首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
采用Westernblot、氚 胸腺嘧啶 ( 3H TdR)和氚 亮氨酸 ( 3H Leu )掺入等技术和方法 ,用血管紧张素Ⅱ(AngⅡ )和血管紧张素 ( 1 7) [Ang ( 1 7) ]刺激大鼠血管平滑肌细胞 (VSMCs) ,观察和分析Ang ( 1 7)对VSMCs增殖及蛋白激酶C (PKC)和胞外调节蛋白激酶 (ERK)表达的影响。Ang ( 1 7)能明显抑制基础和AngⅡ刺激下的VSMCsPKC ζ和ERK1/ 2蛋白表达 (P <0 0 1或P <0 0 5 ) ,减少3H TdR和3H Leu掺入量 (P <0 0 1或P <0 0 5 )。结果提示 ,Ang ( 1 7)对VSMCs增殖有抑制作用 ,这可能与影响PKC ζ和ERK1/ 2蛋白表达有关。  相似文献   

2.
目的和方法:比较自发性高血压大鼠(SHR)和对照(WKY)大鼠心脏和主动脉丝裂素活化蛋白激酶磷酸酶-1(MKP-1)及细胞外信号调节激酶(ERK-1)的表达,并观察用磷酸钙共沉淀方法转染MKP-1基因对血管紧张素Ⅱ(Ang Ⅱ)刺激平滑肌细胞(VSMC)^3H-胸腺叫啶(^3H-TdR)掺入的影响,以探讨MKP-1在细胞增殖中的调节作用。结果:①与WKY大鼠相比,SHR心脏和主动脉MKP-1呈低表达,分别降低53%和45%(P均<0.01);而SHR心脏和主动脉ERK-1呈明显高表达(P均<0.01),SHR心脏和主动脉ERK-1与MKP-1蛋白比值明显高于WKY。②AngⅡ 10^-7mol/L刺激VSMC增殖较对照组增加257%(P<0.01),转染野生型MKP-1基因细胞可使AngⅡ刺激的^3H-TdR掺入较未转染的细胞降低63%(P<0.05),转染突变型MKP-1基因和转染空载体的VSMC对AngⅡ的刺激与单纯AngⅡ组相比无明显抑制作用(P>0.05)。结论:SHR心血管组织中促增殖肥大的ERK-1表达较其失活的MKP-1占优势,并且MKP-1可显著抑制AngⅡ的VSMC增殖。  相似文献   

3.
Zhu JH  Liu Z  Huang ZY  Li S 《生理学报》2005,57(5):587-592
本文研究血管紧张素Ⅱ(angiotensin Ⅱ,Ang Ⅱ)对自发性高血压大鼠(spontaneously hypertensive rat,SHR)和Wistar- Kyoto(WKY)大鼠血管平滑肌细胞(vascular smooth muscle cells.VSMCs)细胞外信号调节激酶(extracellular signal-regulated pro- tein kinases,ERKs)信号途径的影响。体外培养SHR和WKY大鼠的VSMCs,先在培养基中加入终浓度为1×105mmol/L 的缬沙坦或1×105mmol/L的PD98059或不加药物,再给予1×107mmol/L的Ang Ⅱ刺激24 h后收集细胞,以无血清培养基 培养的VSMCs作对照。用免疫沉淀法测定ERK活性;用Western-blot方法检测总ERK(total ERK,t-ERK)、磷酸化ERK (phosphorylated-ERK,p-ERK)及丝裂素活化蛋白激酶磷酸酶-1(mitogen-activated protem kinases phosphatase-1,MKP-1)水 平;用RT-PCR法半定量测定MKP-1 mRNA的含量。结果显示:(1)SHR和WKY大鼠Ang Ⅱ刺激组VSMCs中ERK活 性、p-ERK、MKP-1及MKP-1 mRNA水平均明显高于对照组(P<0.05);SHR和WKY大鼠Ang Ⅱ+缬沙坦组和Ang Ⅱ +PD98059组的上述指标与对照组比较均无显著性差异。(2)SHR大鼠VSMCs中ERK活性、P-ERK、MKP-1及MKP-1 mRNA均显著高于相同干预的WKY大鼠(P<0.01)。(3)SHR和WKY大鼠之间以及对照组、Ang Ⅱ刺激组、Ang Ⅱ+缬沙 坦组和Ang Ⅱ+PD98059组间VSMCs中t-ERK水平均无显著性差异。以上结果表明,Ang Ⅱ可能主要通过其1型(Ang Ⅱ type 1,AT)受体激活SHR和WKY大鼠VSMCs中ERK途径,增加ERK活性和p-ERK蛋白水平,继而引起MKP-1及 MKP-1 mRNA水平升高。  相似文献   

