首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
InRosa hybridaL. cv. Ruidriko ‘Vivaldi’®, theeffect of position on growth and development potentials of axillarybuds was investigated by single internode cuttings excised alongthe floral stem and its bearing shoot. The experiments werecarried out in both glasshouses and in a phytotron. The studyfirstly concerned the development of the primary shoot fromthe onset of bud growth until anthesis. The primary shoot wasthen bent horizontally to promote the growth of the two mostproximal secondary buds, the collateral buds, already differentiatedinside the primary bud. They gave rise to basal shoots. In thebasipetal direction, the axillary buds along the floral stemexhibited both an increase in the lag time before bud growthand a decrease in bud growth percentage, demonstrating the existenceof a physiological basipetal gradient of inhibition intrinsicto the buds or due to short range correlations. The same basipetalgradient of inhibition was observed along the floral stem andits bearing shoot, demonstrating that the age of the bud wasnot a major factor in determining the rate of bud growth. Afterbending the primary shoot, the percentage of collateral budgrowth was also affected by the cutting position. The more proximalthe cutting, the lower the sprouting ability of collateral buds.The growth potential of these buds appeared to be already determinedinside the main bud before cutting excision.Copyright 1998 Annalsof Botany Company Axillary bud; basal shoot; cutting; development; endodormancy; growth; paradormancy; position; primary shoot;Rosa hybridaL.; rose; secondary bud; topophysis.  相似文献   

2.
In plants held under long days in the vegetative stage, youngexpanding leaves of poinsettia (Euphorbia pulcherrima Willd.‘Brilliant Diamond’) are the main source of axillarybud inhibition, while the apical bud, which includes the meristem,primordial leaves and small unfolded leaves, is a secondaryinhibition source. Removal of these expanding leaves resultedin rapid release and growth of axillary buds. Decapitation ofthe apical bud resulted in delayed axillary bud release. Inreproductive plants kept in short days, the pigmented bractsare the primary source of axillary bud inhibition and the cyathiaare the secondary source. Applications of NAA —substitutedfor both young leaves and bract inhibition — maintainedapical dominance. The concentration of endogenous auxin washighest in the apical bud. However, when calculated on wholeorgan basis the auxin level was greater in young developingvegetative leaves and in reproductive bracts than in the apicalbud. Euphorbia pulcherrima Willd, apical bud, apical dominance, auxin, correlative inhibition, cyathia, poinsettia, IAA, NAA  相似文献   

3.
A controlled environment experiment investigated whether thered:far-red (R:FR) ratio of light at the apical bud of the mainstolon could alter plant morphogenesis in clonal cuttings ofwhite clover (Trifolium repens L.) The apical bud included theapical meristem, five to six developing leaf primordia withassociated axillary bud primordia and stipules and the firstemerged folded leaf until development was greater than 0·3on the Carlson scale. Three light regimes were imposed on theapical bud by collimating light from R or FR light-emittingdiodes so that the R:FR ratio of light incident at the apicalbud was set at 0·25, 1·6 or 2·1, withoutsignificantly altering photosynthetically active radiation.The effect of these light regimes on white clover seedling growthwas also tested. At a low R:FR ratio seedling hypocotyl and cotyledon lengthswere significantly longer. However, with the cuttings, the lighttreatments did not alter node appearance rate or internode lengthof the main stolon, petiole length, area of leaves or totalshoot dry matter. There was one significant photomorphogeneticresponse in the cuttings, a delay of 0·5 of a phyllochronin the appearance of branches from axillary buds in the lowR:FR ratio treatment relative to the other treatments. Wherebranch appearance was delayed plants had fewer branches. Thisdifference could be ascribed solely to a delay in branch appearanceas there were no significant treatment effects on either theinitiation of axillary bud primordia within the apical bud,the probability of branching or on the rate of growth of branchesafter appearance. Because treatment of the apical bud inducedonly one of the many previously observed responses of whiteclover to a decrease in the R:FR ratio of light, we concludethat other plant organs must also sense the quality of incidentlight.Copyright 1994, 1999 Academic Press White clover, Trifolium repens, apical bud, light quality, red:far-red ratio, light-emitting diode, branching, axillary buds, photomorphogenesis  相似文献   

