromic hearing impairment (NSHI) was not excluded. We detected a frameshift mutation in SMPX in one of the patients. Segregation analysis of both mutations in the families in whom they were found revealed that the mutations cosegregated with hearing impairment. Although we show that SMPX is expressed in many different organs, including the human inner ear, no obvious symptoms other than hearing impairment were observed in the patients. SMPX had previously been demonstrated to be specifically expressed in striated muscle and, therefore, seemed an unlikely candidate gene for hearing impairment. We hypothesize that SMPX functions in inner ear development and/or maintenance in the IGF-1 pathway, the integrin pathway through Rac1, or both.  相似文献   

8.
Approximately half of congenital hearing impairment cases are inherited, with non-syndromic hearing impairment (NSHI) being the most frequent clinical entity of genetic hearing impairment cases. A family from Cameroon with NSHI was investigated by performing exome sequencing using DNA samples obtained from three family members, followed by direct Sanger sequencing in additional family members and controls participants. We identified an autosomal dominantly inherited novel missense variant [NM_001174116.2:c.918G>T; p.(Q306H)] in DMXL2 gene (MIM:612186) that co-segregates with mild to profound non-syndromic sensorineural hearing impairment . The p.(Q306H) variant which substitutes a highly conserved glutamine residue is predicted deleterious by various bioinformatics tools and is absent from several genome databases. This variant was also neither found in 121 apparently healthy controls without a family history of hearing impairment , nor 112 sporadic NSHI cases from Cameroon. There is one previous report of a large Han Chinese NSHI family that segregates a missense variant in DMXL2. The present study provides additional evidence that DMXL2 is involved in hearing impairment etiology, and we suggest DMXL2 should be considered in diagnostic hearing impairment panels.  相似文献   

9.
By using homozygosity mapping in a consanguineous Pakistani family, we detected linkage of nonsyndromic hearing loss to a 7.6 Mb region on chromosome 3q13.31-q21.1 within the previously reported DFNB42 locus. Subsequent candidate gene sequencing identified a homozygous nonsense mutation (c.1135G>T [p.Glu379X]) in ILDR1 as the cause of hearing impairment. By analyzing additional consanguineous families with homozygosity at this locus, we detected ILDR1 mutations in the affected individuals of 10 more families from Pakistan and Iran. The identified ILDR1 variants include missense, nonsense, frameshift, and splice-site mutations as well as a start codon mutation in the family that originally defined the DFNB42 locus. ILDR1 encodes the evolutionarily conserved immunoglobulin-like domain containing receptor 1, a putative transmembrane receptor of unknown function. In situ hybridization detected expression of Ildr1, the murine ortholog, early in development in the vestibule and in hair cells and supporting cells of the cochlea. Expression in hair cell- and supporting cell-containing neurosensory organs is conserved in the zebrafish, in which the ildr1 ortholog is prominently expressed in the developing ear and neuromasts of the lateral line. These data identify loss-of-function mutations of ILDR1, a gene with a conserved expression pattern pointing to a conserved function in hearing in vertebrates, as underlying nonsyndromic prelingual sensorineural hearing impairment.  相似文献   

10.
11.
DFNA23, a novel locus for autosomal dominant nonsyndromic hearing loss, was identified in a Swiss German kindred. DNA samples were obtained from 22 family members in three generations: 10 with hearing impairment caused by the DFNA23 locus, 8 unaffected offspring, and 4 spouses of hearing-impaired pedigree members. In this kindred, the hearing-impaired family members have prelingual bilateral symmetrical hearing loss. All audiograms from hearing-impaired individuals displayed sloping curves, with hearing ability ranging from normal hearing to mild hearing loss in low frequencies, normal hearing to profound hearing loss in mid frequencies, and moderate to profound hearing loss in high frequencies. A conductive component existed for 50% of the hearing-impaired family members. The majority of the hearing-impaired family members did not display progression of hearing loss. The DFNA23 locus maps to 14q21-q22. Linkage analysis was carried out under a fully penetrant autosomal dominant mode of inheritance with no phenocopies. A maximum multipoint LOD score of 5.1 occurred at Marker D14S290. The 3.0-LOD unit support interval is 9.4 cM and ranged from marker D14S980 to marker D14S1046.  相似文献   