4.
MKP-1在血管紧张素Ⅱ导致心肌肥大反应中的调控作用   总被引:1,自引:0,他引:1  
本研究主要从丝裂原活化蛋白激酶磷酸酶 1(MKP 1)角度 ,研究丝裂原活化蛋白激酶 (MAPK)信号途径在血管紧张素Ⅱ介导的新生大鼠心肌细胞肥大反应中的作用及调控机制。实验以心肌细胞蛋白合成速率、蛋白含量及细胞表面积作为心肌肥大反应的指标 ,以凝胶内MBP原位磷酸化测定MAPK活性 ,以免疫印迹法 (Westernboltting)分别测定MKP 1及磷酸化p44MAPK、p42MAPK蛋白表达。结果发现 :(1)AngⅡ (10 -7mol/L)处理 48h ,心肌细胞 3H 亮氨酸掺入率、蛋白含量及细胞表面积明显增加 ,AngⅡ增加 3H 亮氨酸掺入的作用可被血管紧张素Ⅱ 1型受体 (AT1受体 )拮抗剂CV11974(10 -6mol/L)明显抑制 (抑制 85 % ) ,被MAPK激酶 (MEK)特异性抑制剂PD0 980 5 9(5× 10 -5mol/L)部分抑制 (抑制 32 5 % ) ;(2 )CV11974或PD0 980 5 9可明显抑制AngⅡ介导的磷酸化MAPK蛋白表达及MAPK酶活性 (以γ 32 P ATP掺入表示 ) ;(3)以磷酸化MAPK蛋白表达反映MAPK活性 ,可见AngⅡ处理心肌细胞5min ,MAPK活性即开始增加 ,30min左右达到高峰 ,2h后基本恢复正常 ;而MKP 1蛋白表达 30min即见增加 ,持续 2h以上 ;(4 )用放线菌素D (actinomycinD)处理心肌细胞 30min可明显抑制MKP 1的表达 ,同时使AngⅡ致磷酸化MAPK蛋白表达时间延长至 2h以上。以上结果  相似文献   

5.
一氧化氮在血管紧张素Ⅱ激活蛋白激酶C中的作用   总被引:7,自引:0,他引:7  
Fu SG  Xie XJ  Ji LM  Liu PQ  Pan JY  Lu W 《生理学报》2003,55(1):53-57
实验在培养新生大鼠心肌细胞中检测NO前体L-精氨酸(L-Arg)和NO供体硝普钠(SNP)对血管紧张素Ⅱ(AngⅡ)激活蛋白激酶C(PKC)的作用,以探讨心肌细胞PKC水平的信号转导途径,实验结果如下:(1)无血清DMEM培养心肌细胞24h后加入AngⅡ,PKC活性呈剂量依赖性增高;(2)培养基中加入L-Arg,PKC活性呈剂量依赖性降低;(3)用L-Arg100μmol/L进行预处理,30min后分别加入AngⅡ0.1μmol/L或PMA10μmol/L,PKC活性均明显降低,与单纯AngⅡ组和单纯PMA组相比均有显著性差异;用NOS抑制剂L-NAME预处理后,再加入L-Arg,可明显阻断L-Arg对上述两个效应的影响;(4)培养液中加入NO供体SNP,PKC活性呈剂量依赖性地降低;(5)用SNP10μmol/L预处理心肌细胞,5min后分别加入AngⅡ或PMA,PKC活性分别与单纯AngⅡ和单纯PMA组相比均明显降低。以上结果表明,AngⅡ能剂量依赖性激活PKC,而NO可剂量依赖性抑制PKC活性;NOS参与L-Arg抑制AngⅡ或PMA激活PKC的作用。这些观察提示,NO抑制AngⅡ对心肌细胞的作用可能是通过抑制PKC活性实现的,PKC可能是NO和AngⅡ在心肌细胞内信号转导的交汇点(cross talk)。  相似文献   

