首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The spike (S) protein of severe acute respiratory syndrome associated coronavirus (SARS-CoV) is a major antigenic determinant capable of inducing protective immunity. Recently, a small fragment on the SARS-CoV S protein (residues 318-510) was characterized as a minimal receptor-binding domain (RBD), which mediates virus binding to angiotensin-converting enzyme 2, the functional receptor on susceptible cells. In this study, we demonstrated that a fusion protein containing RBD linked to human IgG1 Fc fragment (designated RBD-Fc) induced high titer of RBD-specific Abs in the immunized mice. The mouse antisera effectively neutralized infection by both SARS-CoV and SARS pseudovirus with mean 50% neutralization titers of 1/15,360 and 1/24,737, respectively. The neutralization determinants on the RBD of S protein were characterized by a panel of 27 mAbs isolated from the immunized mice. Six groups of conformation-dependent epitopes, designated as Conf I-VI, and two adjacent linear epitopes were identified by ELISA and binding competition assays. The Conf IV and Conf V mAbs significantly blocked RBD-Fc binding to angiotensin-converting enzyme 2, suggesting that their epitopes overlap with the receptor-binding sites in the S protein. Most of the mAbs (23 of 25) that recognized the conformational epitopes possessed potent neutralizing activities against SARS pseudovirus with 50% neutralizing dose ranging from 0.005 to 6.569 microg/ml. Therefore, the RBD of SARS S protein contains multiple conformational epitopes capable of inducing potent neutralizing Ab responses, and is an important target site for developing vaccines and immunotherapeutics.  相似文献   

2.
He Y  Li J  Heck S  Lustigman S  Jiang S 《Journal of virology》2006,80(12):5757-5767
The spike (S) glycoprotein of severe acute respiratory syndrome coronavirus (SARS-CoV) mediates the receptor interaction and immune recognition and is considered a major target for vaccine design. However, its antigenic and immunogenic properties remain to be elucidated. In this study, we immunized mice with full-length S protein (FL-S) or its extracellular domain (EC-S) expressed by recombinant baculoviruses in insect cells. We found that the immunized mice developed high titers of anti-S antibodies with potent neutralizing activities against SARS pseudoviruses constructed with the S proteins of Tor2, GD03T13, and SZ3, the representative strains of 2002 to 2003 and 2003 to 2004 human SARS-CoV and palm civet SARS-CoV, respectively. These data suggest that the recombinant baculovirus-expressed S protein vaccines possess excellent immunogenicity, thereby inducing highly potent neutralizing responses against human and animal SARS-CoV variants. The antigenic structure of the S protein was characterized by a panel of 38 monoclonal antibodies (MAbs) isolated from the immunized mice. The epitopes of most anti-S MAbs (32 of 38) were localized within the S1 domain, and those of the remaining 6 MAbs were mapped to the S2 domain. Among the anti-S1 MAbs, 17 MAbs targeted the N-terminal region (amino acids [aa] 12 to 327), 9 MAbs recognized the receptor-binding domain (RBD; aa 318 to 510), and 6 MAbs reacted with the C-terminal region of S1 domain that contains the major immunodominant site (aa 528 to 635). Strikingly, all of the RBD-specific MAbs had potent neutralizing activity, 6 of which efficiently blocked the receptor binding, confirming that the RBD contains the main neutralizing epitopes and that blockage of the receptor association is the major mechanism of SARS-CoV neutralization. Five MAbs specific for the S1 N-terminal region exhibited moderate neutralizing activity, but none of the MAbs reacting with the S2 domain and the major immunodominant site in S1 showed neutralizing activity. All of the neutralizing MAbs recognize conformational epitopes. These data provide important information for understanding the antigenicity and immunogenicity of S protein and for designing SARS vaccines. This panel of anti-S MAbs can be used as tools for studying the structure and function of the SARS-CoV S protein.  相似文献   

