首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Cytosolic Ca(2+) ([Ca(2+)](i)) oscillations may be generated by the inositol 1,4,5-trisphosphate receptor (IP(3)R) driven through cycles of activation/inactivation by local Ca(2+) feedback. Consequently, modulation of the local Ca(2+) gradients influences IP(3)R excitability as well as the duration and amplitude of the [Ca(2+)](i) oscillations. In the present work, we demonstrate that the immunosuppressant cyclosporin A (CSA) reduces the frequency of IP(3)-dependent [Ca(2+)](i) oscillations in intact hepatocytes, apparently by altering the local Ca(2+) gradients. Permeabilized cell experiments demonstrated that CSA lowers the apparent IP(3) sensitivity for Ca(2+) release from intracellular stores. These effects on IP(3)-dependent [Ca(2+)](i) signals could not be attributed to changes in calcineurin activity, altered ryanodine receptor function, or impaired Ca(2+) fluxes across the plasma membrane. However, CSA enhanced the removal of cytosolic Ca(2+) by sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA), lowering basal and inter-spike [Ca(2+)](i). In addition, CSA stimulated a stable rise in the mitochondrial membrane potential (DeltaPsi(m)), presumably by inhibiting the mitochondrial permeability transition pore, and this was associated with increased Ca(2+) uptake and retention by the mitochondria during a rise in [Ca(2+)](i). We suggest that CSA suppresses local Ca(2+) feedback by enhancing mitochondrial and endoplasmic reticulum Ca(2+) uptake, these actions of CSA underlie the lower IP(3) sensitivity found in permeabilized cells and the impaired IP(3)-dependent [Ca(2+)](i) signals in intact cells. Thus, CSA binding proteins (cyclophilins) appear to fine tune agonist-induced [Ca(2+)](i) signals, which, in turn, may adjust the output of downstream Ca(2+)-sensitive pathways.  相似文献   

2.
The secretory granules of neuroendocrine cells, which contain large amounts of Ca(2+) and chromogranins, have been demonstrated to release Ca(2+) in response to inositol 1,4,5-trisphosphate (IP(3)), indicating the IP(3)-sensitive intracellular Ca(2+) store role of secretory granules. In our previous study, chromogranin A (CGA) was shown to interact with several secretory granule membrane proteins, including the IP(3) receptor (IP(3)R), at the intravesicular pH 5.5 (Yoo, S. H. (1994) J. Biol. Chem. 269, 12001-12006). To examine the functional aspect of this coupling, we measured the IP(3)-mediated Ca(2+) release property of the IP(3)R reconstituted into liposomes in the presence and absence of CGA. Presence of CGA in the IP(3)R-reconstituted liposome significantly enhanced the IP(3)-mediated Ca(2+) release from the liposomes. Moreover, the number of IP(3) bound to the reconstituted IP(3)R increased. The fluorescence energy transfer and IP(3)R Trp fluorescence quenching studies indicated that the structure of reconstituted IP(3)R becomes more ordered and exposed in the presence of CGA, suggesting that the coupled CGA in the liposome caused structural changes of the IP(3)R, changing it to a structure that is better suited to IP(3) binding and subsequent Ca(2+) release. These results appear to underscore the physiological significance of IP(3)R-CGA coupling in the secretory granules.  相似文献   

3.
The precise control of many T cell functions relies on cytosolic Ca(2+) dynamics that is shaped by the Ca(2+) release from the intracellular store and extracellular Ca(2+) influx. The Ca(2+) influx activated following T cell receptor (TCR)-mediated store depletion is considered to be a major mechanism for sustained elevation in cytosolic Ca(2+) concentration ([Ca(2+)](i)) necessary for T cell activation, whereas the role of intracellular Ca(2+) release channels is believed to be minor. We found, however, that in Jurkat T cells [Ca(2+)](i) elevation observed upon activation of the store-operated Ca(2+) entry (SOCE) by passive store depletion with cyclopiazonic acid, a reversible blocker of sarco-endoplasmic reticulum Ca(2+)-ATPase, inversely correlated with store refilling. This indicated that intracellular Ca(2+) release channels were activated in parallel with SOCE and contributed to global [Ca(2+)](i) elevation. Pretreating cells with (-)-xestospongin C (10 microM) or ryanodine (400 microM), the antagonists of inositol 1,4,5-trisphosphate receptor (IP3R) or ryanodine receptor (RyR), respectively, facilitated store refilling and significantly reduced [Ca(2+)](i) elevation evoked by the passive store depletion or TCR ligation. Although the Ca(2+) release from the IP3R can be activated by TCR stimulation, the Ca(2+) release from the RyR was not inducible via TCR engagement and was exclusively activated by the SOCE. We also established that inhibition of IP3R or RyR down-regulated T cell proliferation and T-cell growth factor interleukin 2 production. These studies revealed a new aspect of [Ca(2+)](i) signaling in T cells, that is SOCE-dependent Ca(2+) release via IP3R and/or RyR, and identified the IP3R and RyR as potential targets for manipulation of Ca(2+)-dependent functions of T lymphocytes.  相似文献   