4.
Weigela florida variety ‘Bristol Ruby’ has longday requirements for its growth and, in general, for its flowering.Vegetative development, floral initiation and floral organogenesisare described using scanning electron microscopy during photoperiodictreatment in long days, under controlled conditions. Flowering of axillary buds of cuttings has been studied. Theapex of Weigela at the vegetative phase is characterized bya very small hollow meristem. After 9 long days, the meristemenlarges and, after 12 long days, early axillary buds are initiatedin the axils of the leaves, which become bracts. When the numberof long days was increased, flowers were initiated in the budson the induced branches; first at the proximal part of the branchwhere development afterwards slowed down, then on the medianparts of the branch where development was accelerated. Two bracteoles are differentiated soon after floral initiation;first initiation of the calyx required 18 long days. Petals,stamens and ovary were rapidly initiated after that. Weigelaflowers are clustered; the inflorescence ceased growth by abortionof the terminal meristem or by formation of a terminal flower.In axillary buds of the fifth node the formation of the clusterwas completed about 20 days after the beginning of floral induction. Weigela florida ‘Bristol Ruby’, scanning electron microscopic analysis, vegetative meristem, floral development stages, long days induction  相似文献   

5.
R.  HARMER 《Annals of botany》1991,67(4):463-468
The time at which a bud began to expand was related to its positionnot only on an individual shoot but also within the crown. Thedistribution of buds and branches on the shoot was uneven; theshoot tip, where they were densely clustered, was termed the‘whorl; and the remainder of the shoot, where they werewidely spaced, the ‘interwhorl’ stem. In spring,the terminal bud started expanding before the ‘whorl’buds which preceded the ‘interwhorl’ stem buds;completion of the flush of growth, determined by the end ofleaf expansion, occurred in the reverse order, ‘interwhorl’> ‘whorl’ > terminal. Similarly bud expansionstarted at the top of the crown and progressed downwards, andthe first shoots to complete their flush were at the bottomof the crown. Approximately 60% of the buds on each shoot beganexpanding in spring but only about half of these formed branches.Bud abscission began in May and by Sep. 45% of buds originallypresent had abscised. Most of-the buds that did not abscisewere the small buds at the base of the shoot that were not originallyassociated with a leaf. Approximately 42% of ‘whorl’buds and 28% of MnterwhorP stem buds formed branches. ‘Whorl’branches were approx. 60% longer that ‘interwhorl’stem branches; buds on the lower surface of the shoot producedlonger branches than those on the upper surface. The implicationsof the results for the development of crown form and selectionof superior oak are discussed. Quercus petraea, oak, buds, branches, crown form  相似文献   

6.
LONGMAN  K. A. 《Annals of botany》1968,32(3):553-566
Stem cuttings of cassava (Manihot esculenta Crantz), rootedat one or both ends, were grown at a range of orientations fromthe vertical. Basally rooted cuttings showed strong apical dominanceonly in upright or near-upright positions. Basal shoots generallydominated when the stem was horizontal, while completely invertedstems exhibited weak apical dominance or no dominance at all.Cuttings rooted at the apical end were little affected by changedorientation, apical dominance being present throughout. Effectsof each root system could be detected in cuttings rooted atboth ends. The results are discussed in relation to currentthinking on the mechanism of apical dominance, gravimorphiceffects in woody plants, and the role of the ‘root-factor’in the control of shoot growth.  相似文献   

7.
Understanding the relationships between bud size and position and bud fate through time is crucial for identifying and subsequently modeling the mechanisms underlying tree architecture. However, there is a lack of information on how bud size drives crown architectural patterns in coexisting tree species. We studied bud demography in two coexisting Mediterranean oak species with contrasting leaf habit (Quercus ilex, evergreen; Q. faginea, deciduous). The main objective was to analyse the effect of bud size on the fate of buds with different positions along the shoot (apical, leaf axillary and scale-cataphyll axillary buds). The number, length and position of all buds and stems were recorded in marked branches during 4 years. Study species presented different strategies in bud production and lifespan. The evergreen species showed greater mortality rate than the deciduous one, which produced larger buds. Bud size and position were highly related since apical buds where longer than axillary ones and bud length declined basipetally along the stem. Apical buds had also higher chances of bursting than axillary ones. Within positions, longer buds presented a higher probability of bursting than shorter ones, although no absolute size threshold was found below which bud bursting was impaired. In Q. ilex, four-year-old buds were still viable and able to burst, whereas in Q. faginea practically all buds burst in their first year or died soon after. Such different bud longevities may indicate contrasting strategies in primary growth between both species. Q. ilex is able to accumulate viable buds for several ages, whereas Q. faginea seems to rely on the production of large current-year buds with high bursting probability under favourable environmental conditions.  相似文献   