3.
Liu L  Fang Q  Deng F  Wang H  Yi CE  Ba L  Yu W  Lin RD  Li T  Hu Z  Ho DD  Zhang L  Chen Z 《Journal of virology》2007,81(9):4694-4700
The severe acute respiratory syndrome (SARS) outbreak of 2002 and 2003 occurred as a result of zoonotic transmission. Coronavirus (CoV) found in naturally infected palm civet (civet-CoV) represents the closest genetic relative to SARS-CoV, but the degree and the determinants of cross-neutralization among these viruses remain to be investigated. Studies indicate that the receptor binding domain (RBD) of the SARS-CoV spike (S) glycoprotein contains major determinants for viral entry and neutralization. We aim to characterize the impact of natural mutations within the RBDs of civet-CoVs on viral entry and cross-neutralization. In this study, the S glycoprotein genes were recovered from naturally infected civets in central China (Hubei province), extending the geographic distribution of civet-CoV beyond the southeastern province of Guangdong. Moreover, pseudoviruses generated in our laboratory with four civet S genes, each with a distinct RBD, infected cells expressing human receptor angiotensin-converting enzyme 2, but with 90 to 95% less efficiency compared to that of SARS-CoV. These four civet S genes were also constructed as DNA vaccines to immunize mice. Immunized sera elicited against most civet S glycoproteins displayed potent neutralizing activities against autologous viruses but were much less efficient (50% inhibitory concentration, 20- to 40-fold) at neutralizing SARS-CoV and vice versa. Convalescence-phase sera from humans were similarly ineffective against the dominant civet pseudovirus. Our findings suggest that the design of SARS vaccine should consider not only preventing the reemergence of SARS-CoV but also providing cross-protection, thus interrupting zoonotic transmission of a group of genetically divergent civet CoVs of broad geographic origin.  相似文献   

4.
Human monoclonal antibodies (MAbs) were selected from semisynthetic antibody phage display libraries by using whole irradiated severe acute respiratory syndrome (SARS) coronavirus (CoV) virions as target. We identified eight human MAbs binding to virus and infected cells, six of which could be mapped to two SARS-CoV structural proteins: the nucleocapsid (N) and spike (S) proteins. Two MAbs reacted with N protein. One of the N protein MAbs recognized a linear epitope conserved between all published human and animal SARS-CoV isolates, and the other bound to a nonlinear N epitope. These two N MAbs did not compete for binding to SARS-CoV. Four MAbs reacted with the S glycoprotein, and three of these MAbs neutralized SARS-CoV in vitro. All three neutralizing anti-S MAbs bound a recombinant S1 fragment comprising residues 318 to 510, a region previously identified as the SARS-CoV S receptor binding domain; the nonneutralizing MAb did not. Two strongly neutralizing anti-S1 MAbs blocked the binding of a recombinant S fragment (residues 1 to 565) to SARS-CoV-susceptible Vero cells completely, whereas a poorly neutralizing S1 MAb blocked binding only partially. The MAb ability to block S1-receptor binding and the level of neutralization of the two strongly neutralizing S1 MAbs correlated with the binding affinity to the S1 domain. Finally, epitope mapping, using recombinant S fragments (residues 318 to 510) containing naturally occurring mutations, revealed the importance of residue N479 for the binding of the most potent neutralizing MAb, CR3014. The complete set of SARS-CoV MAbs described here may be useful for diagnosis, chemoprophylaxis, and therapy of SARS-CoV infection and disease.  相似文献   