6.
目的:观察白藜芦醇(Res)对血管紧张素Ⅱ(AngⅡ)诱导的血管平滑肌细胞(VSMCs)增殖及细胞中钙调蛋白(CaM)和钙调神经磷酸酶(CaN)活性的影响,并探讨其机制。方法:体外培养兔主动脉VSMCs,用免疫细胞化学方法鉴定。建立AngⅡ诱导的VSMCs增殖模型。取生长良好的第4~8代VSMCs,随机分为对照组,AnsⅡ组(0.1μmol/L),AngⅡ+Res组(20,40,80,160)μmol/L。应用MTT法检测细胞增殖程度,考马斯亮兰法进行CaM定量,定磷法进行CaN活性测定。结果:成功培养兔VSMCs并传代,免疫细胞化学染色均呈阳性表达。AngⅡ组VSMCs的增殖程度、CaM和CaN活性较对照组增高(P〈0.05,P〈0.01)。AngⅡ+Res组各组VSMCs的CaM和CaN活性较AngⅡ组显著下降(P〈0.01)。结论:在一定范围内,Res可降低AngⅡ诱导的VSMCs增殖程度,其机制可能与干预CaN依赖的信号转导途径有关。  相似文献   

7.
Wang J  Shen LL  Cao YX  Sun ZJ  Wang Q  Zhu DN 《生理学报》2001,53(1):1-6
采用微量注射、微透析、高效液相色谱-荧光测定等技术和方法,观察和 血管紧张素-(1-7)[Ang-(1-7)]在延髓头端腹外侧(RVLM)与氨基酸类递质释放之间的关系,在麻醉大鼠RVLM注射Ang-(1-7)可引起血压升高,同时伴RVLM兴奋性氨基酸(EAA)释放增多;在RVLM注射Ang-(1-7)选择性受体拮抗剂Ang779可引起血压降低,同时伴RVLM EAA释放减少和抑制性氨基酸(IAA)释放增多,Ang-(1-7)的升压作用和Ang779的降压作用均可被相应的氨基酸受体拮抗剂部分阻娄。结果提示,Ang-(1-7)在RVLM的升压效庆可能部分是通过EAA释放增多所致;而Ang779在 RVLM的降压效应可能部分是通过EAA释放减少、IAA释放增多所致。  相似文献   

8.
Wu B  Wang TH  Pan JY  Zhu XN  Zhan CY 《生理学报》1998,50(1):87-93
内皮系-1(ET-1)是一种强的生长因子,并诱导心肌细胞肥大反应。在本实验中,我们探讨了G蛋白、蛋白激酶C(PKC)和Na+-H+交换在ET-1诱导的培养新生大鼠心肌细胞肥大反应中的作用。ET-1(10-10~10-7mol/L)促进3H-亮氨酸掺入,增加细胞蛋白质的含量和心肌细胞的表面积,且呈剂量依赖性,它们的EC50分别为5.2×10-10,5.2×10-10和7.3×10-10mol/L。用蛋白激酶C(PKC)抑制剂,Staurosporin(2nmol/L)预处理心肌细胞,可完全阻断ET-1诱导的心肌细胞的这些肥大反应,而蛋白激酶C激动剂,佛波酸酯(PMA)(10-8~10-6mol/L)呈剂量依赖性促进心肌细胞的肥大反应。用Na+-H+交换抑制剂,氨氯毗咪(10-4mol/L)预处理心肌细胞,可抑制ET-1诱导的心肌细胞肥大反应,但不影响PMA诱导的心肌细胞肥大反应。百日咳毒素(150ng/ml)预处理心肌细胞,可明显抑制ET-1诱导的心肌细胞肥大反应。这些结果提示,ET-1诱导的培养新生大鼠心肌细胞肥大反应是与百日咳毒素敏感的G蛋白相耦联,蛋白激酶C和Na+.H+交换可能在ET-1诱导的心肌细胞肥大反应中是重要的细胞内信使转导途径。  相似文献   