4.
Early (E9.5-E11.5) embryonic heart cells beat spontaneously, even though the adult pacemaking mechanisms are not yet fully established. Here we show that in isolated murine early embryonic cardiomyocytes periodic oscillations of cytosolic Ca(2+) occur and that these induce contractions. The Ca(2+) oscillations originate from the sarcoplasmic reticulum and are dependent on the IP(3) and the ryanodine receptor. The Ca(2+) oscillations activate the Na(+)-Ca(2+) exchanger, giving rise to subthreshold depolarizations of the membrane potential and/or action potentials. Although early embryonic heart cells are voltage-independent Ca(2+) oscillators, the generation of action potentials provides synchronization of the electrical and mechanical signals. Thus, Ca(2+) oscillations pace early embryonic heart cells and the ensuing activation of the Na(+)-Ca(2+) exchanger evokes small membrane depolarizations or action potentials.  相似文献   

5.
Defecation in the nematode Caenorhabditis elegans is a readily observable ultradian behavioral rhythm that occurs once every 45-50 s and is mediated in part by posterior body wall muscle contraction (pBoc). pBoc is not regulated by neural input but instead is likely controlled by rhythmic Ca(2+) oscillations in the intestinal epithelium. We developed an isolated nematode intestine preparation that allows combined physiological, genetic, and molecular characterization of oscillatory Ca(2+) signaling. Isolated intestines loaded with fluo-4 AM exhibit spontaneous rhythmic Ca(2+) oscillations with a period of approximately 50 s. Oscillations were only detected in the apical cell pole of the intestinal epithelium and occur as a posterior-to-anterior moving intercellular Ca(2+) wave. Loss-of-function mutations in the inositol-1,4,5-trisphosphate (IP(3)) receptor ITR-1 reduce pBoc and Ca(2+) oscillation frequency and intercellular Ca(2+) wave velocity. In contrast, gain-of-function mutations in the IP(3) binding and regulatory domains of ITR-1 have no effect on pBoc or Ca(2+) oscillation frequency but dramatically increase the speed of the intercellular Ca(2+) wave. Systemic RNA interference (RNAi) screening of the six C. elegans phospholipase C (PLC)-encoding genes demonstrated that pBoc and Ca(2+) oscillations require the combined function of PLC-gamma and PLC-beta homologues. Disruption of PLC-gamma and PLC-beta activity by mutation or RNAi induced arrhythmia in pBoc and intestinal Ca(2+) oscillations. The function of the two enzymes is additive. Epistasis analysis suggests that PLC-gamma functions primarily to generate IP(3) that controls ITR-1 activity. In contrast, IP(3) generated by PLC-beta appears to play little or no direct role in ITR-1 regulation. PLC-beta may function instead to control PIP(2) levels and/or G protein signaling events. Our findings provide new insights into intestinal cell Ca(2+) signaling mechanisms and establish C. elegans as a powerful model system for defining the gene networks and molecular mechanisms that underlie the generation and regulation of Ca(2+) oscillations and intercellular Ca(2+) waves in nonexcitable cells.  相似文献   

