首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Wang Y  Zhang L  Li Y  Hou X  Zeng F 《Carbohydrate research》2004,339(15):2567-2574
A water-insoluble (1-->3)-beta-D-glucan isolated from fresh sclerotium of Poria cocos was, respectively, sulfated, carboxymethylated, methylated, hydroxyethylated, and hydroxypropylated, to afford five water-soluble derivatives. Their weight-average molecular masses (Mw) and intrinsic viscosities ([eta]) were determined by size-exclusion chromatography combined with laser light scattering (SEC-LLS), LLS, and viscometry in phosphate buffer solution (PBS) at 37 degrees C. The antitumor activities, against Sarcoma 180 tumor cell (S-180) and gastric carcinoma cell strain (MKN-45 and SGC-7901) of the native beta-glucan and the five derivatives, were tested in vitro and in vivo. The Mw values of the five derivatives in PBS were determined to be 3.8 x 10(4), 18.9 x 10(4), 16.0 x 10(4), 76.8 x 10(4), and 224.3 x 10(4), respectively. The high Mw values of the hydroxyethylated and hydroxypropylated derivatives in aqueous solution resulted from aggregation, and their true Mw values obtained in dimethyl sulfoxide were 20.1 x 10(4) and 19.1 x 10(4). The sulfated and carboxymethylated derivatives having DS of 1.0-1.3 show good water solubility, and exist as relatively expanded chains in aqueous solution. Interestingly, the native beta-glucan did not show antitumor activity, whereas the sulfated and carboxymethylated derivatives exhibit significant antitumor activities against S-180 and gastric carcinoma tumor cells. This work showed that good water solubility, relatively high chain stiffness, and moderate molecular mass of the derivatives in aqueous solution contribute beneficial to enhancement of antitumor activity.  相似文献   

2.
Huang Q  Zhang L 《Biopolymers》2005,79(1):28-38
From Poria cocos mycelia yielded via a pilot scale facility-fermentation tank, a water-insoluble (1-->3)-alpha-D-glucan coded as Pi-PCM3-I was isolated by extraction with 0.5 M NaOH/0.01 M NaBH(4) aqueous solution. Nine fractions from F1 to F9 with a weight-average molecular mass (M(w)) range from 7.75 x 10(4) to 57.3 x 10(4) were prepared from the Pi-PCM3-I sample by a nonsolvent addition method. The fractions were reacted with chlorosulfonic acid-pyridine complex to product water-soluble sulfated derivatives coded as S1 to S8 with M(w) from 2.36 x 10(4) to 14.5 x 10(4) and degree of substitution (DS) of 0.86-1.38. M(w), z-average radius of gyration (s(2) (z) (1/2)), the second virial coefficient (A(2)), and the intrinsic viscosity ([eta]) of the native and sulfated Pi-PCM3-I were measured by laser light scattering (LLS), size-exclusion chromatography combined with LLS (SEC-LLS), and viscometry at 25 degrees C. The Mark-Houwink equations for Pi-PCM3-I in 0.25 M LiCl/dimethylsulfoxide (DMSO) (Me(2)SO) and for its sulfated derivative in 0.15 M NaCl aqueous solution at 25 degrees C were established to be [eta] = 1.33 x 10(-2) M(w) (0.75+/-0.01) (mL g(-1)) and [eta] = 1.46 x 10(-4) M(w) (1.13+/-0.01) (mL g(-1)), respectively. On the basis of theories for a wormlike cylinder model, the conformational parameters of the native and sulfated Pi-PCM3-I were calculated to be 760 +/- 50 and 1060 +/- 30 nm(-1) for the molar mass per unit contour length (M(L)), 6.3 +/- 0.5 and 13.1 +/- 1 nm for the persistence length (q), and 14.9 +/- 0.2 and 31.8 +/- 1 for the characteristic ratio (C( proportional, variant)), respectively. The results revealed that Pi-PCM3-I existed as an extended flexible chain in 0.25 M LiCl/Me(2)SO, and its sulfated derivative existed as a semistiff chain in 0.15 M NaCl aqueous solution. Furthermore, Pi-PCM3-I possessed similar structure and molecular parameters to wc-PCM3-I from a rotary shaker; this suggests promising industrialization of Poria cocos polysaccharides.  相似文献   

