首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study demonstrates the production of algal biodiesel from Dunaliella tertiolecta, Nannochloropsis oculata, wild freshwater microalgae, and macroalgae lipids using a highly efficient continuous catalytic process. The heterogeneous catalytic process uses supercritical methanol and porous titania microspheres in a fixed bed reactor to catalyze the simultaneous transesterification and esterification of triacylglycerides and free fatty acids, respectively, to fatty acid methyl esters (biodiesel). Triacylglycerides and free fatty acids were converted to alkyl esters with up to 85% efficiency as measured by 300 MHz 1H NMR spectroscopy. The lipid composition of the different algae was studied gravimetrically and by gas chromatography. The analysis showed that even though total lipids comprised upwards of 19% of algal dry weight the saponifiable lipids, and resulting biodiesel, comprised only 1% of dry weight. Thus highlighting the need to determine the triacylglyceride and free fatty acid content when considering microalgae for biodiesel production.  相似文献   

2.
Shi W  He B  Li J 《Bioresource technology》2011,102(9):5389-5393
A sulfonated polyethersulfone (SPES)/polyethersulfone (PES) blend catalytic membrane was prepared and used as a heterogeneous catalyst in the esterification of the acidified oil (acid value 153 mg KOH/g) with methanol for producing biodiesel. The results showed that the free fatty acids conversion reached 97.6% using SPES/PES catalytic membrane under the optimal esterification conditions. Meanwhile, the SPES/PES membrane with 20.3% degree of sulfonation showed a good catalytic stability. A pseudo-homogeneous kinetic model was established. The results indicated that the reaction rate constant increased with increasing methanol/acidified oil molar ratio, the loading of catalytic membrane and reaction temperature. The reaction order was 2 and the activation energy decreased from 74.65 to 21.07 kJ/mol with increasing catalytic membrane loading from 0 to 0.135 meq/g(oil). It implies that the esterification is not diffusively controlled but kinetically controlled. The predicted results were in good agreement with the experimental data.  相似文献   

3.
The objectives of the present study were to assess how the stability of the emulsion recovered from aqueous extraction processing of soybeans was affected by characteristics of the starting material and extraction and demulsification conditions. Adding endopeptidase Protex 6L during enzyme-assisted aqueous extraction processing (EAEP) of extruded soybean flakes was vital to obtaining emulsions that were easily demulsified with enzymes. Adding salt (up to 1.5 mM NaCl or MgCl2) during extraction and storing extruded flakes before extraction at 4 and 30 °C for up to 3 months did not affect the stabilities of emulsions recovered from EAEP of soy flour, flakes and extruded flakes. After demulsification, highest free oil yield was obtained with EAEP of extruded flakes, followed by flour and then flakes. The same protease used for the extraction step was used to demulsify the EAEP cream emulsion from extruded full-fat soy flakes at concentrations ranging from 0.03% to 2.50% w/w, incubation times ranging from 2 to 90 min, and temperatures of 25, 50 or 65 °C. Highest free oil recoveries were achieved at high enzyme concentrations, mild temperatures, and short incubation times. Both the nature of enzyme (i.e., protease and phospholipase), added alone or as a cocktail, concentration of enzymes (0.5% vs. 2.5%) and incubation time (1 vs. 3 h), use during the extraction step, and nature of enzyme added for demulsifying affected free oil yield. The free oil recovered from EAEP of extruded flakes contained less phosphorus compared with conventional hexane-extracted oil. The present study identified conditions rendering the emulsion less stable, which is critical to increasing free oil yield recovered during EAEP of soybeans, an environmentally friendly alternative processing method to hexane extraction.  相似文献   

