首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhang Y  Ren J 《Autophagy》2010,6(8):1212-1213
The mitochondrial isoform of aldehyde dehydrogenase (ALDH2) plays a key role in the metabolism of acetaldehyde and other toxic aldehydes. A recent seminal finding has indicated a potential role of ALDH2 activation in the cardioprotection against ischemic injury. Data from our group unveiled a myocardial protective effect of ALDH2 against ischemia/reperfusion (I/R) injury possibly through detoxification of toxic aldehydes: and a differential regulation of autophagy mediated by AMPK-mTOR and Akt-mTOR signaling cascades during ischemia and reperfusion, respectively. These findings suggest not only the therapeutic potential of ALDH2 against I/R injury but also a pivotal role of the AMPK-Akt-mTOR signaling in the paradoxical autophagic regulation of cardiomyocyte survival.  相似文献   

2.
The volatile anesthetic, isoflurane, protects the heart from ischemia/reperfusion (I/R) injury. Aldehyde dehydrogenase 2 (ALDH2) is thought to be an endogenous mechanism against ischemia-reperfusion injury possibly through detoxification of toxic aldehydes. We investigated whether cardioprotection by isoflurane depends on activation of ALDH2.Anesthetized rats underwent 40 min of coronary artery occlusion followed by 120 min of reperfusion and were randomly assigned to the following groups: untreated controls, isoflurane preconditioning with and without an ALDH2 inhibitor, the direct activator of ALDH2 or a protein kinase C (PKCε) inhibitor. Pretreatment with isoflurane prior to ischemia reduced LDH and CK-MB levels and infarct size, while it increased phosphorylation of ALDH2, which could be blocked by the ALDH2 inhibitor, cyanamide. Isolated neonatal cardiomyocytes were treated with hypoxia followed by reoxygenation. Hypoxia/reoxygenation (H/R) increased cardiomyocyte apoptosis and injury which were attenuated by isoflurane and forced the activation of ALDH2. In contrast, the effect of isoflurane-induced protection was almost abolished by knockdown of ALDH2. Activation of ALDH2 and cardioprotection by isoflurane were substantially blocked by the PKCε inhibitor. Activation of ALDH2 by mitochondrial PKCε plays an important role in the cardioprotection of isoflurane in myocardium I/R injury.  相似文献   

3.
《Autophagy》2013,9(8):1212-1213
The mitochondrial isoform of aldehyde dehydrogenase (ALDH2) plays a key role in the metabolism of acetaldehyde and other toxic aldehydes. A recent seminal finding has indicated a potential role of ALDH2 activation in the cardioprotection against ischemic injury. Data from our group unveiled a myocardial protective effect of ALDH2 against ischemia/reperfusion (I/R) injury possibly through detoxification of toxic aldehydes

and a differential regulation of autophagy mediated by AMPK-mTOR and Akt-mTOR signaling cascades during ischemia and reperfusion, respectively. These findings suggest not only the therapeutic potential of ALDH2 against I/R injury but also a pivotal role of the AMPK-Akt-mTOR signaling in the paradoxical autophagic regulation of cardiomyocyte survival.  相似文献   

4.
Aldehyde dehydrogenase 2 (ALDH2) is a new therapeutic target in the central nervous system. However, the association between ALDH2 and brain edema following ischemic stroke (IS) remains unclear. The present study was investigated to whether active ALDH2 can attenuate brain edema by using a rat model of IS, with the aim of clarifying the underlying mechanisms involved. Rats were administered the ALDH2 agonist Alda-1, vehicle or the ALDH2 inhibitor cyanamide (CYA) 15 min prior to a 1.5 h middle cerebral artery occlusion (MCAO) surgery. The effects of ALDH2 were subsequently investigated 24 h after reperfusion by evaluating neurological function, infarct sizes, brain edema volumes, 4-hydroxy-2-nonenal (4-HNE) levels, and aquaporin 4 (AQP4) protein expression. The results demonstrated that increasing ALDH2 activity significantly improved neurological deficits, reduced infarct sizes, and attenuated brain edema after MCAO. Alda-1 administration led to decreased 4-HNE levels and inhibited AQP4 protein expression in the peri-infarct section of the brain. Whereas, CYA administration increased 4-HNE levels, AQP4 expression, and simultaneously aggravated brain edema following MCAO. In conclusion, increasing ALDH2 activity can improve brain edema, infarct volumes, and reduce neurological impairment in a rat IS model. The therapeutic benefits of ALDH2 are related to 4-HNE clearance and AQP4 down-regulation.  相似文献   