6.
Muallem S  Wilkie TM 《Cell calcium》1999,26(5):173-180
Polarized cells signal in a polarized manner. This is exemplified in the patterns of [Ca2+]i waves and [Ca2+]i oscillations evoked by stimulation of G protein-coupled receptors in these cells. Organization of Ca(2+)-signaling complexes in cellular microdomains, with the aid of scaffolding proteins, is likely to have a major role in shaping G protein-coupled [Ca2+]i signal pathways. In epithelial cells, these domains coincide with sites of [Ca2+]i-wave initiation and local [Ca2+]i oscillations. Cellular microdomains enriched with Ca(2+)-signaling proteins have been found in several cell types. Microdomains organize communication between Ca(2+)-signaling proteins in the plasma membrane and internal Ca2+ stores in the endoplasmic reticulum through the interaction between the IP3 receptors in the endoplasmic reticulum and Ca(2+)-influx channels in the plasma membrane. Ca2+ signaling appears to be controlled within the receptor complex by the regulators of G protein-signaling (RGS) proteins. Three domains in RGS4 and related RGS proteins contribute important regulatory features. The RGS domain accelerates GTP hydrolysis on the G alpha subunit to uncouple receptor stimulation from IP3 production; the C-terminus may mediate interaction with accessory proteins in the complex; and the N-terminus acts in a receptor-selective manner to confer regulatory specificity. Hence, RGS proteins have both catalytic and scaffolding function in Ca2+ signaling. Organization of Ca(2+)-signaling proteins into complexes within microdomains is likely to play a prominent role in the localized control of [Ca2+]i and in [Ca2+]i oscillations.  相似文献   

7.
1,4,5-trisphosphate (IP(3))-dependent Ca(2+) signaling regulates gonad function, fertility, and rhythmic posterior body wall muscle contraction (pBoc) required for defecation in Caenorhabditis elegans. Store-operated Ca(2+) entry (SOCE) is activated during endoplasmic reticulum (ER) Ca(2+) store depletion and is believed to be an essential and ubiquitous component of Ca(2+) signaling pathways. SOCE is thought to function to refill Ca(2+) stores and modulate Ca(2+) signals. Recently, stromal interaction molecule 1 (STIM1) was identified as a putative ER Ca(2+) sensor that regulates SOCE. We cloned a full-length C. elegans stim-1 cDNA that encodes a 530-amino acid protein with approximately 21% sequence identity to human STIM1. Green fluorescent protein (GFP)-tagged STIM-1 is expressed in the intestine, gonad sheath cells, and spermatheca. Knockdown of stim-1 expression by RNA interference (RNAi) causes sterility due to loss of sheath cell and spermatheca contractile activity required for ovulation. Transgenic worms expressing a STIM-1 EF-hand mutant that constitutively activates SOCE in Drosophila and mammalian cells are sterile and exhibit severe pBoc arrhythmia. stim-1 RNAi dramatically reduces STIM-1GFP expression, suppresses the EF-hand mutation-induced pBoc arrhythmia, and inhibits intestinal store-operated Ca(2+) (SOC) channels. However, stim-1 RNAi surprisingly has no effect on pBoc rhythm, which is controlled by intestinal oscillatory Ca(2+) signaling, in wild type and IP(3) signaling mutant worms, and has no effect on intestinal Ca(2+) oscillations and waves. Depletion of intestinal Ca(2+) stores by RNAi knockdown of the ER Ca(2+) pump triggers the ER unfolded protein response (UPR). In contrast, stim-1 RNAi fails to induce the UPR. Our studies provide the first detailed characterization of STIM-1 function in an intact animal and suggest that SOCE is not essential for certain oscillatory Ca(2+) signaling processes and for maintenance of store Ca(2+) levels in C. elegans. These findings raise interesting and important questions regarding the function of SOCE and SOC channels under normal and pathophysiological conditions.  相似文献   

8.
Regulators of G protein signaling (RGS) proteins accelerate the GTPase activity of Galpha subunits to determine the duration of the stimulated state and control G protein-coupled receptor-mediated cell signaling. RGS2 is an RGS protein that shows preference toward Galpha(q).To better understand the role of RGS2 in Ca(2+) signaling and Ca(2+) oscillations, we characterized Ca(2+) signaling in cells derived from RGS2(-/-) mice. Deletion of RGS2 modified the kinetic of inositol 1,4,5-trisphosphate (IP(3)) production without affecting the peak level of IP(3), but rather increased the steady-state level of IP(3) at all agonist concentrations. The increased steady-state level of IP(3) led to an increased frequency of [Ca(2+)](i) oscillations. The cells were adapted to deletion of RGS2 by reducing Ca(2+) signaling excitability. Reduced excitability was achieved by adaptation of all transporters to reduce Ca(2+) influx into the cytosol. Thus, IP(3) receptor 1 was down-regulated and IP(3) receptor 3 was up-regulated in RGS2(-/-) cells to reduce the sensitivity for IP(3) to release Ca(2+) from the endoplasmic reticulum to the cytosol. Sarco/endoplasmic reticulum Ca(2+) ATPase 2b was up-regulated to more rapidly remove Ca(2+) from the cytosol of RGS2(-/-) cells. Agonist-stimulated Ca(2+) influx was reduced, and Ca(2+) efflux by plasma membrane Ca(2+) was up-regulated in RGS2(-/-) cells. The result of these adaptive mechanisms was the reduced excitability of Ca(2+) signaling, as reflected by the markedly reduced response of RGS2(-/-) cells to changes in the endoplasmic reticulum Ca(2+) load and to an increase in extracellular Ca(2+). These findings highlight the central role of RGS proteins in [Ca(2+)](i) oscillations and reveal a prominent plasticity and adaptability of the Ca(2+) signaling apparatus.  相似文献   