4.
Microalgae are a very diverse group of organisms that consist in both prokaryotic and eukaryotic forms. Some species of microalgae can be induced to overproduce particular fatty acids through simple manipulations of the physical and chemical properties of the culture medium. In this paper, the effect of different extraction techniques on the recovery of fatty acids from the freeze-dried biomass from two lipid-producing microalgal strains: Botryococcus braunii LB 572 (green algae) and Synechocystis sp. PCC 6803 (cyanobacteria) was examined. Five procedures were used: after conversion of the lipid material into the corresponding fatty acid methyl esters (FAMEs) via suitable derivatization reactions (extraction-transesterification) and direct transesterification of biomass to produce FAMEs (without the initial extraction step) that used differential types of catalysts and processing conditions. This study has shown that procedure 3, a one step practical procedure for lipid extraction and in situ methyl ester derivation could be used successfully for the determination of the fatty acid compositions of microalgae and cyanobacteria.  相似文献   

5.
Two different strains of microalgae, one raphidophyte and one dinoflagellate, were tested under different abiotic conditions with the goal of enhancing lipid production. Whereas aeration was crucial for biomass production, nitrogen deficiency and temperature were found to be the main abiotic parameters inducing the high-level cellular accumulation of neutral lipids. Net neutral lipid production and especially triacylglycerol (TAG) per cell were higher in microalgae (>200% in Alexandrium minutum, and 30% in Heterosigma akashiwo) under treatment conditions (25°C; 330 μM NaNO3) than under control conditions (20°C; 880 μM NaNO3). For both algal species, oil production (free fatty acids plus TAG fraction) was also higher under treatment conditions (57 mg L−1 in A. minutum and 323 mg L−1 in H. akashiwo). Despite the increased production and accumulation of lipids in microalgae, the different conditions did not significantly change the fatty acids profiles of the species analyzed. These profiles consisted of saturated fatty acids (SAFA) and polyunsaturated fatty acids (PUFA) in significant proportions. However, during the stationary phase, the concentrations per cell of some PUFAs, especially arachidonic acid (C20:4n6), were higher in treated than in control algae. These results suggest that the adjustment of abiotic parameters is a suitable and one of the cheapest alternatives to obtain sufficient quantities of microalgal biomass, with high oil content and minimal changes in the fatty acid profile of the strains under consideration.  相似文献   

6.
The objective of this study was to investigate the extraction of lipids, for example, mono‐ and polyunsaturated fatty acids (PUFA) as well as carotenoids, from wet microalgae biomass using pressurized subcritical extraction solvents, which meet the requirements of food and feed applications. To demonstrate the effect of the solvent and temperature on the lipid yield, we chose two microalgae species, viz. Chlorella vulgaris and Phaeodactylum tricornutum, differing in their biochemical composition fundamentally. In case of P. tricornutum, ethanol showed the highest fatty acid yield of 85.9% w/w. In addition to eicosapentaenoic acid (EPA), the ethanolic extracts contained exceptional amounts of fucoxanthin (up to 26.1 mg/g d. w.), which can be beneficial to protect unsaturated fatty acids from oxidation processes and in terms of human nutrition. For C. vulgaris, a fatty acid yield of 76.5% w/w was achieved from wet biomass using ethyl acetate at 150°C. In general, an increase in the extraction temperature up to 150°C was found to be important in terms of fatty acid yield when extracting wet microalgae biomass. The results suggest that it is possible to efficiently extract both fatty acids and carotenoids from wet microalgae by selecting suitable solvents and thus circumvent energy‐intensive drying of the biomass.  相似文献   