5.
Liver ischemia/reperfusion (I/R) injury is a serious clinical problem. The reactive oxygen species (ROS) and tumor necrosis factor alpha (TNF-α) are important mediators in liver I/R injury. This study was designed to investigate the effect of preischemic treatment with fenofibrate (Peroxisome proliferator-activated receptor- α agonist) on the oxidative stress and inflammatory response to hepatic I/R injury in rats. Hepatic I/R was induced by clamping the blood supply of the left lateral and median lobes of the liver for 60 min, followed by reperfusion for 4 h. Each animal group was pretreated with a single dose of fenofibrate (50 mg/kg body weight) intraperitoneally 1 h before ischemia. At the end of reperfusion, blood samples and liver tissues were obtained to assess serum alanine aminotransferase (ALT), TNF-α, hepatic malondialdehyde (MDA) and superoxide dismutase activity (SOD). Liver specimens were obtained and processed for light and electron microscopic study. Hepatic I/R induced a significant elevation of serum ALT and TNF-α with significant elevation of hepatic MDA and reduction of SOD activity. Histopathological examination revealed hepatic inflammation, necrosis and apoptosis. Preischemic treatment with fenofibrate at a dose of 50 mg/kg significantly attenuated the biochemical and structural alterations of I/R-induced liver injury.  相似文献   

6.
Recent studies have demonstrated the protective effect of mitochondrial aldehyde dehydrogenase 2 (ALDH2) in cardiovascular diseases. Increased levels of the potential ALDH2 substrate 4-hydroxynonenal (4-HNE) are involved in myocardial/cerebral ischemia accompanied by a high level of oxidative stress. In this investigation, we first performed a case-control study to explore the potential association of ALDH2 rs671 polymorphism and post-stroke epilepsy (PSE). Then, we performed an in vitro study to determine whether the overexpression of ALDH2 could decrease the level of oxidative stress and the apoptosis ratio induced by 4-HNE. There was a significant difference in the distribution of the allele and genotype frequencies of the rs671 polymorphism between PSE patients and ischemic stroke (IS) patients. Individuals with the rs671 A allele showed significantly higher levels of plasma 4-HNE. The overexpression of ALDH2 partially blocked the increased levels of malondialdehyde (MDA), reactive oxygen species (ROS) and apoptosis ratio induced by 4-HNE and also partially restored the ALDH2 activity in PC12 cells; these effects were reversed in the presence of εV1-2. Our results suggest that the ALDH2 rs671 polymorphism is associated with PSE susceptibility and affects the 4-HNE levels. Targeting ALDH2 might be a useful strategy for the treatment or prevention of PSE.  相似文献   