8.
HUME  D.E. 《Annals of botany》1991,67(2):111-121
A detailed morphological study of three prairie grass cultivars(Bromus willdenowii Kunth) was conducted under ‘vegetative’and ‘reproductive’ growth conditions (short andlong photoperiods) and at different temperatures. Perennialryegrass (Lolium perenne L.) and Westerwolds ryegrass (Loliummuhiflorum Lam.) were compared during vegetative growth. Prairie grass had higher leaf appearance rates (leaves per tillerper day) and lower site filling (tillers per tiller per leafappearance interval) than the ryegrass species. Tillering rates(tillers per tiller per day) were also lower, except under vegetativeconditions at 4C. Low tiller number in prairie grass was notdue to lack of tiller sites but a result of poor filling ofthese sites. Lower site filling occurred because of increaseddelays in appearance of the youngest axillary tiller and lackof axillary tillers emerging from basal tiller buds. In prairiegrass, no tillers came from coleoptile buds while only occasionallydid prophyll buds develop tillers. Low tiller number in prairiegrass was compensated for by greater tiller weight. Prairiegrass had more live leaves per tiller, greater area per leafand a high leaf area per plant. Considerable variation between cultivars was found in prairiegrass. The cultivar ‘Bellegarde’ had high leaf appearance,large leaves and rapid reproductive development, but had lowlevels of site filling, tillering rate, final tiller numberand herbage quality during reproductive growth. ‘Primabel’tended to have the opposite levels for these parameters, while‘Grasslands Matua’ was intermediate and possiblyprovided the best balance of all plant parameters. prairie grass, Bromus willdenowii Kunth, perennial ryegrass, Lolium perenne L., Westerwolds ryegrass, Lolium multiflorum Lam., temperature, photoperiod, leaf appearance, leaf area, tillering, site filling, tillering sites, yield  相似文献   

9.
This glasshouse experiment was performed to assess the effectsof a range of constant defoliation regimes applied to cuttingsof a single large-leaved genotype ofTrifolium repens L. on theviability of its axillary buds. Plants were established to comprisea single main stolon (axillary branches were removed) and defoliationtreatments were applied by removing the older (basal) leavesuntil leaf complements of 1·0, 1·5, 2·0,2·5, 3·0 or all leaves (control) remained. Basalleaves were subsequently removed as necessary to maintain thetarget leaf complements. Only severe defoliation (leaf complements of 1·0 and1·5) induced a loss of viability in axillary buds. Lossof viability was greatest in reproductive buds present withinthe apical bud when the treatments were first imposed. Althoughthe most severe treatment (leaf complement 1·0) resultedin death of half the plants, in plants surviving that treatment,death of vegetative axillary buds was restricted to 21% of thevegetative buds at the three youngest node positions withinthe apical bud at the time of treatment application. No othertreatment induced any loss of viability of vegetative buds.There was no loss of viability of axillary buds at nodes formedafter the treatments were imposed. The frequency of initiationof inflorescences at nodes formed after treatments were imposeddecreased as defoliation severity increased. Severe defoliation resulted in marked changes in plant morphologyindicative of a sharp decrease in availability of intraplantresources. It was concluded that under severe defoliation: (1)the potential for vegetative growth (as represented by viablevegetative axillary buds) was maintained at the expense of reproductivegrowth; and (2) that the loss of viability of axillary budswas associated with the sudden changes in physiological processesinduced by defoliation as there was no loss of viability inbuds formed after plants had adjusted their phenotype to oneof smaller size. Trifolium repens L.; white clover; defoliation; axillary buds; viability; inflorescences  相似文献   

