首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method is described for the determination of the two enantiomers of mirtazapine in human blood plasma by high-performance liquid chromatography. Measurements were performed on drug free plasma spiked with mirtazapine and used to prepare and validate standard curves. Levels of enantiomers of mirtazapine were also measured in patients being treated for depression with racemic mirtazapine. Mirtazapine was separated from plasma by solid-phase extraction using CERTIFY columns. Chromatographic separation was achieved using a Chiralpak AD column and pre-column and compounds were detected by their absorption at 290 nm. Imipramine was used as an internal standard. The assay was validated for each analyte in the concentration range 10–100 ng/ml. The coefficient of variance was 16% and 5.5% for(+)-mirtazapine for 10 and 100 ng/ml control specimens respectively and 15% and 7.3% for mirtazapine for 10 and 100 ng/ml control specimens respectively. This assay is appropriate for use in the clinical range. The range of plasma mirtazapine concentrations from eleven patients taking daily doses of 30–45 mg of racemate was <5 to 69 ng/ml for (+)-mirtazapine and 13–88 ng/ml for (−)-mirtazapine for blood specimens collected 10–17.5 h after taking the dose.  相似文献   

2.
A selective chiral high performance liquid chromatographic (HPLC) method was developed and validated to separate and quantify the enantiomers of a novel anticonvulsant agent, N-(4-chlorophenyl)-1-(4-pyridyl)ethylamine (AAP-Cl), in rat plasma. After extraction of the plasma samples with ethyl acetate, the separation was accomplished by an HPLC system consisting of a Chirex chiral column (250 mm x 4.6 mm i.d.) and a mobile phase of hexane:ethanol:tetrahydrofuran (280:20:40 (v/v)) containing trifluroacetic acid (0.3% (v/v)) and triethylamine (0.018% (v/v)) at a flow rate of 0.8 ml/min with UV detection. Male Sprague-Dawley rats were given (+)-AAP-Cl (10 and 20 mg/kg), (-)-AAP-Cl (10 mg/kg) or the racemic mixture (20 mg/kg) by i.v. bolus injection and serial blood samples were collected at different times after drug administration. (+)-AAP-Cl and (-)-AAP-Cl were separated with a resolution factor, Rs, of at least 1.4, and a separation factor, alpha, greater than 1.09. Linear calibration curves were obtained over the concentration range of 0.5-30 microg/ml in plasma for both (+)-AAP-Cl and (-)-AAP-Cl (R2 > or = 0.996) with a limit of quantitation of 100 ng/ml and the recovery was greater than 80% for both enantiomers. The accuracy and precision for both enantiomers ranged from 96 to 102% (+/-0.2-7%) at upper and lower concentrations. The plasma concentration-time profiles of the enantiomers of AAP-Cl were best described by a two-compartment open model with a mean terminal half-life of about 5h, volume of distribution at steady state of 3 l/kg and clearance of about 0.6l/(hkg) in rats. There was no significant difference between the pharmacokinetic parameters of (+)-AAP-Cl and (-)-AAP-Cl, suggesting that the disposition of AAP-Cl in rats is not enantioselective. In addition, no chiral inversion of (+)-AAP-Cl to (-)-AAP-Cl or vice versa was observed. The results of this investigation have shed some light on the mechanism of action and disposition of AAP-Cl in rats.  相似文献   