7.
It has been well accepted that increased reactive oxygen species (ROS) and the subsequent oxidative stress is one of the major causes of ischemia/reperfusion (I/R) injury. DJ‐1 protein, as a multifunctional intracellular protein, plays an important role in regulating cell survival and antioxidant stress. Here, we wondered whether DJ‐1 overexpression attenuates simulated ischemia/reperfusion (sI/R)‐induced oxidative stress. A rat cDNA encoding DJ‐1 was inserted into a mammalian expression vector. After introduction of this construct into H9c2 myocytes, stable clones were obtained. Western blot analysis of the derived clones showed a 2.6‐fold increase in DJ‐1 protein expressing. Subsequently, the DJ‐1 gene‐transfected and control H9c2 cells were subjected to sI/R, and then cell viability, lactate dehydrogenase, malondialdehyde, intracellular ROS and antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) were measured appropriately. The results showed that stable overexpression of DJ‐1 efficiently attenuated sI/R‐induced viability loss and lactate dehydrogenase leakage. Additionally, stable overexpression of DJ‐1 inhibited sI/R‐induced the elevation of ROS and MDA contents followed by the increase of antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) activities and expression. Our data indicate that overexpression of DJ‐1 attenuates ROS generation, enhances the cellular antioxidant capacity and prevents sI/R‐induced oxidative stress, revealing a novel mechanism of cardioprotection. Importantly, DJ‐1 overexpression may be an important part of a protective strategy against ischemia/reperfusion injury. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Prolonged hepatic warm ischemia has been incriminated in oxidative stress after reperfusion. However, the magnitude of oxidative stress during ischemia has been controversial. The aims of the present study were to elucidate whether lipid peroxidation progressed during ischemia and to clarify whether oxidative stress during ischemia aggravated the oxidative damage after reperfusion. Rats were subjected to 30 to 120 min of 70% warm ischemia alone or followed by reperfusion for 60 min. Lipid peroxidation (LPO) was evaluated by amounts of phosphatidylcholine hydroperoxide (PC-OOH) and phosphatidylethanolamine hydroperoxide (PE-OOH) as primary LPO products. Total amounts of malondialdehyde and 4-hydroxy-2-nonenal (MDA + 4-HNE), degraded from hydroperoxides, were also determined. PC-OOH and PE-OOH significantly increased at 60 and 120 min ischemia with concomitant increase of oxidized glutathione. These hydroperoxides did not increase at 60 min reperfusion after 60 min ischemia, whereas they did increase at 60 min reperfusion after 120 min ischemia with deactivation of phospholipid hydroperoxide glutathione peroxidase and superoxide dismutase. The amount of MDA + 4-HNE exhibited similar changes, but the velocity of production dropped with ischemic time longer than 60 min. In conclusion, oxidative stress progressed during ischemia and triggered the oxidative injury after reperfusion. Secondary LPO products are less sensitive, especially during ischemia, which may cause possible underestimation and discrepancy.  相似文献   

9.
Liu A  Fang H  Dirsch O  Jin H  Dahmen U 《Cytokine》2012,57(1):150-157
Macrophage migration inhibitory factor (MIF) is an important mediator of ischemia/reperfusion (I/R) injury in heart, brain and intestine. We previously demonstrated that MIF was released during warm/cold ischemia in vitro. However, the role of MIF in liver I/R injury remains unclear. We aimed to test the hypothesis that MIF acts as an early proinflammatory cytokine and could mediate the inflammatory injury in liver I/R. Rats (n = 6 per group) were subjected to 90 min warm ischemia followed by 0.5 h, 6 h and 24 h reperfusion, respectively to liver transplantation (LTx) after 6 h of cold ischemia followed by 24 h of reperfusion. The expression of MIF, its receptor (cluster of differentiation 74 (CD74)) and the downstream inflammatory cytokines (tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β)) were analyzed. Peritoneal macrophages were cultured for 6 h alone or in the presence of effluent from cold-preserved livers or effluent depleted of MIF. Warm I/R increased hepatic MIF-mRNA and protein expression. MIF-protein was released into peripheral circulation in vivo with a maximum at 0.5 h after reperfusion. Induction of MIF-expression was associated with the expression of proinflammatory cytokines and its receptor in both models. MIF released by isolated cold preserved livers, induced TNF-α and IL-1β production by cultured peritoneal macrophages. Intrahepatic upregulation of MIF, release into systemic circulation and the associated upregulation of the proinflammatory mediators suggest a role of MIF in mediating the inflammatory response to I/R injury. Blocking experiments will help to elucidate its role as potential molecular target for preventing hepatic I/R injury.  相似文献   