5.
SARS-CoV假病毒中和试验技术的建立及评价   总被引:1,自引:1,他引:0  
为避免传统的SARS病毒中和试验需要操作活毒而存在的生物安全隐患,建立了基于假病毒系统、操作较安全的SARS中和试验技术平台。本研究应用高效表达SARS-CoV S(密码子优化的全长S蛋白,简称S)的真核表达载体(pVRC8304),与HIV慢病毒包装质粒(p CMV△8.2)及转移质粒(pHR′CMV EGFP)3个质粒载体系统共同转染人胚肾细胞293T,包装了SARS假病毒;通过SARS假病毒感染的RD-A细胞中标记基因EGFP表达的分析,确定SARS假病毒能有效进入细胞,建立了可在BSL-2级实验室操作的SARS病毒中和试验技术平台。用该技术平台对不同免疫血清进行了中和抗体分析,并比较了基于假病毒和基于SARS活病毒的中和试验效果。结果显示:SARS假病毒和SARS活病毒两个中和试验系统获得中和抗体滴度变化趋势一致,表明本研究构建的SARS假病毒可替代SARS活病毒用于建立操作上安全的SARS病毒中和试验技术平台。  相似文献   

6.
Immune sera from convalescent patients have been shown to be effective in the treatment of patients infected with Severe Acute Respiratory Syndrome Virus (SARS-CoV) making passive immune therapy with human monoclonal antibodies an attractive treatment strategy for SARS. Previously, using Xenomouse (Amgen British Columbia Inc), we produced a panel of neutralizing Human monoclonal antibodies (HmAbs) that could specifically bind to the ectodomain of the SARS-CoV spike (S) glycoprotein. Some of the HmAbs were S1 domain specific, while some were not. In this study, we describe non-S1 binding neutralizing HmAbs that can specifically bind to the conserved S2 domain of the S protein. However, unlike the S1 specific HmAbs, the S2 specific HmAbs can neutralize pseudotyped viruses expressing different S proteins containing receptor binding domain sequences of various clinical isolates. These data indicate that HmAbs which bind to conserved regions of the S protein are more suitable for conferring protection against a wide range of SARS-CoV variants and have implications for generating therapeutic antibodies or subunit vaccines against other enveloped viruses.  相似文献   

7.
In 2002, severe acute respiratory syndrome-associated coronavirus (SARS-CoV) emerged in humans, causing a global epidemic. By phylogenetic analysis, SARS-CoV is distinct from known CoVs and most closely related to group 2 CoVs. However, no antigenic cross-reactivity between SARS-CoV and known CoVs was conclusively and consistently demonstrated except for group 1 animal CoVs. We analyzed this cross-reactivity by an enzyme-linked immunosorbent assay (ELISA) and Western blot analysis using specific antisera to animal CoVs and SARS-CoV and SARS patient convalescent-phase or negative sera. Moderate two-way cross-reactivity between SARS-CoV and porcine CoVs (transmissible gastroenteritis CoV [TGEV] and porcine respiratory CoV [PRCV]) was mediated through the N but not the spike protein, whereas weaker cross-reactivity occurred with feline (feline infectious peritonitis virus) and canine CoVs. Using Escherichia coli-expressed recombinant SARS-CoV N protein and fragments, the cross-reactive region was localized between amino acids (aa) 120 to 208. The N-protein fragments comprising aa 360 to 412 and aa 1 to 213 reacted specifically with SARS convalescent-phase sera but not with negative human sera in ELISA; the fragment comprising aa 1 to 213 cross-reacted with antisera to animal CoVs, whereas the fragment comprising aa 360 to 412 did not cross-react and could be a potential candidate for SARS diagnosis. Particularly noteworthy, a single substitution at aa 120 of PRCV N protein diminished the cross-reactivity. We also demonstrated that the cross-reactivity is not universal for all group 1 CoVs, because HCoV-NL63 did not cross-react with SARS-CoV. One-way cross-reactivity of HCoV-NL63 with group 1 CoVs was localized to aa 1 to 39 and at least one other antigenic site in the N-protein C terminus, differing from the cross-reactive region identified in SARS-CoV N protein. The observed cross-reactivity is not a consequence of a higher level of amino acid identity between SARS-CoV and porcine CoV nucleoproteins, because sequence comparisons indicated that SARS-CoV N protein has amino acid identity similar to that of infectious bronchitis virus N protein and shares a higher level of identity with bovine CoV N protein within the cross-reactive region. The TGEV and SARS-CoV N proteins are RNA chaperons with long disordered regions. We speculate that during natural infection, antibodies target similar short antigenic sites within the N proteins of SARS-CoV and porcine group 1 CoVs that are exposed to an immune response. Identification of the cross-reactive and non-cross-reactive N-protein regions allows development of SARS-CoV-specific antibody assays for screening animal and human sera.  相似文献   