3.
Hatami M  Farhadi K  Tukmechi A 《Chirality》2012,24(8):634-639
The applicability of two-phase liquid-phase micro-extraction (LPME) in porous hollow polypropylene fiber for the sample preparation and the stereoselective pharmacokinetics of mebeverine (MEB) enantiomers (an antispasmodic drug) in rat after intramuscular administration were studied. Plasma was assayed for MEB enantiomer concentrations using stereospecific high-performance liquid chromatography with ultraviolet detection after a simple, inexpensive, and efficient preconcentration and clean-up hollow fiber-based LPME. Under optimized micro-extraction conditions, MEB enantiomers were extracted with 25 μl of 1-octanol within a lumen of a hollow fiber from 0.5 ml of plasma previously diluted with 4.5 ml alkalized water (pH 10). The chromatographic analysis was carried out through chiral liquid chromatography using a DELTA S column and hexane-isopropyl alcohol (85:15 v/v) containing 0.2% triethylamine as mobile phase. The mean recoveries of (+)-MEB and (-)-MEB were 75.5% and 71.0%, respectively. The limit of detection (LOD) was 3.0 ng/ml with linear response over the concentration range of 10-2500 ng/ml with correlation coefficient higher than 0.993 for both enantiomers. The pharmacokinetic studies showed that the mean plasma levels of (+)-MEB were higher than those of (-)-MEB at almost all time points. Also, (+)-MEB exhibited greater t(max) (peak time in concentration-time profile), C(max) (peak concentration in concentration-time profile), t(1/2) (elimination half-life), and AUC(0-240 min) (area under the curve for concentration versus time) and smaller CL (clearance) and V(d) (apparent distribution volume) than its antipode. The obtained results implied that the absorption, distribution, and elimination of (-)-MEB were more rapid than those of (+)-MEB and there were stereoselective differences in pharmacokinetics.  相似文献   

4.
A high-performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-ESI/MS) method for simultaneous stereoselective analysis of venlafaxine (VEN) and its major metabolite O-desmethylvenlafaxine (ODV) enantiomers in human plasma has been developed and validated. Chiral chromatography is performed on the CHRIOBIOTIC V (5 microm, 250 mm x 4.6 mm) column with mobile phase constituted of 30 mmol/l ammonium acetate-methanol (15:85, pH 6.0) at a flow rate of 1.0 ml/min and a postcolumn splitting ratio of 3:1. The compounds were ionized in the electrospray ionization (ESI) ion source of the mass spectrometer and detected using the selected ion recording (SIR) mode. Calibration curves obtained from spiked plasma were linear in the range of 5.0-400 ng/ml for S-(+)-VEN and R-(-)-VEN, 4.0-280 ng/ml for S-(+)-ODV and R-(-)-ODV, respectively, with linear correlation coefficient all above 0.999. The average extraction recoveries for all the four analytes were above 76%. The methodology recoveries were higher than 92%. The limit of detection were 1.0 ng/ml for S-(+)-VEN and R-(-)-VEN, 1.5 ng/ml for S-(+)-ODV and R-(-)-ODV, respectively. The intra- and inter-day variation coefficients were less than 9%.  相似文献   

5.
A stereoselective high-performance liquid chromatography assay method was developed for the quantitation of R-(+)- and S_-(−)-mepivacaine in human serum. The assay uses a Pirkle brush-type. ((S)-tert.-leucine, (R)-(-naphthyl)ethylamine stationary phase (Sumichiral OA-4700, 250×4 mm I.D.) at ambient temperature with a mobile phase of hexane-ethylenedichloride-absolutte methanol (85:10:5, v/v) for the separation of R-(+) and (S)-(−)-mepivacaine. The eluents were monitored using UV detection at 220 nm. Isolation of the analytes from serum was performed using a 1-ml C18 solid-phase extraction cartridge with high recovery and selectivity. The detection limits were 100 ng/ml for each enantiomer and the limits of quantitation were 150 ng/ml for both enantiomers. Linear calibration curves in the 150–2400 ng/ml range showed good correlation coefficients (r>0.9994, N=3). Precision and accuracy of the method were within 2.1–5.3 and 2.0–3.6%, respectively, for (R)-(+)-mepivacaine and 2.7–5.7% and 1.7–4.2%, respectively, for S-(−)-mepivacaine.  相似文献   

6.
A sensitive and specific liquid chromatography electrospray ionization-tandem mass spectrometry method for the enantioselective determination of the novel beta-adrenolytic compound, 1-(1-H-indol-4-yloxy)-3-{[2-(2-methoxyphenoxy)ethylo]amino} propan-2-ol, in rat plasma has been developed and validated. Chromatography was performed on a reversed-phase Chiralcel OD-RH analytical column (150x4.6 mm, 5 microm, Daicel Chemical Industries, Tokyo, Japan) with isocratic elution using a mobile phase containing acetonitrile and water with 0.01% formic acid. Detection was achieved by an Applied Biosystems MDS Sciex (Concord, Ontario, Canada) API 2000 triple quadrupole mass spectrometer. Electrospray ionization (ESI) was used for ion production. The limit of detection in the MRM mode was found to be 1.25 ng/ml. The limit of quantification of both enantiomers was 2.5 ng/ml. The precision and accuracy for both intra- and inter-day determination of 2F109 enantiomers ranged from 2.6 to 12% and from 89.1 to 107.1%. This analytical method allowed us to carry out pharmacokinetic studies in rats. Our findings demonstrate that 2F109 shows stereoselective disposition in rat plasma after i.v. administration. The terminal half-lives of (+)-(R)-2F109 and (-)-(S)-2F109 were 33.5 and 42.6 min, respectively. The AUC0-inf of (+)-(R)-2F109 exceeded that of (-)-(S)-2F109.  相似文献   