10.
Various mechanisms have been proposed for the pathogenesis of postischemic hepatic injury, including the generation of reactive oxygen metabolites. Oxytocin (OT) possesses antisecretory, antiulcer effects, facilitates wound healing and has anti-inflammatory properties. Hepatic ischemia-reperfusion (I/R)-injury was induced by inflow occlusion to median and left liver lobes ( approximately 70%) for 30 min of ischemia followed by 1h reperfusion in female Sprague-Dawley rats under anesthesia. I/R group (n=8) was administered intraperitoneally either OT (500 microg/kg) or saline at 24 and 12 h before I/R and immediately before reperfusion. Sham-operated group that underwent laparotomy without hepatic ischemia served as the control. Rats were decapitated at the end of reperfusion period. Hepatic samples were obtained for the measurement of myeloperoxidase (MPO) activity, malondialdehyde (MDA), glutathione (GSH) and collagen levels and histopathological analysis. Tumor necrosis factor-alfa (TNF-alpha) and transaminases (SGOT, SGPT) were assayed in serum samples. I/R injury caused significant increases in hepatic microscopic damage scores, MPO activity, collagen levels, transaminase, serum TNF-alpha levels. Oxytocin treatment significantly reversed the I/R-induced elevations in serum transaminase and TNF-alpha levels and in hepatic MPO and collagen levels, and reduced the hepatic damage scores. OT treatment had tendency to abolish I/R-induced increase in MDA levels, while GSH levels were not altered. These results suggest that OT has a protective role in hepatic I/R injury and its protective effect in the liver appears to be dependent on its inhibitory effect on neutrophil infiltration.  相似文献   

11.
High mobility group box 1 (HMGB1) is a NF released extracellularly as a late mediator of lethality in sepsis and as an early mediator of inflammation following injury. Here we demonstrate that in contrast to the proinflammatory role of HMGB1, preconditioning with HMGB1 results in protection following hepatic ischemia/reperfusion (I/R). Pretreatment of mice with HMGB1 significantly decreased liver damage after I/R. The protection observed in mice pretreated with HMGB1 was associated with a higher expression of IL-1R-associated kinase-M, a negative regulator of TLR4 signaling, compared with controls. We thus explored the possibility that HMGB1 preconditioning was mediated through TLR4 activation. HMGB1 preconditioning failed to provide protection in TLR4 mutant (C3H/HeJ) mice, but successfully reduced damage in TLR4 wild-type (C3H/HeOuj) mice. Our studies demonstrate that in contrast to the role of HMGB1 as an early mediator of inflammation and organ damage in hepatic I/R, HMGB1 preconditioning can be protective.  相似文献   

12.
BACKGROUND: The exposure of gastric mucosa to damaging factors, such as ethanol, water restraint stress, or ischemia followed by reperfusion, produces pathological changes: inflammatory process, hemorrhagic erosions, even acute ulcers. The base of these changes is a disturbance of protective mechanisms and disrupture of gastric mucosal barrier. Previous studies pointed out the role of disturbances of gastric blood flow, mucus secretion and involvement of prostaglandins and nitric oxide formation in the pathomechanism of gastric mucosa lesions. The role of reactive oxygen species (ROS) in these processes has been little studied. Aim: The purpose of our present investigations is to explain the participation of ROS in acute gastric mucosal damage by various irritants. MATERIAL AND METHODS: Experiments were carrying out on 80 male Wistar rats. To assess gastric blood flow (GBF) laser Doppler flowmeter was used. The area of gastric lesions was established by planimetry. The levels of proinflammatory cytokines were measured by ELISA technique. The colorimetric assays were used to determine of malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) as well as superoxide dismutase (SOD) activity. RESULTS: We demonstrated that 3.5 h of water immersion and restraint stress (WRS), 30 min of gastric ischemia followed by 60 min of reperfusion or intragastric administration of 100% ethanol, all resulted in appearance of acute gastric mucosal lesions accompanied by a significant decrease of gastric blood flow. These lesions are also accompanied by the significant increase of proinflammatory cytokines including interleukin-1 beta (IL-1beta) and tumor necrosis factor alpha (TNFalpha) plasma level. Biological effects of ROS were estimated by measuring tissue level of MDA and 4-HNE, the products of lipid peroxydation by ROS, as well as the activity of SOD, the scavanger of ROS. It was established that 3.5 h of WRS, ischemia-reperfusion and 100% ethanol lead to significant increase of MDA and 4-HNE mucosal level, accompanied by a decrease of SOD activity (significant in WRS and ethanol application). CONCLUSIONS: The pathogenesis of experimental mucosal damage in rat stomach includes the generation of ROS that seem to play an important role, namely due to generation of lipid peroxides, accompanied by impairment of antioxidative enzyme activity of cells.  相似文献   