8.
The spike (S) protein of severe acute respiratory syndrome (SARS) coronavirus (CoV), a type I transmembrane envelope glycoprotein, consists of S1 and S2 domains responsible for virus binding and fusion, respectively. The S1 contains a receptor-binding domain (RBD) that can specifically bind to angiotensin-converting enzyme 2 (ACE2), the receptor on target cells. Here we show that a recombinant fusion protein (designated RBD-Fc) containing 193-amino acid RBD (residues 318-510) and a human IgG1 Fc fragment can induce highly potent antibody responses in the immunized rabbits. The antibodies recognized RBD on S1 domain and completely inhibited SARS-CoV infection at a serum dilution of 1:10,240. Rabbit antisera effectively blocked binding of S1, which contains RBD, to ACE2. This suggests that RBD can induce highly potent neutralizing antibody responses and has potential to be developed as an effective and safe subunit vaccine for prevention of SARS.  相似文献   

9.
The spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) has two major functions: interacting with the receptor to mediate virus entry and inducing protective immunity. Coincidently, the receptor-binding domain (RBD, residues 318-510) of SAR-CoV S protein is a major antigenic site to induce neutralizing antibodies. Here, we used RBD-Fc, a fusion protein containing the RBD and human IgG1 Fc, as a model in the studies and found that a single amino acid substitution in the RBD (R441A) could abolish the immunogenicity of RBD to induce neutralizing antibodies in immunized mice and rabbits. With a panel of anti-RBD mAbs as probes, we observed that R441A substitution was able to disrupt the majority of neutralizing epitopes in the RBD, suggesting that this residue is critical for the antigenic structure responsible for inducing protective immune responses. We also demonstrated that the RBD-Fc bearing R441A mutation could not bind to soluble and cell-associated angiotensin-converting enzyme 2 (ACE2), the functional receptor for SARS-CoV and failed to block S protein-mediated pseudovirus entry, indicating that this point mutation also disrupted the receptor-binding motif (RBM) in the RBD. Taken together, these data provide direct evidence to show that a single amino acid residue at key position in the RBD can determine the major function of SARS-CoV S protein and imply for designing SARS vaccines and therapeutics.  相似文献   

10.
The outer membrane protein PorB is a conserved chlamydial protein that functions as a porin and is capable of eliciting neutralizing Abs. A topological antigenic map was developed using overlapping synthetic peptides representing the Chlamydia trachomatis PorB sequence and polyclonal immune sera. To identify which antigenic determinants were surface accessible, monospecific antisera were raised to the PorB peptides and were used in dot-blot and ELISA-based absorption studies with viable chlamydial elementary bodies (EBs). The ability of the surface-accessible antigenic determinants to direct neutralizing Ab responses was investigated using standardized in vitro neutralization assays. Four major antigenic clusters corresponding to Phe(34)-Leu(59) (B1-2 and B1-3), Asp(112) -Glu(145) (B2-3 and B2-4), Gly(179)-Ala(225) (B3-2 to B3-4), and Val(261)-Asn(305) (B4-4 to B5-2) were identified. Collectively, the EB absorption and dot-blot assays established that the immunoreactive PorB Ags were exposed on the surface of chlamydial EBs. Peptide-specific antisera raised to the surface-accessible Ags neutralized chlamydial infectivity and demonstrated cross-reactivity to synthetic peptides representing analogous C. pneumoniae PorB sequences. Furthermore, neutralization of chlamydial infectivity by C. trachomatis PorB antisera was inhibited by synthetic peptides representing the surface-exposed PorB antigenic determinants. These findings demonstrate that PorB Ags may be useful for development of chlamydial vaccines.  相似文献   