7.
A highly sensitive HPLC method for enantioselective determination of carvedilol in human whole blood and plasma was developed. Carvedilol and S-carazolol as an internal standard extracted from whole blood or plasma were separated using an enantioselective separation column (Chiralpak AD column; 2.0 diameter x 250 mm) without any chiral derivatizations. The mobile phase was hexane:isopropanol:diethylamine (78:22:1, v/v). The excitation and emission wavelengths were set at 284 and 343 nm, respectively. The limits of quantification for the S(-)- and R(+)-carvedilol enantiomers in plasma and blood were both 0.5 ng/ml. Intra- and inter-day variations were less than 5.9%. As an application of the assay, concentrations of carvedilol enantiomer in plasma and blood samples from 15 patients treated with carvedilol for congestive heart failure were determined.  相似文献   

8.
20 (R,S)-Ginsenoside-Rg2, an anti-shock agent, is prescribed as a racemate. To analyze simultaneously the enantiomers of 20 (R)-ginsenoside-Rg2 and 20 (S)-ginsenoside-Rg2 in plasma, a simple and reproducible high-performance liquid chromatographic (HPLC) method has been developed. The enantiomeric separation and determination were successfully achieved using a Diamonsil ODS C18 reversed-phase column (5 microm, 250 mm x 4.6 mm) with an RP18 (5 microm) guard column and a mobile phase of MeOH-aq. 4% H3PO4 (65:35, v/v, pH 5.1) with UV detection at 203 nm. Both enantiomers, 20 (R)-ginsenoside-Rg2 and 20 (S)-ginsenoside-Rg2, were well separated at 14.5 min and 13.6 min, respectively. The linear ranges of the standard curves were 2.0-250 microg/ml. The intra- and inter-day precision (R.S.D.) were 相似文献   

9.
A sensitive HPLC method for the quantification of praziquantel enantiomers in human serum is described. The method involves the use of a novel disc solid-phase extraction for sample clean-up prior to HPLC analysis and is also free of interference from trans-4-hydroxypraziquantel, the major metabolite of praziquantel. Chromatographic resolution of the enantiomers was performed on a reversed-phase cellulose-based chiral column (Chiralcel OJ-R) under isocratic conditions using a mobile phase consisting of 0.1 M sodium perchlorate–acetonitrile (66:34, v/v) at a flow-rate of 0.5 ml/min. Recoveries for R-(−)- and S-(+)-praziquantel enantiomers were in the range of 84–89% at 50–500 ng/ml levels. Intra-day and inter-day precisions calculated as R.S.D. were in the ranges of 3–8% and 1–8% for both enantiomers, respectively. Intra-day and inter-day accuracies calculated as percent error were in the 0.2–5% and 0.3–8% ranges for both enantiomers, respectively. Linear calibration curves were in the concentration range 10–600 ng/ml for each enantiomer in serum. The limit of quantification of each enantiomer was 10 ng/ml. The detection limit for each enantiomer in serum using a UV detector set at 210 nm was 5 ng/ml (S/N=2).  相似文献   