13.
Abstract

The antioxidant effects of ellagic acid (EA) and hesperidin (HES) against skeletal muscle ischemia/reperfusion injury (I/R) were performed. Hindlimb ischemia has been induced by tourniquet occlusion for 2?h on left hindlimb. At the end of ischemia, the tourniquate has been removed and initiated reperfusion for 2?h. EA (100?mg/kg) has been applied orally before ischemia/reperfusion in the EA?+?I/R group. HES (100?mg/kg) has been given orally in the HES?+?I/R group. The left gastrocnemius muscle has been harvested and stored immediately at??80?°C until assessed for the levels of MDA and antioxidant enzymes activities. MDA level has statistically increased in I/R group (p?<?0.05) compared to other groups. The muscle tissue antioxidant enzymes activities were lower than the other groups in the I/R group (p?<?0.05). EA and HES treatments significantly reversed the damage level in I/R, also activity of tissue SOD increased in the EA?+?I/R and HES?+?I/R groups.  相似文献   

14.
Microvascular endothelial cell dysfunction plays a key role in myocardial ischemia/reperfusion (I/R) injury, wherein reactive oxygen species (ROS)-dependent signaling is intensively involved. However, the roles of the various ROS sources remain unclear. This study sought to investigate the role of NADPH oxidase 4 (Nox4) in the cardiac microvascular endothelium in response to I/R injury. Adult rat cardiac microvascular endothelial cells (CMECs) were isolated and subjected to hypoxia/reoxygenation (H/R). Our results showed that Nox4 was highly expressed in CMECs, was significantly increased at both mRNA and protein levels after H/R injury, and contributed to H/R-stimulated increase in Nox activity and ROS generation. Downregulation of Nox4 by small interfering RNA transfection did not affect cell viability or ROS production under normoxia, but exacerbated H/R injury as evidenced by increased apoptosis and inhibited cell survival, migration, and angiogenesis after H/R. Nox4 inhibition also increased prolyl hydroxylase 2 (PHD2) expression and blocked H/R-induced increases in HIF-1α and VEGF expression. Pretreatment with DMOG, a specific competitive PHD inhibitor, upregulated HIF-1α and VEGF expression and significantly reversed Nox4 knockdown-induced injury. However, Nox2 was scarcely expressed and played a minimal role in CMEC survival and angiogenesis after H/R, though a modest upregulation of Nox2 was observed. In conclusion, this study demonstrated a previously unrecognized protective role of Nox4, a ROS-generating enzyme and the major Nox isoform in CMECs, against H/R injury by inhibiting apoptosis and promoting migration and angiogenesis via a PHD2-dependent upregulation of HIF-1/VEGF proangiogenic signaling.  相似文献   