11.
The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) is the etiological agent for the infectious disease, SARS, which first emerged 10 years ago. SARS-CoV is a zoonotic virus that has crossed the species barriers to infect humans. Bats, which harbour a diverse pool of SARS-like CoVs (SL-CoVs), are believed to be the natural reservoir. The SARS-CoV surface Spike (S) protein is a major antigenic determinant in eliciting neutralizing antibody production during SARS-CoV infection. In our previous work, we showed that a panel of murine monoclonal antibodies (mAbs) that target the S2 subunit of the S protein are capable of neutralizing SARS-CoV infection in vitro (Lip KM et al, J Virol. 2006 Jan; 80(2): 941–50). In this study, we report our findings on the characterization of one of these mAbs, known as 1A9, which binds to the S protein at a novel epitope within the S2 subunit at amino acids 1111–1130. MAb 1A9 is a broadly neutralizing mAb that prevents viral entry mediated by the S proteins of human and civet SARS-CoVs as well as bat SL-CoVs. By generating mutant SARS-CoV that escapes the neutralization by mAb 1A9, the residue D1128 in S was found to be crucial for its interaction with mAb 1A9. S protein containing the substitution of D1128 with alanine (D1128A) exhibited a significant decrease in binding capability to mAb 1A9 compared to wild-type S protein. By using a pseudotyped viral entry assay, it was shown that the D1128A substitution in the escape virus allows it to overcome the viral entry blockage by mAb 1A9. In addition, the D1128A mutation was found to exert no effects on the S protein cell surface expression and incorporation into virion particles, suggesting that the escape virus retains the same viral entry property as the wild-type virus.  相似文献   

12.
Coronaviruses (CoV) mature by a budding process at intracellular membranes. Here we showed that the major surface protein S of a porcine CoV (transmissible gastroenteritis virus) is not transported to the cell surface but is retained intracellularly. Site-directed mutagenesis indicated that a tyrosine-dependent signal (YXXI) in the cytoplasmic tail is essential for intracellular localization of the S protein. Surface expression of mutant proteins was evident by immunofluorescence analysis and surface biotinylation. Intracellularly retained S proteins only contained endoglycosidase H-sensitive N-glycans, whereas mutant proteins that migrated to the plasma membrane acquired N-linked oligosaccharides of the complex type. Corresponding tyrosine residues are present in the cytoplasmic tails of the S proteins of other animal CoV but not in the tail portion of the S protein of severe acute respiratory syndrome (SARS)-CoV. Changing the SEPV tetrapeptide in the cytoplasmic tail to YEPI resulted in intracellular retention of the S protein of SARS-CoV. As the S proteins of CoV have receptor binding and fusion activities and are the main target of neutralizing antibodies, the differences in the transport behavior of the S proteins suggest different strategies in the virus host interactions between SARS-CoV and other coronaviruses.  相似文献   