10.
A sensitive and stereospecific method for the quantitation of trimipramine enantiomers in human serum was developed. The assay involves the use of a novel mixed-mode disc solid-phase extraction for serum sample clean-up prior to HPLC analysis and is also free of interference from the enantiomers of desmethyltrimipramine, 2-hydroxytrimipramine, and 2-hydroxydesmethyltrimipramine, the three major metabolites of trimipramine. Chromatographic resolution of trimipramine enantiomers was performed on a reversed-phase cellulose-based chiral column (Chiralcel OD-R) under isocratic conditions using a mobile phase consisting of 0.3 M aqueous sodium perchlorate-acetonitrile (58:42, v/v) at a flow-rate of 0.5 ml/min. Recoveries for R- and S-trimipramine enantiomers were in the range of 93–96% at 25–185 ng/ml levels. Intra-day and inter-day precisions calculated as R.S.D. were in the ranges of 0.30-8.00% and 1.60-10.20% for both enantiomers, respectively. Intra-day and inter-day accuracies calculated as percent error were in the 0.01–2.10% and 1.00–3.00% ranges for both enantiomers, respectively. Linear calibration curves were in the concentration range 15–250 ng/ml for each enantiomer in serum. The limit of quantification of each enantiomer was 15 ng/ml. The detection limit for each enantiomer in serum using a UV detector set at 210 nm was 10 ng/ml (S/N =2). In addition, separation of the enantiomers of desmethyltrimipramine, 2-hydroxytrimipramine, and 2-hydroxydesmethyltrimipramine were investigated. The desmethyltrimipramine enantiomers could be resolved on the Chiralcel OD-R column under the same chromatographic conditions as the trimipramine enantiomers, but the other two metabolite enantiomers required different mobile phases on the Chiralcel OD-R column to achieve satisfactory resolution with Rs values of 1.00.  相似文献   

11.
Oh JW  Trung TQ  Sin KS  Kang JS  Kim KH 《Chirality》2007,19(7):528-535
A coupled achiral-chiral high performance liquid chromatographic method was developed and fully validated for the determination of bevantolol enantiomers, (-)-(S)-bevantolol and (+)-(R)-bevantolol, in human plasma. Plasma samples were prepared by solid phase extraction with Sep-Pak Plus C18 cartridges followed by HPLC. Bevantolol enantiomers and (+)-(R)-Propranolol as internal standard (IS) were preseparated from interfering components in plasma on a Phenomenex silica column and bevantolol enantiomers and IS were resolved and determined on a Chiralcel OJ-H chiral stationary phase. The two columns were connected by a switching valve equipped with silica precolumn. The Precolumn was used to concentrate bevantolol in the eluent from the achiral column before back flushing onto chiral phase. A detailed validation of the method was performed accordingly to FDA guidelines. For each enantiomer the assay was linear between 20 and 1600 ng/ml. The quantification limits of both bevantolol enantiomers were 20 ng/ml. The intraday variation was between 1.07 and 12.64% in relation to the measured concentration and the interday variation was 0.91 and 11.79%. The method has been applied to the determination of (-)-(S)- and (+)-(R)-bevantolol in plasma from healthy volunteers dosed with racemic bevantolol hydrochloride.  相似文献   

12.
The chiral separation of norgestrel enantiomers using reversed-phase high-performance liquid chromatography (RP-HPLC) was studied with hydroxypropyl-beta-cyclodextrin (HP-beta-CD) as chiral mobile phase additive. The effect of mobile phase composition, concentration of HP-beta-CD and column temperature on enantioselective separation were investigated. The quantification properties of the developed RP-HPLC method were examined. A baseline separation of norgestrel enantiomers was achieved on a Agilent ZORBAX Eclipse XDB-C8 column (150 mm x 4.6 mm i.d., 5 microm). The mobile phase was a mixture of acetonitrile and phosphate buffer (pH 5.0, 20 mM) containing 25 mM HP-beta-CD (30:70, v/v) with a flow rate of 1.0 ml/min. The UV detector was set at 240 nm. Calibration curves were linear (n=8) in the range of 0.2-25 microg/ml, the limit of detection and quantitation were 0.10 and 0.20 microg/ml, respectively, for racemic norgestrel. The values of RSD of repeatability and intermediate precision for spiked sample were less than 4.8%. The method was successfully applied to the enantioselective determination of this drug in stereoselective skin permeation study.  相似文献   