15.
Hypoglycemic encephalopathy (HE) is caused by a lack of glucose availability to neuronal cells, and no neuroprotective drugs have been developed as yet. Studies on the pathogenesis of HE and the development of new neuroprotective drugs have been conducted using animal models such as the hypoglycemic coma model and non-coma hypoglycemia model. However, both models have inherent problems, and establishment of animal models that mimic clinical situations is desirable. In this study, we first developed a short-term hypoglycemic coma model in which rats could be maintained in an isoelectric electroencephalogram (EEG) state for 2 min and subsequent hyperglycemia without requiring anti-seizure drugs and an artificial ventilation. This condition caused the production of 4-hydroxy-2-nonenal (4-HNE), a cytotoxic aldehyde, in neurons of the hippocampus and cerebral cortex, and a marked increase in neuronal death as evaluated by Fluoro-Jade B (FJB) staining. We also investigated whether N-(1,3-benzodioxole-5-ylmethyl)-2,6-dichlorobenzamide (Alda-1), a small-molecule agonist of aldehyde dehydrogenase-2, could attenuate 4-HNE levels and reduce hypoglycemic neuronal death. After confirming that EEG recordings remained isoelectric for 2 min, Alda-1 (8.5 mg/kg) or vehicle (dimethyl sulfoxide; DMSO) was administered intravenously with glucose to maintain a blood glucose level of 250 to 270 mg/dL. Fewer 4-HNE and FJB-positive cells were observed in the cerebral cortex of Alda-1-treated rats than in DMSO-treated rats 24 h after glucose administration (P = 0.002 and P = 0.020). Thus, activation of the ALDH2 pathway could be a molecular target for HE treatment, and Alda-1 is a potentially neuroprotective agent that exerts a beneficial effect on neurons when intravenously administered simultaneously with glucose.  相似文献   

16.
Qin LJ  Cao Y 《中国应用生理学杂志》2005,21(3):285-288,i0002
目的:探讨热应激预处理诱导产生的热休克蛋白70对肝脏缺血/再灌注损伤的保护作用的机制.方法:应用pringle,s法制备肝脏缺血/再灌注损伤模型及热应激预处理模型.将实验大鼠随机分为热应激预处理(HP I/R)组与非预处理(I/R)组,对比观察两组动物肝脏缺血/再灌注后0、4、8、12、24 h时肝脏HSP70的表达、SOD活力和MDA的产生量及大鼠血清门冬氨酸转氨酶(aspartate transaminase,AST),丙氨酸转氨酶(alanine transaminase,ALT)的活性与肝脏病理组织学改变.结果:热应激预处理组各时间点肝脏HSP70的表达及SOD的活力均比非预处理组同一时间点高,而血清AST、ALT酶活性及MDA的产生量较非预处理组低,病理损伤也比非预处理组减轻.结论:热应激预处理诱导产生的热休克蛋白70可能通过促进SOD的产生,从而降低氧自由基对肝脏的损害,起到保护肝脏缺血/再灌注损伤的作用.  相似文献   

17.
目的:探讨激动乙醛脱氢酶2(ALDH2)在糖尿病大鼠心肌损伤中的作用。方法:腹腔注射55 mg/kg链脲佐菌素复制糖尿病大鼠模型,分为糖尿病组和乙醇+糖尿病组(n=8)。8周后行离体心肌缺血/再灌注(I/R),测定心室动力学指标和复灌期间冠脉流出液中乳酸脱氢酶(LDH)含量。测定空腹血糖、糖化血红蛋白(HbA1c)水平。RT-PCR和Western blot测定左心室前壁心尖组织线粒体ALDH2 mRNA和蛋白表达。结果:与正常大鼠心肌I/R相比,糖尿病大鼠左室发展压、左心室最大上升和下降速率、左室做功进一步下降,左室舒张末压抬高,复灌期冠脉流出液中LDH释放增多,心室ALDH2 mRNA和蛋白表达降低;与糖尿病大鼠心肌I/R相比,ALDH2激动剂乙醇明显促进左室发展压、左心室最大上升和下降速率、左室做功的恢复,降低左室舒张末压,同时降低HbA1c水平和LDH的释放,ALDH2 mRNA和蛋白表达增高。结论:糖尿病大鼠心肌缺血/再灌注时,心肌ALDH2表达降低;增强ALDH2在糖尿病大鼠心肌中的表达可发挥保护作用。  相似文献   