9.
Jin J  Zhu SJ  Zhu ZM  Yang YJ  Ding G 《生理学报》2002,54(2):145-148
为明确血小板源生长因子 AA(plateletderivedgrowthfactor AA ,PDGF AA)及PDGF α受体在自发性高血压大鼠 (spontaneouslyhypertensionrats,SHR)血管平滑肌细胞 (vascularsmoothmusclecells,VSMCs)增殖中的作用 ,采用Westernblot、[3 H]TdR及 [3 H]Leu掺入率等方法 ,观察在SHR和WKY大鼠VSMC中PDGF AA及PDGF受体表达的差异 ;在PDGF AA刺激下VSMC增殖和肥大反应的变化。结果显示 ,SHR VSMC中PDGF AA、PDGF α受体蛋白表达明显高于WKY VSMC(P <0 0 1) ,而PDGF β受体蛋白表达在SHR VSMC与WKY VSMC无明显差异 ;在不同浓度PDGF AA刺激下 ,增殖细胞核抗原 (PCNA)及3 H掺入率在SHR VSMC明显增强且呈剂量依赖性增加 (P <0 0 1)。本研究表明PDGF A链及其α受体的自泌性增高 ,可能是导致SHR VSMC异常增殖和肥大 ,并导致血管构型变化的重要原因之一  相似文献   

10.
Han YL  Kang J  Li SH 《生理学报》2003,55(3):265-272
采用Spprague-Dawley大鼠胸主动脉中膜、外膜和培养的血管平滑肌细胞(VSMCs)作材料,鉴定不同类型的血管组织经炎性介质刺激后其一氧化氮(NO)的产生来源,闻明蛋白激酶C(PKC)和蛋白酪氨酸激酶(PTK)介导大鼠VSMCs生成NO的调控机制。大鼠VSMCs经脂多糖(LPG)和细胞因子(TNF-α,IL-1β)处理后,以剂量依赖方式促进NO释放。采用Western Blot证实经刺激的VSMCs伴有iNOS表达上调。进一步实验表明PKC和PTK参与LPS和细胞因子诱导NO生成的胞内信号转导。用PKC抑制剂H7与VSMCs共培育,H7能明显减少LPS、TNF-α和IL-1β诱导细胞NO的形成。白屈菜赤碱亦可抑制NO的生成,但HAl004对VSMCs的NO生成无抑制作用,提示PKC参与NO的生成与调控。PTK抑制剂genistein和tyrphostin AG18均能抑制由LPS、TNF-α和IL-1β引发VSMCs释放NO,同时伴iNOS蛋白表达下调,而PKC抑制剂不能阻断iNOS的表达。上述观察结果提示,PKC介导LPS和细胞因子诱导细胞合成NO可能是通过iNOS翻译后加工;而PTK则以上调iNOS表达而促增NO生成。  相似文献   

11.

Background

Angiotensin (Ang) II and Ang-(1-7) are two of the bioactive peptides of the rennin-angiotensin system. Ang II is involved in the development of cardiovascular disease, such as hypertension and atherosclerosis, while Ang-(1-7) shows cardiovascular protection in contrast to Ang II.

Methodology/Principal Findings

In this study, we investigated effects of Ang II and Ang-(1-7) on vascular smooth muscle cell (SMC) proliferation and migration, which are critical in the formation of atherosclerotic lesions. Treatment with Ang II resulted in an increase of SMC proliferation, whereas Ang-(1-7) alone had no effects. However, preincubation with Ang-(1-7) inhibited Ang II-induced SMC proliferation. Ang II promoted SMC migration, and this effect was abolished by pretreatment with Ang-(1-7). The stimulatory effects of Ang II on SMC proliferation and migration were blocked by the Ang II receptor antagonist lorsartan, while the inhibitory effects of Ang-(1-7) were abolished by the Ang-(1-7) receptor antagonist A-799. Ang II treatment caused activation of ERK1/2 mediated signaling, and this was inhibited by preincubation of SMCs with Ang-(1-7).