7.
Snow crab (Chionoecetes opilio) constitutes valuable and nutritional sources of components, such as proteins, lipids and chitin. The present investigation was undertaken to evaluate the feasibility of applying a pilot scale enzymatic hydrolysis process of snow crab by-products, followed by fractionation, in order to recover enriched high-valued compounds. The yield of snow crab by-products recovered after manual processing; on a dry weight was 87.4%. The by-products (raw materials) were mainly moist (approximately 78%), and contained 42.9% proteins, 14.8% lipids, 25.7% minerals, 16.2% chitin, all expressed on a dry weight. The fatty acid profile of snow crab by-products and all fractions obtained following processing showed a higher content in mono-unsaturated fatty acids (MUFAs; approximately 50%), followed by polyunsaturated fatty acids (PUFAs; approximately 20%) and saturated fatty acids (SFAs; approximately 15%). The n − 3/n − 6 ratio was approximately 10 and represents a good index of nutritional value for snow crab oil by-products. Most protein enriched fractions demonstrate a well-balanced amino acid composition, notably the most essential amino acids. These protein fractions are characterized by biomolecules having a relatively low molecular weight (35 kDa and less) range. The enzymatic hydrolysis process developed in this study shows that snow crab by-products should to be viewed as having the potential of being identified as high-valued products. Even though the process could be optimized, it is controllable, and depending on hydrolyses conditions, the products obtained are reproducible and well defined. Results presented in this study indicate that snow crab by-products may serve as excellent nutritional components for future applications in the health and food sectors.  相似文献   

8.
Downstream processing of algal polyunsaturated fatty acids   总被引:8,自引:0,他引:8  
Little information exists on recovering polyunsaturated fatty acids from microalgae; however, methods for concentration and purification of PUFAs from fish oil have been extensively reported. This review examines recovery and purification of microalgae derived PUFAs, but techniques developed for use with fish oil are also reviewed as being potentially useful for concentration and purification from microalgae. The two main techniques for concentrating and purifying-urea fractionation and high performance liquid chromatography-are discussed in depth and attention is focused on the process developed by the authors for obtaining highly pure PUFA. Other potentially useful techniques, such as supercritical fluid extraction and lipase-catalyzed processing are detailed.  相似文献   

9.
Biodiesel consists of fatty acids short chain alkyl esters produced through transesterification and esterification of fats and oils. Production of biodiesel is strongly affected by the purity of raw lipids, and catalysts play important role in these processes. Although direct utilization of impure feedstocks is more economical, their use necessitates development of effective catalysts to overcome hindering influences of impurities. In this study, sulfuryl chloride, thionyl chloride, acetyl chloride, p-toluenesulfonic acid, benzenesulfonic acid, methanesulfonic acid, dimethylsulfate and sulfuric acid were investigated as catalysts for the production of biodiesel because acids have higher tolerance to water and free fatty acids in oils and can simultaneously catalyze both the esterification and transesterification reactions. Sulfuryl chloride was found to be an effective catalyst for production of biodiesel from soybean oil, its waste oil and microalgal lipids.  相似文献   

10.
Microalgae are capable of synthesizing a multitude of compounds including biofuel precursors and other high value products such as omega-3-fatty acids. However, accurate analysis of the specific compounds produced by microalgae is important since slight variations in saturation and carbon chain length can affect the quality, and thus the value, of the end product. We present a method that allows for fast and reliable extraction of lipids and similar compounds from a range of algae, followed by their characterization using gas chromatographic analysis with a focus on biodiesel-relevant compounds. This method determines which range of biologically synthesized compounds is likely responsible for each fatty acid methyl ester (FAME) produced; information that is fundamental for identifying preferred microalgae candidates as a biodiesel source. Traditional methods of analyzing these precursor molecules are time intensive and prone to high degrees of variation between species and experimental conditions. Here we detail a new method which uses microwave energy as a reliable, single-step cell disruption technique to extract lipids from live cultures of microalgae. After extractable lipid characterization (including lipid type (free fatty acids, mono-, di- or tri-acylglycerides) and carbon chain length determination) by GC–FID, the same lipid extracts are transesterified into FAMEs and directly compared to total biodiesel potential by GC–MS. This approach provides insight into the fraction of total FAMEs derived from extractable lipids compared to FAMEs derived from the residual fraction (i.e. membrane bound phospholipids, sterols, etc.). This approach can also indicate which extractable lipid compound, based on chain length and relative abundance, is responsible for each FAME. This method was tested on three species of microalgae; the marine diatom Phaeodactylum tricornutum, the model Chlorophyte Chlamydomonas reinhardtii, and the freshwater green alga Chlorella vulgaris. The method is shown to be robust, highly reproducible, and fast, allowing for multiple samples to be analyzed throughout the time course of culturing, thus providing time-resolved information regarding lipid quantity and quality. Total time from harvesting to obtaining analytical results is less than 2 h.  相似文献   