10.
Putrescine, spermidine, and spermine content were analysed inzygotic embryos of barley (Hordeum vulgare L.). Changes in polyaminecontent were observed during zygotic embryo growth. In two cultivars,‘Bomi’ and ‘Golden Promise’, the totalpolyamine content in the embryos was 2.6–2.9 nmol mg–1fresh weight 10 d after anthesis, the highest content observed.It dropped to 1.3 nmol mg–1 fresh weight 14 d after anthesis.This drop was caused by decreases in all three polyamine concentrations.From 14 to 35 d after anthesis the putrescine content continuedto decrease while the spermidine and spermine content increased,thus the total polyamine content remained constant until 35d after anthesis. The mutant ‘Ris? 1508’ showeda constant polyamine content around 1.3 nmol mg–1 freshweight from 14 to 35 d after anthesis. The polyamine patternwas conserved in all three lines throughout the period of investigationshowing a spermidine content higher than putrescine contentwhich was, in turn, higher or equal to the spermine content.The polyamine content measured as nmol µg–1 proteindecreased from 14 to 21 d post anthesis in all three lines,because the protein content (µg mg–1 fresh weight)increased during the period. In dedifferentiating zygotic embryoscultured in vitro the putrescine content (nmol mg–1 freshweight) rose by a factor of nine and the spermidine contentdoubled within the first week of cultivation, whereas sperminecontent did not change. For embryoderived calli a repeated patternof change in polyamine content was observed throughout the subculturingperiod. Key words: Polyamines, Hordeum vulgare L., embryo development  相似文献   

11.
Clonal species are characterised by having a growth form in which roots and shoots originate from the same meristem so that adventitious nodal roots form close to the terminal apical bud of stems. The nature of the relationship between nodal roots and axillary bud growth was investigated in three manipulative experiments on cuttings of a single genotype of Trifolium repens. In the absence of locally positioned nodal roots axillary bud development within the apical bud proceeded normally until it slowed once the subtending leaf had matured to be the second expanded leaf on the stem. Excision of apical tissues indicated that while there was no apical dominance apparent within fully rooted stems and very little in stems with 15 or more unrooted nodes, the outgrowth of the two most distal axillary buds was stimulated by decapitation in stems with intermediate numbers of unrooted nodes. Excision of the basal branches from stems growing without local nodal roots markedly increased the length and/or number of leaves on 14 distally positioned branches. The presence of basal branches therefore prevented the translocation of root-supplied resources (nutrients, water, phytohormones) to the more distally located nodes and this caused the retardation in the outgrowth of their axillary buds. Based on all three experiments we conclude that the primary control of bud outgrowth is exerted by roots via the acropetal transport of root-supplied resources necessary for axillary bud outgrowth and that apical dominance plays a very minor role in the regulation of axillary bud outgrowth in T. repens.  相似文献   

12.
The effect of axillary bud age on the development and potentialfor growth of the bud into a shoot was studied in roses. Ageof the buds occupying a similar position on the plant variedfrom 'subtending leaf just unfolded' up to 1 year later. Withincreasing age of the axillary bud its dry mass, dry-matterpercentage and number of leaves, including leaf primordia, increased.The apical meristem of the axillary bud remained vegetativeas long as subjected to apical dominance, even for 1 year. The potential for growth of buds was studied either by pruningthe parent shoot above the bud, by grafting the bud or by culturingthe bud in vitro. When the correlative inhibition (i.e. dominationof the apical region over the axillary buds) was released, additionalleaves and eventually a flower formed. The number of additionalleaves decreased with increasing bud age and became more orless constant for axillary buds of shoots beyond the harvestablestage, while the total number of leaves preceding the flowerincreased. An increase in bud age was reflected in a greaternumber of scales, including transitional leaves, and in a greaternumber of non-elongated internodes of the subsequent shoot.Time until bud break slightly decreased with increasing budage; it was long, relatively, for 1 year old buds, when theysprouted attached to the parent shoot. Shoot length, mass andleaf area were not clearly affected by the age of the bud thatdeveloped into the shoot. With increasing bud age the numberof pith cells in the subsequent shoot increased, indicatinga greater potential diameter of the shoot. However, final diameterwas dependent on the assimilate supply after bud break. Axillarybuds obviously need a certain developmental stage to be ableto break. When released from correlative inhibition at an earlierstage, increased leaf initiation occurs before bud break.Copyright1994, 1999 Academic Press Age, axillary bud, cell number, cell size, pith, shoot growth, Rosa hybrida, rose  相似文献   