13.
[目的]阐明SARS病毒感染后能否再次感染,疫苗产生的抗体中长期保护效果,被动免疫是否真正安全有效等,为防治SARS提供实验依据。[方法]实验分4组,分别为一组(SARS恒河猴恢复组):用感染SARS-CoV发病12月后的4只恒河猴,均有中和抗体产生。二组(SARS食蟹猴恢复组):用感染SARS-CoV发病12月后的3只食蟹猴,均有中和抗体产生。三组(SARS血清输入恒河猴组):3只恒河猴,病毒接种时中和抗体阴性。病毒接种两天后输入抗体阳性血清(恒河猴血清,感染获得,效价为:1:128),用量10ml/只,分别经肌肉和静脉输入,各5ml。四组(恒河猴SARS-CoV感染组):2只恒河猴,病毒接种时中和抗体阴性。SARSCo-V经鼻腔接种,在感染的第1天开始到7天安乐死时,不同时间取咽拭子、血液和脏器,进行病毒分离,RT-PCR检测和中和抗体测定。[结果]一组(SARS恒河猴恢复组):接种SARS-CoV后未见发热等异常临床表现。血清生化无ALT、LDH、CK、总蛋白和血清白蛋白异常。3只猴在接种病毒后的咽拭子中,RT-PCR分别未检出、第1天检出、第1-3天中检出病毒。第2、5、7天咽拭子中、7天安乐死时血、肺、肝、脾和淋巴结等组织中病毒分离均为阴性。2只猴肺组织病理学检查见轻度肺炎。二组(SARS食蟹猴恢复组):接种3只未见任何不良临床表现,血清生化5项正常。3只猴在接种病毒后的咽拭子标本中,RT-PCR分别未检出SARS病毒、在第1-2天检出、在第1-3天中检出病毒。第2、5、7天咽拭子中、7天安乐死时血、肺、肝、脾和淋巴结等组织中病毒分离均为阴性。3只猴肺组织病理学检查见轻度肺炎等。三组(SARS血清输入恒河猴组):3只恒河猴在病毒接种的第2-5天时有一过性的体温升高,3940℃。血清生化5项正常。3只猴在接种病毒后的咽拭子标本中,RT-PCR分别在第1-3、第1-4天和第1-2天检出SARS病毒。2只猴第7天咽拭子中病毒分离阳性。另外1只在第2、5、7天咽拭子中、7天安乐死时血、肺、肝、脾和淋巴结等组织中病毒分离均为阴性。3只猴肺组织病理学检查见轻度肺炎等。四组(SARS恒河猴SARS-CoV感染组):2只猴病毒接种后,第2-4天时有一过性的体温升高,3940℃。2只进行接种病毒后1-7天安乐死时,RT-PCR在恒河猴的咽拭子标本中连续检出SARS病毒。在第2、5天咽拭子中、7天安乐死时肺组织中病毒分离阳性。2只猴肺等组织病理学检查发现肺组织表面局部有轻度发灰实变现象,可见到间质性肺炎病变,内皮细胞受损,出血和水肿。大多数肺泡没有完整的内衬细胞残留,肺泡间隔变宽并被以吞噬细胞为主的单核炎症细胞浸润,同SARS肺炎改变。实验表明,前期感染产生中和抗体的恒河猴、食蟹猴再次感染病毒,和模型对照猴比较,动物肺组织等只出现轻微或无病理变化,RT-PCR检出时间大大缩短,病毒培养未能分离出病毒,所有这些指标,均证实中和抗体有明显的保护作用,是有效的。被动免疫从结果来看,有一定的作用,但保护作用弱。  相似文献   

14.
Neutralizing antibody responses to the surface glycoproteins of enveloped viruses play an important role in immunity. Many of these glycoproteins, including the severe acute respiratory syndrome-coronavirus (SARS-CoV) spike (S) protein form trimeric units in the membrane of the native virion. There is substantial experimental and pre-clinical evidence showing that the S protein is a promising lead for vaccines and therapeutics. Previously we generated a panel of monoclonal antibodies (mAbs) to whole inactivated SARS-CoV which neutralize the virus in vitro.1,2 Here, we define their specificity and affinity, map several of their epitopes and lastly characterise chimeric versions of them. Our data show that the neutralizing mAbs bind to the angiotensin-converting enzyme 2 (ACE2) receptor-binding domain (RBD) of the SARS S protein. Three of the chimeric mAbs retain their binding specificity while one conformational mAb, F26G19, lost its ability to bind the S protein despite high level expression. The affinity for recombinant S is maintained in all of the functional chimeric versions of the parental mAbs. Both parental mAb F26G18 and the chimeric version neutralize the TOR2 strain of SARS-CoV with essentially identical titres (2.07 and 2.47 nM, respectively). Lastly, a comparison with other neutralizing mAbs to SARS-CoV clearly shows that the dominance of a 33 amino acid residue loop of the SARS-CoV RBD is independent of repertoire, species, quaternary structure, and importantly, the technology used to derive the mAbs. In cases like this, the dominance of a compact RBD antigenic domain and the central role of the S protein in pathogenesis may inherently create immunoselection pressure on viruses to evolve more complex evasion strategies or die out of a host species. The apparent simplicity of the mechanism of SARS-CoV neutralization is in stark contrast to the complexity shown by other enveloped viruses.Key words: SARS coronavirus, monoclonal antibody, neutralizing, epitope, immunochemistry  相似文献   