9.
The difference of Ca(2+) mobilization induced by muscarinic receptor activation between parotid acinar and duct cells was examined. Oxotremorine, a muscarinic-cholinergic agonist, induced intracellular Ca(2+) release and extracellular Ca(2+) entry through store-operated Ca(2+) entry (SOC) and non-SOC channels in acinar cells, but it activated only Ca(2+) entry from non-SOC channels in duct cells. RT-PCR experiments showed that both types of cells expressed the same muscarinic receptor, M3. Given that ATP activated the intracellular Ca(2+) stores, the machinery for intracellular Ca(2+) release was intact in the duct cells. By immunocytochemical experiments, IP(3)R2 colocalized with M3 receptors in the plasma membrane area of acinar cells; in duct cells, IP(3)R2 resided in the region on the opposite side of the M3 receptors. On the other hand, purinergic P2Y2 receptors were found in the apical area of duct cells where they colocalized with IP(3)R2. These results suggest that the expression of the IP(3)Rs near G-protein-coupled receptors is necessary for the activation of intracellular Ca(2+) stores. Therefore, the microenvironment probably affects intracellular Ca(2+) release and Ca(2+) entry.  相似文献   

10.
When arteries constrict to agonists, the endothelium inversely responds, attenuating the initial vasomotor response. The basis of this feedback mechanism remains uncertain, although past studies suggest a key role for myoendothelial communication in the signaling process. The present study examined whether second messenger flux through myoendothelial gap junctions initiates a negative-feedback response in hamster retractor muscle feed arteries. We specifically hypothesized that when agonists elicit depolarization and a rise in second messenger concentration, inositol trisphosphate (IP(3)) flux activates a discrete pool of IP(3) receptors (IP(3)Rs), elicits localized endothelial Ca(2+) transients, and activates downstream effectors to moderate constriction. With use of integrated experimental techniques, this study provided three sets of supporting observations. Beginning at the functional level, we showed that blocking intermediate-conductance Ca(2+)-activated K(+) channels (IK) and Ca(2+) mobilization from the endoplasmic reticulum (ER) enhanced the contractile/electrical responsiveness of feed arteries to phenylephrine. Next, structural analysis confirmed that endothelial projections make contact with the overlying smooth muscle. These projections retained membranous ER networks, and IP(3)Rs and IK channels localized in or near this structure. Finally, Ca(2+) imaging revealed that phenylephrine induced discrete endothelial Ca(2+) events through IP(3)R activation. These events were termed recruitable Ca(2+) wavelets on the basis of their spatiotemporal characteristics. From these findings, we conclude that IP(3) flux across myoendothelial gap junctions is sufficient to induce focal Ca(2+) release from IP(3)Rs and activate a discrete pool of IK channels within or near endothelial projections. The resulting hyperpolarization feeds back on smooth muscle to moderate agonist-induced depolarization and constriction.  相似文献   