3.
A water-soluble polysaccharide-protein complex (GM3) extracted from the mycelium of Ganoderma tsugae was characterized using size-exclusion chromatography combined with laser light scattering (SEC-LLS). Two peaks coded as fractions I and II appeared in the SEC pattern of GM3 in 0.5 M NaCl aqueous solution, corresponding to the weight-average molecular mass (M(w)) of 355 x 10(4) and 6.3 x 10(4), respectively. The relationship between the radius of gyration ((z)(1/2)) and M(w) showed that molecules of fraction I exhibited more compact coil conformation than that of fraction II in 0.5 M NaCl aqueous solution at 25 degrees C. To clarify the component of polysaccharide and protein in each fraction, the sample GM3 was treated with 0.2 M NaOH aqueous solution to degrade polysaccharide and trypsin to hydrolyze protein. The obtained products were analyzed by SEC combined with detectors such as UV, differential refractive index (DRI) and LLS. The results indicated that both the fractions I and II were protein-bound polysaccharide, but had different protein content and degree of branching, resulting in the difference of the chain conformation.  相似文献   

4.
The weight-average molecular weight (Mw) and intrinsic viscosity ([eta]) of the alpha-(1-->3)-D-glucan (L-FV-II) from Lentinus edodes in 0.5 and 1.0 M NaOH aqueous solution containing urea, were studied by light scattering and viscometry. The Mw value of the glucan decreased with increase of the urea and NaOH concentration. A strong intermolecular hydrogen bonding confers water-insolubility on the glucan, but NaOH and especially urea, broke this hydrogen bonding leading to enhanced water-solubility. Use of 1.0 M urea-1.0 M NaOH as solvent broke not only intermolecular hydrogen bonds but also partial covalent bonds of the alpha-glucan in aqueous solution, resulting in a decrease of Mw and [eta]. The urea and NaOH concentrations, storage time with stirring, and mode of preparation of the polysaccharide in aqueous solution significantly affected the determination of Mw and [eta]. The dependences of specific rotation and fluorescence emission ratio of a probe on urea concentration showed that a change in the molecular conformation of the alpha-glucan in 0.5 M NaOH aqueous solution containing urea occurred in the range 0.4-0.6 M urea. The 0.5 M urea-0.5 M NaOH aqueous solution is a suitable solvent for the glucan, and the Mw and [eta] values obtained were 5.21 x 10(5) and 148 cm3 g(-1), respectively. Degradation of the glucan was obvious after storage for 15 months.  相似文献   

5.
Four fractions of a water-insoluble alpha-(1-->3)-D-glucan GL extracted from fruiting bodies of Ganoderma lucidum were dissolved in 0.25 M LiCl/DMSO, and then reacted with sulfur trioxide-pyridine complex at 80 degrees C to synthesize a series of water-soluble sulfated derivatives S-GL. The degree of substitution of DS was measured by using IR infrared spectra, elemental analysis, and 13C NMR to be 1.2-1.6 in the non-selective sulfation. Weight-average molecular weight Mw and intrinsic viscosity [eta] of the sulfated derivatives S-GL were measured by multi-angle laser light scattering and viscometry. The Mw value (2.4 x 10(4)) of sulfated glucan S-GL-1 was much lower than that (44.5 x 10(4)) of original alpha-(1-->3)-D-glucan GL-1. The Mark-Houwink equation and average value of characteristic ratio C(infinity) for the S-GL in 0.2 M NaCl aqueous solution at 25 degrees C were found to be: [eta] = 1.32 x 10(-3) Mw(1.06) (cm3 g(-1)) and 16, respectively, in the Mw range from 1.1 x 10(4) to 2.4 x 10(4). It indicated that the sulfated derivatives of the alpha-(1-->3)-D-glucan in the aqueous solution behave as an expanded chain, owing to intramolecular hydrogen bonding or interaction between charge groups. Interestingly, two sulfated derivatives synthesized from the alpha-(1-->3)-D-glucan and curdlan, a beta-(1-->3)-D-glucan, all had significant higher antitumor activity against Ehrlich ascites carcinoma (EAC) than the originals. The effect of expanded chains of the sulfated glucan in the aqueous solution on the improvement of the antitumor activity could not be negligible.  相似文献   