Conclusion

These results suggest that Ang-(1-7) inhibits Ang II-induced SMC proliferation and migration, at least in part, through negative modulation of Ang II induced ERK1/2 activity.  相似文献   

12.
We examined the signalling pathways responsible for the Ang II induction of growth in MCF-7 human breast cancer cells. Ang II in MCF-7 cells induced: (a) the translocation from the cytosol to membrane and nucleus of atypical protein kinase C-zeta (PKC-zeta) but not of PKC-alpha, -delta, - epsilon and -eta; (b) the expression of c-fos mRNA and protein; (c) the phosphorylation of the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2). All these effects were due to the activation of the Ang II type I receptor (AT1) since they were blocked by the AT1 antagonist losartan. The Ang II-stimulated ERK1/2 phosphorylation was blocked by (a) high doses of staurosporine, inhibitor of PKC-zeta, and by a synthetic myristoylated peptide with sequences based on the endogenous PKC-zeta pseudosubstrate region (zeta-PS); (b) PD098059, a mitogen-activated protein kinase kinase inhibitor (MAPKK/MEK); and, moreover, (c) the inhibitors of phosphoinositide 3-kinases (PI3K), LY294002 and wortmannin, thus indicating that PI3K may act upstream of ERK1/2. The Ang II-evoked c-fos induction was blocked only by high doses of staurosporine and by zeta-PS whilst PD098059, LY294002 and wortmannin were ineffective, thus indicating that c-fos induction is not due to ERK1/2 activity. When the epidermal growth factor-receptor (EGFR) tyrosine kinase activity was inhibited by the use of its inhibitor AG1478, Ang II was still able to induce ERK1/2 phosphorylation and c-fos expression, therefore proving that the transactivation of EGFR was not required for these Ang II effects in MCF-7 cells. The previously reported proliferation of MCF-7 cells induced by Ang II was blocked by PD098059 and by wortmannin in a dose-dependent manner, thereby indicating that in MCF-7 cells the PI3K and ERK pathways mediate the mitogenic signalling of AT1. Our results suggest that in MCF-7 cells Ang II activates multiple signalling pathways involving PKC-zeta, PI3K and MAPK; of these pathways only PKC-zeta appears responsible for the induction of c-fos.  相似文献   

13.
Abnormal vascular smooth muscle cell (VSMC) growth plays a key role in the pathogenesis of hypertension and atherosclerosis. Angiotensin II (Ang II) elicits a hypertrophic growth response characterized by an increase in protein synthesis in the absence of DNA synthesis and cell proliferation. Intracellular signaling mechanisms linking angiotensin type I receptor activation to protein synthesis in VSMC have not been fully characterized. The present study investigates the role of the nonreceptor proline-rich tyrosine kinase 2 (PYK2) in Ang II-induced VSMC protein synthesis and in the regulation of two signaling pathways that have been implicated in the control of protein synthesis, the extracellular signal-regulated kinase (ERK1/2) and the phosphatidylinositol 3-kinase/Akt pathways. PYK2 antisense oligonucleotides were used to down-regulate PYK2 expression in cultured VSMC. An 80% down-regulation in PYK2 expression resulted in an approximately 80% inhibition of ERK1/2 (3.8 +/- 1.3 versus 16.6 +/- 1.8), p70S6 kinase (1.03 +/- 0.03 versus 3.8 +/- 0.5), and Akt activation (3.0 +/- 0.8 versus 16.0 +/- 1.0) by Ang II. Furthermore, PYK2 down-regulation resulted in a complete inhibition of Ang II-induced VSMC protein synthesis. These data conclusively identify PYK2 as an upstream regulator of both the ERK1/2 and the phosphatidylinositol 3-kinase/Akt pathways that are involved in Ang II-induced VSMC protein synthesis.  相似文献   