11.
The pine moth Dendrolimus pini effectively resists many insecticides, but it can be controlled by the use of bioinsecticides such as entomopathogenic fungi. In the use of microbial agents for the biocontrol of D. pini, it is important to identify the cuticular lipids of this pest if we are to understand the factors responsible for the preferential adhesion or selective repulsion of entomopathogenic fungi that are potentially useful in biocontrol. In this work the qualitative and quantitative analyses of free fatty acids in two exuviae extracts (petroleum ether and dichloromethane) and two developmental stages (larval-larval and larval-pupal molts) were studied. The free fatty acid composition of the epicuticular lipids from exuviae of D. pini was characterized chemically using gas chromatography (GC) and gas chromatography-electron impact mass spectrometry (GC-MS). Structural analyses of the dichloromethane extracts from larval-larval exuviae (LLE) and larval-pupal exuviae (LPE) revealed that the carbon numbers for the major acid moieties ranged from C8:0 to C34:0. Only C23:0 was not identified in the LPE extract. The relative contents of fatty acids in the extracts varied from trace amounts to 34%. The fatty acids extracted by dichloromethane were essentially the same as those in the petroleum ether extract. We also identified dehydroabietic acid in the exuviae of D. pini. The respective quantities of dehydroabietic acid obtained from D. pini LLE and LPE were 1763 ± 103 μg/g exuviae and 11521 ± 1198 μg/g of exuviae.  相似文献   

12.
Supercritical carbon dioxide extraction (SC-CO2) of oil from desilked silkworm pupae was performed. Response surface methodology (RSM) was applied to optimize the parameters of SC-CO2 extraction. The effects of independent variables, including pressure, temperature, CO2 flow rate, and extraction time, on the yield of oil were investigated. The statistical analysis showed that the pressure, extraction time, and the quadratics of pressure, extraction time, and CO2 flow rate, as well as the interactions between pressure and temperature, and temperature and flow rate, showed significant effects on oil yield. The optimal extraction condition for oil yield within the experimental range of the variables researched was at 324.5 bar, 39.6 °C, 131.2 min, and 19.3 L/h. At this condition, the yield of oil was predicted to be 29.73%. The obtained silkworm pupal oil contained more than 68% total unsaturated fatty acids, and alpha-linolenic acid (ALA) accounted for 27.99% in the total oil.  相似文献   

13.
A moderate change in ambient temperature can lead to vital physiological and biochemical adjustments in ectotherms, one of which is a change in fatty acid composition. When temperature decreases, the composition of membrane lipids (phospholipid fatty acids) is expected to become more unsaturated to be able to maintain homeoviscosity. Although different in function, storage lipids (triacylglycerol fatty acids) are expected to respond to temperature changes in a similar way. Age-specific differences, however, could influence this temperature response between different life stages. Here, we investigate if fatty acid composition of membrane and storage lipids responds similarly to temperature changes for two different life stages of Orchesella cincta. Juveniles and adults were cold acclimated (15 °C → 5 °C) for 28 days and then re-acclimated (5 °C → 15 °C) for another 28 days. We found adult membranes had a more unsaturated fatty acid composition than juveniles. Membrane lipids became more unsaturated during cold acclimation, and a reversed response occurred during warm acclimation. Membrane lipids, however, showed no warm acclimation, possibly due to the moderate temperature change. The ability to adjust storage lipid composition to moderate changes in ambient temperature may be an underestimated fitness component of temperature adaptation because fluidity of storage lipids permits accessibility of enzymes to energy reserves.  相似文献   