13.
A selective, accurate and reproducible high-performance liquid chromatographic (HPLC) method for the separation of individual enantiomers of DRF 2725 [R(+)-DRF 2725 and S(-)-DRF 2725 or ragaglitazar] was obtained on a chiral HPLC column (Chiralpak). During method optimization, the separation of enantiomers of DRF 2725 was investigated to determine whether mobile phase composition, flow-rate and column temperature could be varied to yield the base line separation of the enantiomers. Following liquid-liquid extraction, separation of enantiomers of DRF 2725 and internal standard (I.S., desmethyl diazepam) was achieved using an amylose based chiral column (Chiralpak AD) with the mobile phase, n-hexane-propanol-ethanol-trifluoro acetic acid (TFA) in the ratio of 89.5:4:6:0.5 (v/v). Baseline separation of DRF 2725 enantiomers and I.S., free from endogenous interferences, was achieved in less than 25 min. The eluate was monitored using an UV detector set at 240 nm. Ratio of peak area of each enantiomer to I.S. was used for quantification of plasma samples. Nominal retention times of R(+)-DRF 2725, S(-)-DRF 2725 and I.S. were 15.8, 17.7 and 22.4 min, respectively. The standard curves for DRF 2725 enantiomers were linear (R(2) > 0.999) in the concentration range 0.3-50 microg/ml for each enantiomer. Absolute recovery, when compared to neat standards, was 70-85% for DRF 2725 enantiomers and 96% for I.S. from rat plasma. The lower limit of quantification (LLOQ) for each enantiomers of DRF 2725 was 0.3 microg/ml. The inter-day precisions were in the range of 1.71-4.60% and 3.77-5.91% for R(+)-DRF 2725, S(-)-DRF 2725, respectively. The intra-day precisions were in the range of 1.06-11.5% and 0.58-12.7% for R(+)-DRF 2725, S(-)-DRF 2725, respectively. Accuracy in the measurement of quality control (QC) samples was in the range 83.4-113% and 83.3-113% for R(+)-DRF 2725, S(-)-DRF 2725, respectively. Both enantiomers and I.S. were stable in the battery of stability studies viz., bench-top (up to 6 h), auto-sampler (up to 12 h) and freeze/thaw cycles (n = 3). Stability of DRF 2725 enantiomers was established for 15 days at -20 degrees C. The application of the assay to a pharmacokinetic study of ragaglitazar [S(-)-DRF 2725] in rats is described. It was unequivocally demonstrated that ragaglitazar does not undergo chiral inversion to its antipode in vivo in rat plasma.  相似文献   

14.
We have developed a simple, sensitive, specific and reproducible stereoselective high-performance liquid chromatography technique for analytical separation of cisapride enantiomers and measurement of cisapride enantiomers in human plasma. A chiral analytical column (ChiralCel OJ) was used with a mobile phase consisting of ethanol–hexane–diethylamine (35:64.5:0.5, v/v/v). This assay method was linear over a range of concentrations (5–125 ng/ml) of each enantiomer. The limit of quantification was 5 ng/ml in human plasma for both cisapride enantiomers, while the limit of detection was 1 ng/ml. Intra- and inter-day C.V.s did not exceed 15% for all concentrations except at 12.5 ng/ml for EII (+)-cisapride, which was 20 and 19%, respectively. The clinical utility of the method was demonstrated in a pharmacokinetic study of normal volunteers who received a 20 mg single oral dose of racemic cisapride. The preliminary pharmacokinetic data obtained using the method we describe here provide evidence for the first time that cisapride exhibits stereoselective disposition.  相似文献   

15.
We present a method for the enantioselective analysis of albendazole sulfoxide (ABZSO) in plasma for application in clinical pharmacokinetic studies. ABZSO enantiomers were separated on a 5-μm Chiralcel OB-H® column (4.6 × 150 mm) using hexane:ethanol (93:7, v/v) as the mobile phase and fluorescence detection. ABZSO was extracted with chloroform:isopropanol (8:2, v/v) from 500-μl aliquots of acidified plasma, with full drug recovery. The proposed method presented quantitation limits of 20 ng/ml for (−)ABZSO and 50 ng/ml for (+)ABZSO and was linear up to a concentration of 5,000 ng/ml of each enantiomer. Chirality 9:722–726, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