13.
Floral buds of the ‘False Horn’ plantain clonesMusa (AAB) ‘Harton Verde’, ‘Harton Negra’,and ‘Currare’ terminate in a large single floralstructure. The apices of these floral buds are here designatedas determinate since they have lost the ability to produce additionalfloral initials or buds. Terminal peduncle segments can be culturedin a modified Murashige and Skoog (1962) medium supplementedwith N6-benzyl-aminopurine (5 mg I–1). Under these conditions,this apparent inability to yield buds can be overcome as vegetativeshoot clusters form in the axils of the bracts. Rooted plantletsare obtainable by treating shoots with naphthaleneacetic acid(1 mg I–1) and activated charcoal (0.025%). The adventitiousorigin of the shoots has been established. Musa cultivars, plantains, floral bud, adventitious buds, tissue culture  相似文献   

14.
Axillary bud outgrowth is regulated by both environmental cues and internal plant hormone signaling. Central to this regulation is the balance between auxins, cytokinins, and strigolactones. Auxins are transported basipetally and inhibit the axillary bud outgrowth indirectly by either restricting auxin export from the axillary buds to the stem (canalization model) or inducing strigolactone biosynthesis and limiting cytokinin levels (second messenger model). Both models have supporting evidence and are not mutually exclusive. In this study, we used a modified split-plate bioassay to apply different plant growth regulators to isolated stem segments of chrysanthemum and measure their effect on axillary bud growth. Results showed axillary bud outgrowth in the bioassay within 5 days after nodal stem excision. Treatments with apical auxin (IAA) inhibited bud outgrowth which was counteracted by treatments with basal cytokinins (TDZ, zeatin, 2-ip). Treatments with basal strigolactone (GR24) could inhibit axillary bud growth without an apical auxin treatment. GR24 inhibition of axillary buds could be counteracted with auxin transport inhibitors (TIBA and NPA). Treatments with sucrose in the medium resulted in stronger axillary bud growth, which could be inhibited with apical auxin treatment but not with basal strigolactone treatment. These observations provide support for both the canalization model and the second messenger model with, on the one hand, the influence of auxin transport on strigolactone inhibition of axillary buds and, on the other hand, the inhibition of axillary bud growth by strigolactone without an apical auxin source. The inability of GR24 to inhibit bud growth in a sucrose treatment raises an interesting question about the role of strigolactone and sucrose in axillary bud outgrowth and calls for further investigation.  相似文献   

15.
The annual cycle of kiwifruit [Actinidia deliciosa(A. Chev.)C. F. Liang et A. R. Ferguson var.deliciosacv. Hayward] shootaxillary bud (first-order axillary bud, FOAB) morphogenesisis described. FOABs developed quickly with the majority of budscales and leaf primordia present approx. 125 d after budbreak(dab). Mature FOABs had, on average, 23.2 bud scales and leafprimordia. Most second-order axillary structures were also presentapprox. 125 dab. During the growing season, the second-orderstructures developed into second-order axillary buds (SOABs)or remained as simple, dome-shaped meristems (SDSMs). At maturity,nearly all FOABs had four SOABs and, on average, 12.4 SDSMs.Most SDSMs were fused to the subtending leaf primordia, butsome SDSMs developed so that they were ‘free’ fromthe subtending leaf primordia. Third-order axillary meristems(third-order SDSMs) were observed in the axils of most SOABs,and, on average, there were 20.6 per FOAB. Our observationson the development of second-order axillary structures are consistentwith evocation in kiwifruit occurring earlier than the generally-acceptedtime of late summer. Actinidia deliciosa; bud morphogenesis; development; flowering; evocation  相似文献   

16.
DE RUITER  H. A. 《Annals of botany》1996,77(1):99-104
In three experiments (twoin-vivo, onein-vitro), an attempt wasmade to separate the possible effects of age and position ofaxillary buds of chrysanthemum on bud outgrowth and the subsequentquality of cuttings. In thein-vivoexperiments, bud age and bud position were notsignificant factors in bud outgrowth and subsequent qualityof cuttings. Nevertheless, most outgrowth parameters showedslightly higher values for the lower positioned buds and thetime needed to produce a cutting tended to decrease with theage of the axillary bud. In thein-vitroexperiment, the relationship between age and thevarious parameters showed an optimum. axillary bud; Chrysanthemum morifolium; Dendranthema grandiflora; Age; cutting; chrysanthemum; position  相似文献   