11.
Membrane depolarization triggers Ca(2+) release from the sarcoplasmic reticulum (SR) in skeletal muscles via direct interaction between the voltage-gated L-type Ca(2+) channels (the dihydropyridine receptors; VGCCs) and ryanodine receptors (RyRs), while in cardiac muscles Ca(2+) entry through VGCCs triggers RyR-mediated Ca(2+) release via a Ca(2+)-induced Ca(2+) release (CICR) mechanism. Here we demonstrate that in phasic smooth muscle of the guinea-pig small intestine, excitation evoked by muscarinic receptor activation triggers an abrupt Ca(2+) release from sub-plasmalemmal (sub-PM) SR elements enriched with inositol 1,4,5-trisphosphate receptors (IP(3)Rs) and poor in RyRs. This was followed by a lesser rise, or oscillations in [Ca(2+)](i). The initial abrupt sub-PM [Ca(2+)](i) upstroke was all but abolished by block of VGCCs (by 5 microM nicardipine), depletion of intracellular Ca(2+) stores (with 10 microM cyclopiazonic acid) or inhibition of IP(3)Rs (by 2 microM xestospongin C or 30 microM 2-APB), but was not affected by block of RyRs (by 50-100 microM tetracaine or 100 microM ryanodine). Inhibition of either IP(3)Rs or RyRs attenuated phasic muscarinic contraction by 73%. Thus, in contrast to cardiac muscles, excitation-contraction coupling in this phasic visceral smooth muscle occurs by Ca(2+) entry through VGCCs which evokes an initial IP(3)R-mediated Ca(2+) release activated via a CICR mechanism.  相似文献   

12.
Many important cell functions are controlled by Ca(2+) release from intracellular stores via the inositol 1,4,5-trisphosphate receptor (IP(3)R), which requires both IP(3) and Ca(2+) for its activity. Due to the Ca(2+) requirement, the IP(3)R and the cytoplasmic Ca(2+) concentration form a positive feedback loop, which has been assumed to confer regenerativity on the IP(3)-induced Ca(2+) release and to play an important role in the generation of spatiotemporal patterns of Ca(2+) signals such as Ca(2+) waves and oscillations. Here we show that glutamate 2100 of rat type 1 IP(3)R (IP(3)R1) is a key residue for the Ca(2+) requirement. Substitution of this residue by aspartate (E2100D) results in a 10-fold decrease in the Ca(2+) sensitivity without other effects on the properties of the IP(3)R1. Agonist-induced Ca(2+) responses are greatly diminished in cells expressing the E2100D mutant IP(3)R1, particularly the rate of rise of initial Ca(2+) spike is markedly reduced and the subsequent Ca(2+) oscillations are abolished. These results demonstrate that the Ca(2+) sensitivity of the IP(3)R is functionally indispensable for the determination of Ca(2+) signaling patterns.  相似文献   

13.
The intercellular synchronization of spontaneous calcium (Ca(2+)) oscillations in individual smooth muscle cells is a prerequisite for vasomotion. A detailed mathematical model of Ca(2+) dynamics in rat mesenteric arteries shows that a number of synchronizing and desynchronizing pathways may be involved. In particular, Ca(2+)-dependent phospholipase C, the intercellular diffusion of inositol trisphosphate (IP(3), and to a lesser extent Ca(2+)), IP(3) receptors, diacylglycerol-activated nonselective cation channels, and Ca(2+)-activated chloride channels can contribute to synchronization, whereas large-conductance Ca(2+)-activated potassium channels have a desynchronizing effect. Depending on the contractile state and agonist concentrations, different pathways become predominant, and can be revealed by carefully inhibiting the oscillatory component of their total activity. The phase shift between the Ca(2+) and membrane potential oscillations can change, and thus electrical coupling through gap junctions can mediate either synchronization or desynchronization. The effect of the endothelium is highly variable because it can simultaneously enhance the intercellular coupling and affect multiple smooth muscle cell components. Here, we outline a system of increased complexity and propose potential synchronization mechanisms that need to be experimentally tested.  相似文献   

14.
We propose a mechanism for agonist-stimulated Ca2+ oscillations that involves two roles for cytosolic Ca2+: (a) inhibition of inositol-1,4,5-trisphosphate (IP3) stimulated Ca2+ release from the endoplasmic reticulum (ER) and (b) stimulation of the production of IP3 through its action on phospholipase C (PLC), via a Gq protein related mechanism. Relying on quantitative experiments by Parker, I., and I. Ivorra (1990. Proc. Natl. Acad. Sci. USA. 87:260-264) on the inhibition of Ca2+ release from the ER using caged-IP3, we develop a kinetic model of inhibition that allows us to simulate closely their experiments. The model assumes that the ER IP3 receptor is a tetramer of independent subunits that can bind both Ca2+ and IP3. Upon incorporation of the action of Ca2+ on PLC that leads to production of IP3, we observe in-phase-oscillations of Ca2+ and IP3 at intermediate values of agonist stimulation. The oscillations occur on a time scale of 10-20 s, which is comparable to the time scale for inhibition in Xenopus oocytes. Analysis of the mechanism shows that Ca(2+)-inhibition of IP3-stimulated Ca2+ release from the ER is an essential step in the mechanism. We also find that the effect of Ca2+ on PLC can lead to an indirect increase of cytosolic Ca2+, superficially resembling "Ca(2+)-induced Ca(2+)-release." The mechanism that we propose appears to be consistent with recent experiments on REF52 cells by Harootunian, A. T., J. P. Y. Kao, S. Paranjape, and R. Y. Tsien. (1991. Science [Wash. DC]. 251:75-78.) and we propose additional experiments to help test its underlying assumptions.  相似文献   