14.
Ang-(1-7) is an effector peptide of the renin-angiotensin system with several distinct actions that are likely mediated by a specific receptor. Regulatory effects of angiotensin (Ang) peptides, Ang-(1-7) and Ang II, on Ang receptor subtype 1 (AT1) mRNA expression were investigated in vascular smooth muscle cells (VSMC) from four University of Akron (Akr) rat strains (WKY, SHR and two backcross consomic lines SHR/y and SHR/a), and in SHR and WKY cells from Charles River Laboratories (Crl). In WKY/Akr and SHR/Akr, Ang-(1-7) treatment increased the levels of AT1 mRNA. This effect was inhibited by the specific Ang-(1-7) antagonist, A-779, in WKY/Akr but not SHR/Akr. Ang II had no effect in Akr cells, but it down-regulated AT1 mRNA in WKY/Crl and SHR/Crl VSMC. Ang-(1-7) did not affect AT1 mRNA levels in Crl lines. In conclusion, Ang-(1-7) regulates the AT1 receptor either directly or indirectly in a strain-specific fashion. The Ang-(1-7) antagonist, A-779, blocks the actions of Ang-(1-7) only in VSMC from WKY/Akr rats, suggesting either that the binding sites for Ang-(1-7) have different properties in SHR/Akr and WKY/Akr cell lines, or that some of the effects of Ang-(1-7) are not receptor mediated. Further, we found differences between Akr cells and Crl cells that are consistent with their genetic heterogeneity.  相似文献   

15.

Background

The enhanced cardiac sympathetic afferent reflex (CSAR) is involved in the sympathetic activation that contributes to the pathogenesis and progression of hypertension. Activation of AT1 receptors by angiotension (Ang) II in the paraventricular nucleus (PVN) augments the enhanced CSAR and sympathetic outflow in hypertension. The present study is designed to determine whether Ang-(1-7) in PVN plays the similar roles as Ang II and the interaction between Ang-(1-7) and Ang II on CSAR in renovascular hypertension.

Methodology/Principal Findings

The two-kidney, one-clip (2K1C) method was used to induce renovascular hypertension. The CSAR was evaluated by the renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) responses to epicardial application of capsaicin in sinoaortic-denervated and cervical-vagotomized rats with urethane and α-chloralose anesthesia. Either Ang II or Ang-(1-7) in PVN caused greater increases in RSNA and MAP, and enhancement in CSAR in 2K1C rats than in sham-operated (Sham) rats. Mas receptor antagonist A-779 and AT1 receptor antagonist losartan induced opposite effects to Ang-(1-7) or Ang II respectively in 2K1C rats, but losartan had no effects in Sham rats. Losartan but not the A-779 abolished the effects of Ang II, while A-779 but not the losartan blocked the effects of Ang-(1-7). PVN pretreatment with Ang-(1-7) dose-dependently augmented the RSNA, MAP, and CSAR responses to the Ang II in 2K1C rats. Ang II level, AT1 receptor and Mas receptor protein expression in PVN increased in 2K1C rats compared with Sham rats but Ang-(1-7) level did not.

Conclusions

Ang-(1-7) in PVN is as effective as Ang II in enhancing the CSAR and increasing sympathetic outflow and both endogenous Ang-(1-7) and Ang II in PVN contribute to the enhanced CSAR and sympathetic outflow in renovascular hypertension. Ang-(1-7) in PVN potentiates the effects of Ang II in renovascular hypertension.  相似文献   

16.

Background

Angiotensin-(1–7) [Ang-(1–7)] counteracts many actions of the renin-angiotensin-aldosterone system. Despite its renoprotective effects, extensive controversy exists regarding the role of Ang-(1–7) in obstructive nephropathy, which is characterized by renal tubulointerstitial fibrosis and apoptosis.

Methods

To examine the effects of Ang-(1–7) in unilateral ureteral obstruction (UUO), male Sprague-Dawley rats were divided into three groups: control, UUO, and Ang-(1–7)-treated UUO rats. Ang-(1–7) was continuously infused (24 μg/[kg·h]) using osmotic pumps. We also treated NRK-52E cells in vitro with Ang II (1 μM) in the presence or absence of Ang-(1–7) (1 μM), Mas receptor antagonist A779 (1 μM), and Mas receptor siRNA (50 nM) to examine the effects of Ang-(1–7) treatment on Ang II-stimulated renal injury via Mas receptor.