14.
A laboratory‐made continuous flow lipid extraction system (CFLES) was devised to extract lipids from microalgae Nannochloropsis sp., a potential feedstock for biodiesel fuel, with a focus to assess the workable temperatures and pressures for future industrial applications. Using conventional solvents, the CFLES recovered 100% of the lipids extracted with conventional Soxhlet extraction. The optimum temperature and pressure were found to be 100 °C and 50 psi, respectively; conditions significantly lower than those normally used in pressurized liquid extractions requiring specialized equipment. Approximately 87% of the extracted oil was successfully transesterified into biodiesel fuel (fatty acid methyl esters). Preliminary calculations based on the tested lab‐scale system indicated savings in energy, solvent consumption, and extraction time as 96%, 80%, and more than 90%, respectively, as compared to Soxhlet extraction. However, the true cost savings can only be assessed at scaled up level. Energy efficiency of CFLES was calculated as 48.9%. Residual water (~70%) in the biomass had no effect on the extraction performance of CFLES, which is expected to help the process economics at scaled up application. The effect of temperature and pressure on the fatty acids profile of Nannochloropsis sp. is also discussed. Based on the existing literature, the authors believe that a pressurized liquid extraction system with continuous solvent flow has not been reported for lipid extraction from Nannochloropsis sp.  相似文献   

15.
A method to determine the content and composition of total fatty acids present in microalgae is described. Fatty acids are a major constituent of microalgal biomass. These fatty acids can be present in different acyl-lipid classes. Especially the fatty acids present in triacylglycerol (TAG) are of commercial interest, because they can be used for production of transportation fuels, bulk chemicals, nutraceuticals (ω-3 fatty acids), and food commodities. To develop commercial applications, reliable analytical methods for quantification of fatty acid content and composition are needed. Microalgae are single cells surrounded by a rigid cell wall. A fatty acid analysis method should provide sufficient cell disruption to liberate all acyl lipids and the extraction procedure used should be able to extract all acyl lipid classes.With the method presented here all fatty acids present in microalgae can be accurately and reproducibly identified and quantified using small amounts of sample (5 mg) independent of their chain length, degree of unsaturation, or the lipid class they are part of.This method does not provide information about the relative abundance of different lipid classes, but can be extended to separate lipid classes from each other.The method is based on a sequence of mechanical cell disruption, solvent based lipid extraction, transesterification of fatty acids to fatty acid methyl esters (FAMEs), and quantification and identification of FAMEs using gas chromatography (GC-FID). A TAG internal standard (tripentadecanoin) is added prior to the analytical procedure to correct for losses during extraction and incomplete transesterification.  相似文献   

16.
A range of model biochemical components, microalgae and cyanobacteria with different biochemical contents have been liquefied under hydrothermal conditions at 350 °C, ∼200 bar in water, 1 M Na2CO3 and 1 M formic acid. The model compounds include albumin and a soya protein, starch and glucose, the triglyceride from sunflower oil and two amino acids. Microalgae include Chlorella vulgaris,Nannochloropsis occulata and Porphyridium cruentum and the cyanobacteria Spirulina. The yields and product distribution obtained for each model compound have been used to predict the behaviour of microalgae with different biochemical composition and have been validated using microalgae and cyanobacteria. Broad agreement is reached between predictive yields and actual yields for the microalgae based on their biochemical composition. The yields of bio-crude are 5-25 wt.% higher than the lipid content of the algae depending upon biochemical composition. The yields of bio-crude follow the trend lipids > proteins > carbohydrates.  相似文献   

17.
Proteolytic Extraction of Salmon Oil and PUFA Concentration by Lipases   总被引:1,自引:0,他引:1  
Commercial proteases (Alcalase®, Neutrase®, and Flavourzyme) were tested for their ability to release the oil content of marine by-products (salmon heads). The amount of oil (17%) obtained after 2 hours was close to that obtained by the chemical extraction method (20%). Lipolysis of the oil was carried out with Novozym SP398 to obtain a mixture of free fatty acids and acylglycerols (24 hours 45% hydrolysis). The mixture was filtered on a hydrophobic membrane to discriminate between high melting saturated fatty acids and low melting acylglycerols. The sum of total polyunsaturated fatty acids increased from 41.6% in the crude oil to 46.5% in the permeate. The docosahexaenoic acid content increased from 9.9% to 11.6%, and the eicosapentaenoic acid changed from 3.6% to 5.6%. Data from differential scanning calorimetry DSC and from thin layer chromatography coupled with flame ionization detection (TLC-FID) differed significantly between permeate and retentate. A re-esterification of the free fatty acids in the permeate with Lipozyme IM was carried out to increase the amount of long chain acylglycerols.  相似文献   