12.
The MYO7A encodes a protein classified as an unconventional myosin. Here, we present a family with non-syndromic autosomal dominant hearing impairment that clinically resembles other previously published DFNA11 families. Affected members of the family present with an ascending audiogram affecting low and middle frequencies at young ages and then affecting all frequencies with increasing age. Genome-wide linkage analysis using Illumina Cyto-12 Chip mapped the disease locus to the DFNA11 interval in the family. A c.2003G→A (p.R668H) mutation of the MYO7A, is heterozygous in all affected family members and absent in 100 healthy individuals. Arg668His is located in a region of the myosin VIIA motor domain that is highly conserved among different species. Molecular modeling predicts that the conserved R668 residue plays important structural role in linking different lobes of motor domain together. In the actin-activated ATPase activity assay, the rate of NADH oxidation was higher in the wild-type myosin VIIA, indicating that the ATPase activity in the p.R668H mutant myosin VIIA was significantly destroyed.  相似文献   

13.
Autosomal dominant non-syndromic hearing loss (AD-NSHL) is one of the most common genetic diseases in human and is well-known for the considerable genetic heterogeneity. In this study, we utilized whole exome sequencing (WES) and linkage analysis for direct genetic diagnosis in AD-NSHL. The Korean family had typical AD-NSHL running over 6 generations. Linkage analysis was performed by using genome-wide single nucleotide polymorphism (SNP) chip and pinpointed a genomic region on 5q31 with a significant linkage signal. Sequential filtering of variants obtained from WES, application of the linkage region, bioinformatic analyses, and Sanger sequencing validation identified a novel missense mutation Arg326Lys (c.977G>A) in the POU homeodomain of the POU4F3 gene as the candidate disease-causing mutation in the family. POU4F3 is a known disease gene causing AD-HSLH (DFNA15) described in 5 unrelated families until now each with a unique mutation. Arg326Lys was the first missense mutation affecting the 3rd alpha helix of the POU homeodomain harboring a bipartite nuclear localization signal sequence. The phenotype findings in our family further supported previously noted intrafamilial and interfamilial variability of DFNA15. This study demonstrated that WES in combination with linkage analysis utilizing bi-allelic SNP markers successfully identified the disease locus and causative mutation in AD-NSHL.  相似文献   

14.
Mutations of MYO6 are associated with recessive deafness,DFNB37   总被引:10,自引:0,他引:10       下载免费PDF全文
Cosegregation of profound, congenital deafness with markers on chromosome 6q13 in three Pakistani families defines a new recessive deafness locus, DFNB37. Haplotype analyses reveal a 6-cM linkage region, flanked by markers D6S1282 and D6S1031, that includes the gene encoding unconventional myosin VI. In families with recessively inherited deafness, DFNB37, our sequence analyses of MYO6 reveal a frameshift mutation (36-37insT), a nonsense mutation (R1166X), and a missense mutation (E216V). These mutations, along with a previously published missense allele linked to autosomal dominant progressive hearing loss (DFNA22), provide an allelic spectrum that probes the relationship between myosin VI dysfunction and the resulting phenotype.  相似文献   

15.
16.
Theγ-actin(ACTG1)gene is a cytoplasmic nonmuscle actin gene,which encodes a major cytoskeletal protein in the sensory hair cells of the cochlea.Mutations in ACTG1 were found to cause autosomal dominant,progressive,sensorineural hearing loss linked to the DFNA 20/26 locus on chromosome 17q25.3 in European and American families,respectively.In this study,a novel missense mutation (c.364A>G;p.I122V)co-segregated with the affected individuals in the family and did not exist in the unaffected family members and 150 unrelated normal controls.The alteration of residue I1e122 was predicted to damage its interaction with actin-binding proteins,which may cause disruption of hair cell organization and function.These findings strongly suggested that the I122V mutation in ACTG1 caused autosomal dominant non-syndromic hearing impairment in a Chinese family and expanded the spectrum of ACTG1 mutations causing hearing loss.  相似文献   