15.
The most common form of Ca(2+) signaling by Gq-coupled receptors entails activation of PLCbeta2 by Galphaq to generate IP(3) and evoke Ca(2+) release from the ER. Another form of Ca(2+) signaling by G protein-coupled receptors involves activation of Gi to release Gbetagamma, which activates PLCbeta1. Whether Gbetagamma has additional roles in Ca(2+) signaling is unknown. Introduction of Gbetagamma into cells activated Ca(2+) release from the IP(3) Ca(2+) pool and Ca(2) oscillations. This can be due to activation of PLCbeta1 or direct activation of the IP(3)R by Gbetagamma. We report here that Gbetagamma potently activates the IP(3) receptor. Thus, Gbetagamma-triggered [Ca(2+)](i) oscillations are not affected by inhibition of PLCbeta. Coimmunoprecipitation and competition experiments with Gbetagamma scavengers suggest binding of Gbetagamma to IP(3) receptors. Furthermore, Gbetagamma inhibited IP(3) binding to IP(3) receptors. Notably, Gbetagamma activated single IP(3)R channels in native ER as effectively as IP(3). The physiological significance of this form of signaling is demonstrated by the reciprocal sensitivity of Ca(2+) signals evoked by Gi- and Gq-coupled receptors to Gbetagamma scavenging and PLCbeta inhibition. We propose that gating of IP(3)R by Gbetagamma is a new mode of Ca(2+) signaling with particular significance for Gi-coupled receptors.  相似文献   

16.
Oscillations of free intracellular Ca2+ concentration ([Ca2+]i) are known to occur in many cell types during physiological cell signaling. To identify the basis for the oscillations, we measured both [Ca2+]i and extracellular Ca2+ concentration ([Ca2+]o) to follow the fate of Ca2+ during stimulation of [Ca2+]i oscillations in pancreatic acinar cells. [Ca2+]i oscillations were initiated by either t-butyloxycarbonyl-Tyr(SO3)-Nle-Gly-Tyr-Nle-Asp-2-phenylethyl ester (CCK-J), which mobilized Ca2+ from the inositol 1,4,5-trisphosphate (IP3)-insensitive pool, or low concentration of cholecystokinin octapeptide (CCK-OP), which mobilized Ca2+ from the IP3-sensitive internal pool. Little Ca2+ efflux occurred during the oscillations triggered by CCK-J or CCK-OP in spite of a large average increase in [Ca2+]i. When internal store Ca2+ pumps were inhibited with thapsigargin (Tg) during [Ca2+]i oscillations, a rapid Ca2+ efflux occurred similar to that measured in intensely stimulated, nonoscillatory cells. Tg also stimulated 45Ca efflux from internal pools of cells stimulated with CCK-J or a low concentration of CCK-OP. Hence, a large fraction of the Ca2+ released during each spike is reincorporated by the internal store Ca2+ pumps. Surprisingly, when the increase in [Ca2+]i during stimulation of oscillations was prevented by loading the cells with 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid, a persistent activation of Ca2+ release and Ca2+ efflux occurred. This was reflected as a persistent increase in [Ca2+]o in cells suspended at low [Ca2+]o or persistent efflux of 45Ca from internal stores of cells maintained at high [Ca2+]o. Since agonist-stimulated Ca2+ release evidently remains activated when [Ca2+]i is highly buffered, the primary mechanism determining Ca2+ oscillations must include an inhibition of Ca2+ release by [Ca2+]i. Loading the cells with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid had no apparent effect on the levels or kinetics of IP3 formation in agonist-stimulated cells. This suggests that [Ca2+]i regulated the oscillation by inhibition of Ca2+ release independent of its possible effects on cellular levels of IP3.  相似文献   