Results

Angiotensin II (Ang II) and angiotensin type 1 receptor (AT1R) protein expression was higher in UUO kidneys than in controls. Ang-(1–7) treatment also decreased proapoptotic protein expression in UUO kidneys. Ang-(1–7) also significantly ameliorated TUNEL positive cells in UUO kidneys. Additionally, Ang-(1–7) reduced profibrotic protein expression and decreased the increased tumor growth factor (TGF)-β1/Smad signaling present in UUO kidneys. In NRK-52E cells, Ang II induced the expression of TGF-β1/Smad signaling effectors and proapoptotic and fibrotic proteins, as well as cell cycle arrest, which were attenuated by Ang-(1–7) pretreatment. However, treatment with A779 and Mas receptor siRNA enhanced Ang II-induced apoptosis and fibrosis. Moreover, Ang II increased tumor necrosis factor-α converting enzyme (TACE) and decreased angiotensin-converting enzyme 2 (ACE2) expression in NRK-52E cells, while pretreatment with Ang-(1–7) or A779 significantly inhibited or enhanced these effects, respectively.

Conclusion

Ang-(1–7) prevents obstructive nephropathy by suppressing renal apoptosis and fibrosis, possibly by regulating TGF-β1/Smad signaling and cell cycle arrest via suppression of AT1R expression. In addition, Ang-(1–7) increased and decreased ACE2 and TACE expression, respectively, which could potentially mediate a positive feedback mechanism via the Mas receptor.  相似文献   

17.
Sun JJ  Kim HJ  Seo HG  Lee JH  Yun-Choi HS  Chang KC 《Life sciences》2008,82(11-12):600-607
Overexpression of the gene for heme oxygenase (HO)-1 leads to a reduction in pressor responsiveness to angiotensin II (Ang II) in experimental animals. Using rat vascular smooth muscle cells (VSMCs), we tested whether YS 49 [1-(alpha-naphtylmethyl)-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline] inhibits Ang II-stimulated proliferation of VSMCs via induction of HO-1. YS 49 induced HO-1 protein production in a dose-and time-dependent manner in VSMCs. Treatment with YS 49 significantly and dose-dependently inhibited Ang II-induced VSMC proliferation, ROS production, and phosphorylation of JNK, but not P38 MAP kinase or ERK1/2. The antiproliferation effect of YS 49 was reversed by pretreatment with the HO-1 inhibitor zinc protoporphyrin IX (ZnPPIX), or with hemoglobin, a carbon monoxide (CO) scavenger. Similarly, VSMC proliferation, ROS production and phosphorylation of JNK by Ang II were significantly inhibited in VSMCs transfected with the HO-1 gene. Thus, HO-1 and the HO-1 product CO play, at least in part, a crucial role in Ang II-stimulated VSMC proliferation through the regulation of ROS production and JNK phosphorylation. Therefore, YS 49 has potential as a therapeutic strategy for the pathogenesis of Ang II-related vascular diseases such as hypertension and atherosclerosis, via the induction of HO-1 gene activity.  相似文献   

18.
Xue H  Zhou L  Yuan P  Wang Z  Ni J  Yao T  Wang J  Huang Y  Yu C  Lu L 《Regulatory peptides》2012,177(1-3):12-20
In the updated concept of renin-angiotensin system (RAS), it contains the angiotensin converting enzyme (ACE)-angiotensin (Ang) II-angtiogensin type 1 receptor (AT1) axis and the angiotensin-converting enzyme-related carboxypeptidase (ACE2)-Ang-(1-7)-Mas axis. The former axis has been well demonstrated performing the vasoconstrictive, proliferative and pro-inflammatory functions by activation of AT1 receptors, while the later new identified axis is considered counterbalancing the effects of the former. The present study is aimed at observing the interaction between Ang-(1-7) and Ang II on cultured rat renal mesangial cells (MCs). RT-PCR, Western blot and immunofluorescent staining and confocal microscopy results showed that both AT1 and Mas receptor were co-distributed in rat renal MCs. Ang-(1-7) showed similar effects on Ang II in cultured MCs that stimulated phosphorylated extracellular signal-regulated kinase (ERK)1/2 phosphorylation and transforms growth factor-β1 synthesis, and cell proliferation and extracellular matrix synthesis. Co-treatment of the cell with Ang-(1-7) and Ang II, Ang-(1-7) counteracted AngII-induced effects in a concentration dependent manner, but failed to alter the changes induced by endothelin-1. The stimulating effect of Ang II was mediated by AT1 receptor while all the effects of Ang-(1-7) were blocked by Mas receptor antagonist A-779, but not by AT1 receptor antagonist losartan or AT2 receptor antagonist PD123319. These results suggest that Ang-(1-7) and Ang II specifically interact with each other on rat renal MCs via activation of their specific receptors, Mas and AT1 receptor respectively.  相似文献   