15.
The immunological characteristics of SARS-CoV spike protein were investigated by administering mice with plasmids encoding various S gene fragments. We showed that the secreting forms of S1, S2 subunits and the N-terminus of S1 subunit (residues 18-495) were capable of eliciting SARS-CoV specific antibodies and the region immediate to N-terminus of matured S1 protein contained an important immunogenic determinant for elicitation of SARS-CoV specific antibodies. In addition, mice immunized with plasmids encoding S1 fragment developed a Th1-mediated antibody isotype switching. Another interesting finding was that mouse antibodies elicited separately by plasmids encoding S1 and S2 subunits cooperatively neutralized SARS-CoV but neither the S1 nor S2 specific antibodies did, suggesting the possible role of both S1 and S2 subunits in host cell docking and entry. These results provide insights into understanding the immunological characteristics of spike protein and the development of subunit vaccines against SARS-CoV.  相似文献   

16.
The severe acute respiratory syndrome (SARS) is a newly emerging human infectious disease caused by the severe acute respiratory syndrome coronavirus (SARS-CoV). The spike (S) protein of SARS-CoV is a major virion structural protein. It plays an important role in the interaction with receptors and neutralizing antibodies. In this study, the S1 domain of the spike protein and three truncated fragments were expressed by fusion with GST in a pGEX-6p-1 vector. Western blot results demonstrated that the 510-672 fragment of the S1 domain is a linear epitope dominant region. To map the antigenic epitope of this linear epitope dominant region, a set of 16 partially overlapping fragments spanning the fragment were fused with GST and expressed. Four antigenic epitopes S1C3 (539-559), S1C4 (548-567), S1C7/8 (583-606), and S1C10/11 (607-630) were identified. Immunization of mice with each of the four antigenic epitope-fused proteins revealed that all four proteins could elicit spike protein specific antisera. All of them were able to bind to the surface domain of the whole spike protein expressed by recombinant baculovirus in insect cells. Identification of antigenic epitopes of the spike protein of SARS-CoV may provide the basis for the development of immunity-based prophylactic, therapeutic, and diagnostic clinical techniques for the severe acute respiratory syndrome.  相似文献   

17.
The coronaviruses (CoVs) are enveloped viruses of animals and humans associated mostly with enteric and respiratory diseases, such as the severe acute respiratory syndrome and 10–20% of all common colds. A subset of CoVs uses the cell surface aminopeptidase N (APN), a membrane-bound metalloprotease, as a cell entry receptor. In these viruses, the envelope spike glycoprotein (S) mediates the attachment of the virus particles to APN and subsequent cell entry, which can be blocked by neutralizing antibodies. Here we describe the crystal structures of the receptor-binding domains (RBDs) of two closely related CoV strains, transmissible gastroenteritis virus (TGEV) and porcine respiratory CoV (PRCV), in complex with their receptor, porcine APN (pAPN), or with a neutralizing antibody. The data provide detailed information on the architecture of the dimeric pAPN ectodomain and its interaction with the CoV S. We show that a protruding receptor-binding edge in the S determines virus-binding specificity for recessed glycan-containing surfaces in the membrane-distal region of the pAPN ectodomain. Comparison of the RBDs of TGEV and PRCV to those of other related CoVs, suggests that the conformation of the S receptor-binding region determines cell entry receptor specificity. Moreover, the receptor-binding edge is a major antigenic determinant in the TGEV envelope S that is targeted by neutralizing antibodies. Our results provide a compelling view on CoV cell entry and immune neutralization, and may aid the design of antivirals or CoV vaccines. APN is also considered a target for cancer therapy and its structure, reported here, could facilitate the development of anti-cancer drugs.  相似文献   