18.
The influence of both the lipid composition of microalgal diets and commercial flours on the lipid classes and fatty acids of Ruditapes decussatus spat was studied. These aspects of the nutritional value of the diets were discussed in relation to the growth of the spat. Four diets were tested; Diet A, composed of 100% of the daily food ration of microalgae; Diet B, composed of 100% of wheatgerm; Diet C, composed of 50% of microalgae and 50% of wheatgerm; and Diet D, composed of 25% of microalgae and 75% of wheatgerm. The microalgal cells present a higher lipid content than that for wheatgerm. Tahitian Isochrysis cells have phospholipids and triacylglycerols as majority lipids, whereas in the wheatgerm particles, the lipids more abundant are triacylglycerols. Fatty acid content was higher in the microalgal cells than in the wheatgerm particles. The n-3 fatty acids were the most abundant acids in the microalgae, whereas the n-6 fatty acids were in the wheatgerm. The n-3 PUFA were not detected in wheatgerm. Phospholipids were the main lipids present in the clam spat, followed by triacylglycerols. Other lipid classes, detected in significantly lower amounts, included free fatty acids, sterols, and sterol ester + waxes. The composition of fatty acids in the spat was influenced by the fatty acid composition of the diet. Highest spat growth rates were observed with those diets that present a higher phospholipid/triacylglycerol relation. A negative correlation in the relation n-6/n-3 vs. growth has also been observed, with better growth rates in diets with a lower ratio. If the fatty acid 20:5n-3 and 22:6n-3 considered "essential" for marine animals were not present in the diet, they were not present in the spat either. Desaturation and elongation capabilities of R. decussatus spat were also discussed.  相似文献   

19.
Vegetable oils promoted mycelial growth ofVolvariella volvacea. Ethyl esters of major components of saponified fatty acids (palmitic, stearic, oleic and linoleic acid) from vegetable oils were stimulatory. The stimulatory effect of these fatty acids varied with concentration and degree of unsaturation; relatively high concentrations being inhibitory. Mycelial growth appears to be promoted by low concentrations of fatty acids. Supplementation of growth medium with sunflower oil altered membrane permeability and this resulted in an increased uptake of glucose. The total mycelial lipids accounted for only 30% of consumed lipids, the remainder being metabolized. The failure of the fungus to adjust the degree of unsaturation in membrane lipids when it was transferred to 0°C may partially explain its susceptibility to chilling injury.  相似文献   

20.
Fei Q  Chang HN  Shang L  Choi JD  Kim N  Kang J 《Bioresource technology》2011,102(3):2695-2701
The use of volatile fatty acids (VFAs) for microbial lipid accumulation was investigated in flask cultures of Cryptococcus albidus. The optimum culture temperature and pH were 25 °C and pH 6.0, respectively, and the highest lipid content (27.8%) was obtained with ammonia chloride as a nitrogen source. The lipid yield coefficient on VFAs was 0.167 g/g of C. albidus with a VFAs (acetic, propionic, butyric acids) ratio of 8:1:1, which was in good agreement with a theoretically predicted lipid yield coefficient of the VFAs as a carbon source. The major fatty acids of the lipids accumulated by C. albidus were similar to those of soybean oil and jatropha oil. A preliminary cost analysis shows that VFAs-based biodiesel production is competitive with current palm and soybean based biodiesels. Further process development for lower aeration cost and higher lipid yield will make this process more economical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号