19.
Angiotensin II (Ang II) is a main pathophysiological culprit peptide for hypertension and atherosclerosis by causing vascular smooth muscle cell (VSMC) proliferation and migration. Exendin-4, a glucagon-like peptide-1 (GLP-1) receptor agonist, is currently used for the treatment of type-2 diabetes, and is believed to have beneficial effects for cardiovascular diseases. However, the vascular protective mechanisms of GLP-1 receptor agonists remain largely unexplained. In the present study, we examined the effect of exendin-4 on Ang II-induced proliferation and migration of cultured rat aortic smooth muscle cells (RASMC). The major findings of the present study are as follows: (1) Ang II caused a phenotypic switch of RASMC from contractile type to synthetic proliferative type cells; (2) Ang II caused concentration-dependent RASMC proliferation, which was significantly inhibited by the pretreatment with exendin-4; (3) Ang II caused concentration-dependent RASMC migration, which was effectively inhibited by the pretreatment with exendin-4; (4) exendin-4 inhibited Ang II-induced phosphorylation of ERK1/2 and JNK in a pre-incubation time-dependent manner; and (5) U0126 (an ERK1/2 kinase inhibitor) and SP600125 (a JNK inhibitor) also inhibited both RASMC proliferation and migration induced by Ang II stimulation. These results suggest that exendin-4 prevented Ang II-induced VSMC proliferation and migration through the inhibition of ERK1/2 and JNK phosphorylation caused by Ang II stimulation. This indicates that GLP-1 receptor agonists should be considered for use in the treatment of cardiovascular diseases in addition to their current use in the treatment of diabetes mellitus.  相似文献   

20.
Westwood BM  Chappell MC 《Peptides》2012,35(2):190-195
Evidence of endogenous angiotensin-(1-12) [Ang-(1-12)] may necessitate revision of the accepted view that Ang I is the immediate peptide product derived from the precursor protein angiotensinogen. As the processing of this peptide has not been fully elucidated, we characterized Ang-(1-12) metabolism in the serum and kidney of the mRen2.Lewis rat, a model of high circulating renin and ACE expression. A sensitive HPLC-based method to detect the metabolism ex vivo of low concentrations of (125)I-labeled Ang-(1-12) was utilized. Ang-(1-12) processing to serum did not reveal the participation of renin; however, serum ACE readily converted Ang-(1-12) to Ang I with subsequent metabolism to Ang II. Ang I and Ang II forming activities for serum ACE were 102±4 and 104±3 fmol/ml/min serum (n=3), respectively, and both products were abolished by the potent ACE inhibitor lisinopril. The metabolism of Ang-(1-12) in renal cortical membranes also revealed the formation of Ang I; however, the main products were Ang-(1-7) and Ang-(1-4) at 129±9 and 310±12 fmol/mg/min protein (n=4), respectively. Neprilysin inhibition abolished these products and substantially reduced the overall metabolism of Ang-(1-12). Incubation of Ang-(1-12) with either human or mouse neprilysin revealed identical products. We conclude that endogenous Ang-(1-12) may contribute to the expression of biologically active angiotensins through a renin-independent pathway. The preferred route for Ang-(1-12) metabolism likely reflects the relative tissue content of ACE and neprilysin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号