18.
Although the initial isolates of the severe acute respiratory syndrome (SARS) coronavirus (CoV) are sensitive to neutralization by antibodies through their spike (S) glycoprotein, variants of S have since been identified that are resistant to such inhibition. Optimal vaccine strategies would therefore make use of additional determinants of immune recognition, either through cellular or expanded, cross-reactive humoral immunity. Here, the cellular and humoral immune responses elicited by different combinations of gene-based and inactivated viral particles with various adjuvants have been assessed. The T-cell response was altered by different prime-boost immunizations, with the optimal CD8 immunity induced by DNA priming and replication-defective adenoviral vector boosting. The humoral immune response was enhanced most effectively through the use of inactivated virus with adjuvants, either MF59 or alum, and was associated with stimulation of the CD4 but not the CD8 response. The use of inactivated SARS virus with MF59 enhanced the CD4 and antibody response even after gene-based vaccination. Because both cellular and humoral immune responses are generated by gene-based vaccination and inactivated viral boosting, this strategy may prove useful in the generation of SARS-CoV vaccines.  相似文献   

19.
Identification of two antigenic epitopes on SARS-CoV spike protein   总被引:9,自引:0,他引:9  
The spike (S) protein of severe acute respiratory syndrome-coronavirus (SARS-CoV) is a major virion structural protein. It plays an important role in interaction with receptor and inducing neutralizing antibodies. In the study, six tentative antigenic epitopes (S1 S2 S3 S4 S5 S6) of the spike protein of SARS-CoV were predicted by bio-informatics analysis, and a multi-epitope chimeric gene of S1-S2-S3-S4-S5-S6 was synthesized and fused to downstream GST gene in pGEX-6p-1. The Western blotting demonstrated that SARS patient convalescent serum could recognize the recombinant fusion protein. A number of monoclonal antibodies were developed against the fusion protein. In further, the six predicted epitope genes were individually fused to GST of pGEX-6p-1 and expressed in Escherichia coli BL21, respectively. Among six fusion peptides, S5 reacted with monoclonal antibody D3C5 and S2 reacted with monoclonal antibody D3D1 against spike protein of SARS-CoV. The epitopes recognized by monoclonal antibodies D3C5 and D3D1 are linear, and correspond to 447-458 and 789-799 amino acids of spike protein of SARS-CoV, respectively. Identification of antigenic epitope of spike protein of SARS-CoV could provide the basis for the development of immunity-based prophylactic, therapeutic, and diagnostic techniques for the control of severe acute respiratory syndrome.  相似文献   

20.
Severe acute respiratory syndrome (SARS) is an emerging infectious disease associated with a novel coronavirus and causing worldwide outbreaks. SARS coronavirus (SARS-CoV) is an enveloped RNA virus, which contains several structural proteins. Among these proteins, spike (S) protein is responsible for binding to specific cellular receptors and is a major antigenic determinant, which induces neutralizing antibody. In order to analyze the antigenicity and receptor-binding ability of SARS-CoV S protein, we expressed the S protein in Escherichia coli using a pET expression vector. After the isopropyl-beta-D-thiogalactoside induction, S protein was expressed in the soluble form and purified by nickel-affinity chromatography to homogeneity. The amount of S protein recovered was 0.2-0.3mg/100ml bacterial culture. The S protein was recognized by sera from SARS patients by ELISA and Western blot, which indicated that recombinant S protein retained its antigenicity. By biotinylated ELISA and Western blot using biotin-labeled S protein as the probe, we identified 130-kDa and 140-kDa proteins in Vero cells that might be the cellular receptors responsible for SARS-CoV infection. Taken together, these results suggested that recombinant S protein exhibited the antigenicity and receptor-binding ability, and it could be a good candidate for further developing SARS vaccine and anti-SARS therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号