17.
The fact that hereditary hearing loss is the most common sensory disorder in humans is reflected by, among other things, an extraordinary allelic and nonallelic genetic heterogeneity. X-chromosomal hearing impairment represents only a minor fraction of all cases. In a study of a Spanish family the locus for one of the X-chromosomal forms was assigned to Xp22 (DFNX4). We mapped the disease locus in the same chromosomal region in a large German pedigree with X-chromosomal nonsyndromic hearing impairment by using genome-wide linkage analysis. Males presented with postlingual hearing loss and onset at ages 3-7, whereas onset in female carriers was in the second to third decades. Targeted DNA capture with high-throughput sequencing detected a nonsense mutation in the small muscle protein, X-linked (SMPX) of affected individuals. We identified another nonsense mutation in SMPX in patients from the Spanish family who were previously analyzed to map DFNX4. SMPX encodes an 88 amino acid, cytoskeleton-associated protein that is responsive to mechanical stress. The presence of Smpx in hair cells and supporting cells of the murine cochlea indicates its role in the inner ear. The nonsense mutations detected in the two families suggest a loss-of-function mechanism underlying this form of hearing impairment. Results obtained after heterologous overexpression of SMPX proteins were compatible with this assumption. Because responsivity to physical force is a characteristic feature of the protein, we propose that long-term maintenance of mechanically stressed inner-ear cells critically depends on SMPX function.  相似文献   

18.
非综合征性耳聋(nonsyndromic hearing impairment, NSHI)是一种十分常见的人类神经系统疾病, 约有1/1000的新生儿患有语前聋。GJB2基因编码间隙连接蛋白Cx26, 是最常见的NSHI致病基因, 大约50%的常染色体隐性遗传NSHI是由GJB2基因突变引起的。在本研究中, 收集了江苏省一个复杂的非综合征性耳聋家系, 并对其进行了分子遗传学研究。对所有已知常染色体隐性遗传的NSHI致病基因, 选用其侧翼的微卫星标记进行连锁分析, 发现该家系的致病基因与D13S175连锁。对GJB2基因进行整个编码区域的测序, 发现235碱基处发生了碱基C的纯合缺失, 这一突变可能是该家系中绝大多数患者致病的遗传基础。  相似文献   

19.
Previously we confirmed linkage of autosomal dominantly inherited low-frequency sensorineural hearing impairment (LFSNHI) in a German family to the genetic locus DFNA6/DFNA14 on chromosome 4p16.3 close to the markers D4S432 and D4S431. Analysis of data from the Human Genome Project, showed that WFS1 is located in this region. Mutations in WFS1 are known to be responsible for Wolfram syndrome (DIDMOAD, MIM #606201), which follows an autosomal recessive trait. Studies in low-frequency hearing loss families showed that mutations in WFS1 were responsible for the phenotype. In all affected family members analysed, we detected a missense mutation in WFS1 (K705N) and therefore confirm the finding that the majority of mutations responsible for LFSNHI are missense mutations which localise to the C-terminal domain of the protein.  相似文献   

20.
The tilted (tlt) mouse carries a recessive mutation causing vestibular dysfunction. The defect in tlt homozygous mice is limited to the utricle and saccule of the inner ear, which completely lack otoconia. Genetic mapping of tlt placed it in a region orthologous with human 4p16.3-p15 that contains two loci, DFNA6 and DFNA14, responsible for autosomal dominant, nonsyndromic hereditary hearing impairment. To identify a possible relationship between tlt in mice and DFNA6 and DFNA14 in humans, we have refined the mouse genetic map, assembled a BAC contig spanning the tlt locus, and developed a comprehensive comparative map between mouse and human. We have determined the position of tlt relative to 17 mouse chromosome 5 genes with orthologous loci in the human 4p16.3-p15 region. This analysis identified an inversion between the mouse and human genomes that places tlt and DFNA6/14 in close proximity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号