17.
We have investigated the effects of Ca2+ diffusion, mobile and stationary Ca2+ buffers in the cytosol, and Ca2+ handling by the endoplasmic reticulum on inositol 1,4,5-trisphosphate-induced Ca2+ wave propagation. Rapid equilibration of free and bound Ca2+ is used to describe Ca2+ sequestration by buffers in both the cytosol and endoplasmic reticulum (ER) lumen. Cytosolic Ca2+ regulation is based on a kinetic model of the inositol 1,4,5-trisphosphate (IP3) receptor of De Young and Keizer that includes activation and inhibition of the IP3 receptor Ca2+ channel in the ER membrane and SERCA Ca2+ pumps in the ER. Diffusion of Ca2+ in the cytosol and the ER and the breakdown and diffusion of IP3 are also included in our calculations. Although Ca2+ diffusion is severely limited because of buffering, when conditions are chosen just below the threshold for Ca2+ oscillations, a pulse of IP3 or Ca2+ results in a solitary trigger wave that requires diffusion of Ca2+ for its propagation. In the oscillatory regime repetitive wave trains are observed, but for this type of wave neither the wave shape nor the speed is strongly dependent on the diffusion of Ca2+. Local phase differences lead to waves that are predominately kinematic in nature, so that the wave speed (c) is related to the wavelength (lambda) and the period of the oscillations (tau) approximately by the formula c = lambda/tau. The period is determined by features that control the oscillations, including [IP3] and pump activity, which are related to recent experiments. Both solitary waves and wave trains are accompanied by a Ca2+ depletion wave in the ER lumen, similar to that observed in cortical preparations from sea urchin eggs. We explore the effect of endogenous and exogenous Ca2+ buffers on wave speed and wave shape, which can be explained in terms of three distinct effects of buffering, and show that exogenous buffers or Ca2+ dyes can have considerable influence on the amplitude and width of the waves.  相似文献   

18.
STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx   总被引:15,自引:0,他引:15  
Ca(2+) signaling in nonexcitable cells is typically initiated by receptor-triggered production of inositol-1,4,5-trisphosphate and the release of Ca(2+) from intracellular stores. An elusive signaling process senses the Ca(2+) store depletion and triggers the opening of plasma membrane Ca(2+) channels. The resulting sustained Ca(2+) signals are required for many physiological responses, such as T cell activation and differentiation. Here, we monitored receptor-triggered Ca(2+) signals in cells transfected with siRNAs against 2,304 human signaling proteins, and we identified two proteins required for Ca(2+)-store-depletion-mediated Ca(2+) influx, STIM1 and STIM2. These proteins have a single transmembrane region with a putative Ca(2+) binding domain in the lumen of the endoplasmic reticulum. Ca(2+) store depletion led to a rapid translocation of STIM1 into puncta that accumulated near the plasma membrane. Introducing a point mutation in the STIM1 Ca(2+) binding domain resulted in prelocalization of the protein in puncta, and this mutant failed to respond to store depletion. Our study suggests that STIM proteins function as Ca(2+) store sensors in the signaling pathway connecting Ca(2+) store depletion to Ca(2+) influx.  相似文献   

19.
20.
Three subtypes of inositol 1,4,5-trisphosphate receptor (IP(3)R1, IP(3)R2, and IP(3)R3) Ca(2+) release channel share basic properties but differ in terms of regulation. To what extent they contribute to complex Ca(2+) signaling, such as Ca(2+) oscillations, remains largely unknown. Here we show that HeLa cells express comparable amounts of IP(3)R1 and IP(3)R3, but knockdown by RNA interference of each subtype results in dramatically distinct Ca(2+) signaling patterns. Knockdown of IP(3)R1 significantly decreases total Ca(2+) signals and terminates Ca(2+) oscillations. Conversely, knockdown of IP(3)R3 leads to more robust and long lasting Ca(2+) oscillations than in controls. Effects of IP(3)R3 knockdown are surprisingly similar in COS-7 cells that predominantly (>90% of total IP(3)R) express IP(3)R3, suggesting that IP(3)R3 functions as an anti-Ca(2+)-oscillatory unit without contributing to peak amplitude of Ca(2+) signals, irrespective of its relative expression level. Therefore, differential expression of the IP(3)R subtype is critical for various forms of Ca(2+) signaling, and, particularly, IP(3)R1 and IP(3)R3 have opposite roles in generating Ca(2+) oscillations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号