16.
rac-Isradipine is a dihydropyridine type calcium antagonist. Its calcium entry blocking effect is due primarily to the (+)-(S)-enantiomer. This study describes a sensitive enantioselective method for the determination of isradipine in human serum. Following alkaline extraction into hexane, the enantiomers of isradipine are separated quantitatively by high-performance liquid chromatography on a Chiralcel OJ column at 39°C. The collected fractions were evaporated and assayed using capillary gas chromatography on a HP 50+ column with nitrogen selective detection. Using 2.0 ml of serum, 0.7 nmol/1 (0.26 ng/ml) of each enantiomer could be determined with acceptable precision. The method has successfully been used to measure (+)-(S)- and (−)-(R)-isradipine concentrations in samples from volunteers after intravenous and oral administration of isradipine. Chirality 10:808–812, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
18.
A highly sensitive and enantioselective assay has been developed and validated for the estimation of torcetrapib (TTB) enantiomers [(+)-TTB and (-)-TTB] in hamster plasma with chiral liquid chromatography coupled to tandem mass spectrometry with an atmospheric pressure chemical ionization interface in the negative-ion mode. The assay procedure involves liquid-liquid extraction of TTB enantiomers and IS (DRL-16126) from 100 microL hamster plasma with acetonitrile. TTB enantiomers were separated using n-hexane:propanol (80:20, v/v) at a flow rate of 0.7 mL/min on a Chiralpak AD column. The MS/MS ion transitions monitored were 599.2-->340.2 for TTB and 623.2-->298.1 for IS. Absolute recovery was found to be between 64 and 68% for TTB enantiomers and >100% for IS. The standard curves for TTB enantiomers were linear (r(2)>0.995) in the concentration range 5-2500 ng/mL for each enantiomer with an LLOQ of 5 ng/mL for each enantiomer. The inter- and intra-day precisions were in the range of 10.5-12.4 and 9.15-11.5% and 3.75-12.9 and 5.16-12.5% for (+)-TTB and (-)-TTB, respectively. Accuracy in the measurement of quality control (QC) samples was in the range 91.3-105 and 88.6-111% for (+)-TTB and (-)-TTB, respectively. This novel method has been applied to the study of stereoselective oral pharmacokinetics of (-)-TTB.  相似文献   

19.
A sensitive and specific method for determination of viaminate in human plasma by using high-performance liquid chromatography coupled with electrospray tandem mass spectrometry (LC-MS/MS) was developed in this study. The plasma samples were simply deproteinated, extracted, evaporated, and then reconstituted in 200 microl of methanol prior to analysis. Chromatographic separation was carried out on a Shimadzu VP-ODS column (250 mm x 2.0 mm, 5 microm) with a mobile phase of methanol-water (95:5, v/v) at a flow rate of 0.2 ml/min. Quantification was performed in the negative-ion electrospray ionization mode by selected ion monitoring of the product ions at m/z 164 for viaminate and m/z 109 for testosterone propionate which was used as the internal standard. The corresponding parent ions were m/z 446 and m/z 345. A linear calibration curve was observed within the concentration range of 0.10-200 ng/ml. The lowest limit of quantitation (LLOQ) was 0.1 ng/ml. The extraction-efficiency at three concentrations was 100.7, 93.6, and 99.7%. Practical utility of this new LC-MS/MS method was confirmed in pilot pharmacokinetic studies in humans following oral administration.  相似文献   

20.
A highly sensitive and specific liquid chromatography/tandem mass spectrometric (LC-MS/MS) method for investigating the pharmacokinetics of adrafinil in rats was developed. Rat serum pretreated by solid-phase extraction (SPE) was analyzed by LC-MS/MS with an electrospray ionization (ESI) interface. The mobile phase consisted of acetonitrile:water:acetic acid (35:65:0.1, v/v/v) in an isocratic elution mode pumped at 1.0ml/min. The analytical column (250mmx4.6mm i.d.) was packed with Kromasil C(18) material (5.0mum). The standard curve was linear from 16.5 to 5000ng/ml. The assay was specific, accurate (R.S.D.<2.6%), precise and reproducible (within- and between-day precisions R.S.D. <7.0% and <9.0%, respectively). Adrafinil in rat serum was stable over three freeze-thaw cycles at ambient temperature for 6h. The method had a lower limit of quantitation of 16.5ng/ml, which offered high sensitivity for the determination of adrafinil in serum. The method was successfully applied to pharmacokinetic studies of adrafinil after an oral administration to rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号