17.
Regulation of Branching in Decussate Species with Unequal Lateral Buds   总被引:1,自引:0,他引:1  
In the decussate plants Alternanthera philoxeroides and Hygrophilasp. the opposite axillary bud primordia are of unequal sizefrom the time of their inception; the larger or + buds lie alongone helix and the smaller or – buds along another (helicoidalsystem). In decapitated plants of Alternanthera both buds grewout, but unequally; if the node was vertically split growthof the two shoots was more equal, and if the + buds were excisedgrowth of the – shoots approximately equalled that ofcontrol + shoots. In decapitated shoots of Hygrophila grownin sterile culture only one bud, the + or larger one, grew outat each of the upper nodes. In excised cultured nodes, also,only the + bud grew out; but if the nodes were split longitudinallyboth buds grew out, initially rather unequally. These experimentssupport the view that the regulation of branching in these specieshas two components, apical dominance and the dominance of thelarger (+) bud over the smaller (–) bud at the same node.The restriction of growth potentiality imposed on the –bud is not permanent but can be modified. Further correlativeeffects on bud outgrowth include those of the subtending leavesand of buds at other nodes.  相似文献   

18.
TOMPSETT  P. B. 《Annals of botany》1978,42(4):889-900
Vegetative shoots from the base of the crown, and from partsof the tree likely to form male or female buds, were collectedfrom 40–years–old trees of Picea sitchensis (Bong.)Carr. throughout the 1973–4 annual growth cycle. The morphologyand growth rates of the terminal buds on these shoots were assessed. Bud scale primordia were formed most quickly in the female position,at an intermediate rate in the male position and most slowlyin the basal vegetative position during April, May and June.In July and early August the apical meristems swelled to formdomes and continued to grow at the same relative rates in themale, female and basal vegetative positions. Reproductive budswere first morphologically distinct in late August and sporangiaappeared in October. Dormancy, defined by the pause in apicalvolume increase, extended from mid-October to mid–March.Young strobili grew much faster than basal vegetative shootsof the same age between mid–March and bud burst in lateApril. Throughout the growth cycle, external changes in budsize reflected changes in size of the apical meristem, youngstrobihis or young vegetative shoot inside the bud. It is proposed that the rate of growth of an apical meristemmay be causally related to the type of bud which subsequentlydevelops from it. Sitka spruce, Picea sitchensis, bud development, morphology, growth of apical dome, flowering  相似文献   

19.
OFIR  M. 《Annals of botany》1975,39(2):213-217
The tillering phase in Hordeum bulbosum L. is terminated whenthe newly-formed axillary buds no longer emerge as tillers,but differentiate into dormant regeneration buds. The patternof development of the axillary buds differs during the tilleringphase and the post-tillering phase. During the former, accumulationof leaf primordia corresponds to the age of the bud, i.e., leafnumber per bud increases basipetally along the shoot. Duringthe post-tillering phase, leaf number per bud decreases basipetallyfrom the base of the future bulb internode. This transitionis brought about by an acceleration in the rate of accumulationof leaf primordia which is more sustained in the buds situatedcloser to the base of the bulb internode. These positional differencesin the morphogenesis of the regeneration buds are reflectedin their physiological responses during the relaxation of dormancyand activation of the buds.  相似文献   

20.
The morphogenic pathway of adventitious bud and shoot regenerationat the ends of Troyer citrange epicotyl cuttings is determinedby polarity and explant orientation. In explants planted verticallywith the basal end inserted in the medium, bud formation atthe apical end occurs by direct organogenesis. Bud growth andsubsequent shoot formation is markedly increased by the additionof 6-benzyladenine (BA) to the medium. This growth regulatoralso increases the number of buds formed. When they come intocontact with the culture medium, both the apical end and thebasal end of the cuttings form a vigorous callus with many xyllaryelements, more numerous in the calli from the basal end. Inthese calli, buds differentiate by a process of indirect organogenesis.This indirect regeneration pathway requires the addition of6-benzyladenine to the medium, and the number of buds formedis higher at the apical end than at the basal end of the cuttings.This pathway of regeneration is reduced as the position of thecuttings during incubation deviates from the normal uprightvertical position. Thus, for the basal end of the cuttings,the number of buds and shoots formed is higher when the explantsare placed vertically than when they lie on the surface of themedium. For the apical end, this number is higher in explantsplaced horizontally than when inserted vertically in the mediumin an inverted position. Copyright 1999 Annals of Botany Company Troyer citrange, Citrus sinensis x Poncirus trifoliata, explant orientation, histology, hormone dependence, morphogenesis, organogenesis, polarity, xylogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号