18.
The interleukin-1 receptor-like protein ST2 exists in both membrane-bound (ST2L) and soluble form (sST2). ST2L has been found to play an important regulatory role in Th2-type immune response, but the function of soluble form of ST2 remains to be elucidated. In this study, we report the protective effect of soluble ST2 on warm hepatic ischemia/reperfusion injury. We constructed a eukaryotic expression plasmid, psST2-Fc, which expresses functional murine soluble ST2-human IgG1 Fc (sST2-Fc) fusion protein. The liver damage after ischemia/reperfusion was significantly attenuated by the expression of this plasmid in vivo. sST2-Fc remarkably inhibited the activation of Kupffer cells and the production of proinflammatory mediators TNF-alpha and IL-6. Furthermore, the levels of TLR4 mRNA and the nuclear translocation of NF-kappaB were also suppressed by pretreatment with sST2-Fc. These results thus identified soluble ST2 as a negative regulator in hepatic I/R injury, possibly via ST2-TLR4 pathway.  相似文献   

19.
HS Ding  J Yang  FL Gong  J Yang  JW Ding  S Li  YR Jiang 《Gene》2012,509(1):149-153
This study aimed to explore the role of high mobility box 1 (HMGB1) and its receptor toll like receptor 4 (TLR4) on neutrophils in myocardial ischemia reperfusion (I/R) injury. We constructed TLR4-mutant (C3H/HeJ) and control (C3H/HeN) mouse models of myocardial I/R injury and subjected the mice to 30min of ischemia and 6h of reperfusion. Light microscope was used to observe structural changes in the myocardium. HMGB1 levels were measured using quantitative real-time PCR and immunohistochemistry. Neutrophil accumulation, TNF-a expression and IL-8 levels were analyzed via myeloperoxidase (MPO) biochemical studies, quantitative real-time PCR and ELISA, respectively. The results demonstrated that fewer neutrophils infiltrated in the myocardium of TLR4-mutant mice after myocardial I/R and that TLR4 deficiency markedly decreased the ischemic injury caused by ischemia/reperfusion, and inhibited the expression of HMGB1, TNF-a, and IL-8, all of which were up-regulated by ischemia/reperfusion. These findings suggest that HMGB1 plays a central role in recruiting neutrophils during myocardial I/R leading to worsened myocardial I/R injury. This recruitment mechanism is possibly due to its inflammatory and chemokine functions based on the TLR4-dependent pathway.  相似文献   

20.

Background

Liver ischemia reperfusion (I/R) injury is a common pathophysiological process in many clinical settings. Carvacrol, a food additive commonly used in essential oils, has displayed antimicrobials, antitumor and antidepressant-like activities. In the present study, we investigated the protective effects of carvacrol on I/R injury in the Wistar rat livers and an in vitro hypoxia/restoration (H/R) model.

Methods

The hepatoportal vein, hepatic arterial and hepatic duct of Wistar rats were isolated and clamped for 30 min, followed by a 2 h reperfusion. Buffalo rat liver (BRL) cells were incubated under hypoxia for 4 h, followed normoxic conditions for 10 h to establish the H/R model in vitro. Liver injury was evaluated by measuring serum levels of alanine aminotransferase (ALT) and aspatate aminotransferase (AST), and hepatic levels of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and malondiadehyde (MDA), and hepatic histology and TUNEL staining. MTT assay, flow cytometric analysis and Hoechst 33258 staining were used to evaluate the proliferation and apoptosis of BRL cells in vitro. Protein expression was examined by Western Blot analysis.

Results

Carvacrol protected against I/R-induced liver damage, evidenced by significantly reducing the serum levels of ALT and AST, histological alterations and apoptosis of liver cells in I/R rats. Carvacrol exhibited anti-oxidative activity in the I/R rats, reflected by significantly reducing the activity of SOD and the content of MDA, and restoring the activity of CAT and the content of GSH, in I/R rats. In the in vitro assays, carvacrol restored the viability and inhibited the apoptosis of BRL cells, which were subjected to a mimic I/R injury induced by hypoxia. In the investigation on molecular mechanisms, carvacrol downregulated the expression of Bax and upregulated the expression of Bcl-2, thus inhibited the activation of caspase-3. Carvacrol was also shown to enhance the phosphorylation of Akt.

Conclusion

The results suggest that carvacrol could alleviate I/R-induced liver injury by its anti-oxidative and anti-apoptotic activities, and warrant a further investigation for using carvacrol to protect I/R injury in clinic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号