6.
Six water-insoluble (1-->3)-beta-D-glucan fractions TM8-1 to TM8-6 with weight-average molecular mass Mw ranging from 5.76 to 77.4x10(4) obtained from the sclerotia of Pleurotus tuber-regium were sulfated to produce the water-soluble fractions S-TM8-1 to S-TM8-6 with Mw from 6.0 to 64.8x10(4). The degree of substitution (DS) of S-TM8 fractions was analyzed by elemental analysis (EA) to be 1.14-1.74. The 13C NMR results indicated that the C-6 was fully substituted, and C-2, C-4 were partially substituted by the sulfo-groups. The Mw and the intrinsic viscosity [eta] of the S-TM8 fractions were measured, respectively, by size-exclusion chromatography combined with laser light scattering (SEC-LLS), LLS and viscometry in phosphate buffer solution (PBS) at 37 degrees C. The dependences of [eta] and radius of gyration z(1/2) on Mw for the S-TM8 samples were found to be [eta]=1.89x10(-2) Mw(0.70) (cm3/g) and z(1/2)=1.12x10(-4) Mw(0.81) (nm) in the Mw range tested. Based on current theories for a wormlike chain model, the molar mass per unit contour length ML and persistence length q of the S-TM8 were calculated to be 990 nm(-1) and 8.5 nm, respectively. The relatively higher q value suggested a more expanded flexible chain of S-TM8 in PBS. The water-solubility and relatively expanded chain conformation of the STM8 fractions were considered to be significant to their antiviral activity.  相似文献   

7.
Tao Y  Zhang L 《Biopolymers》2006,83(4):414-423
The chemical structure of a water-soluble polysaccharide, coded as TM3b, extracted from sclerotia of Pleurotus tuber-rigium was analyzed to be a hyperbranched beta-D-glucan with beta-(1-->6), beta-(1-->4), and beta-(1-->3)-linked residues, with degree of branching (DB) of 57.6%. The results from size-exclusion chromatography combined with laser light scattering (SEC-LLS) revealed that the hyperbranched polysaccharide easily aggregated in 0.15 M aqueous NaCl, whereas it dispersed as individual chains in DMSO. The weight-average molecular weight (M(w)), radius of gyration, intrinsic viscosity, and chain density of TM3b in DMSO and in 0.15 M aqueous NaCl were measured with SEC-LLS, LLS, and viscometry. The results indicated that single chains and aggregates with aggregation number of 12 coexisted in the aqueous solution, whereas individual molecules of TM3b occurred in DMSO. In view of the molecular parameters, the aggregates in aqueous solution exhibited more compact chain structure than the individual molecules in DMSO. Furthermore, transmission electron microscopy and atomic force microscopy showed that all of the aggregates and individual molecules exhibited spherical particles in the solutions. This work provided the valuable information of chain conformation and molecular morphology of the hyperbranched polysaccharide in different solvents.  相似文献   

8.
Tao Y  Zhang L  Yan F  Wu X 《Biomacromolecules》2007,8(7):2321-2328
Water-insoluble polysaccharide (TM3a), extracted from sclerotia of Pleurotus tuber-regium, was identified as a hyperbranched beta-d-glucan from the results of one- and two-dimensional NMR and GC-MS analysis. The degree of branching of TM3a is 65.5%. TM3a was fractionated by using a non-solvent addition method into 14 fractions, and its solution properties in 0.25 M LiCl/dimethylsulfoxide (DMSO) solution were studied systematically by using static laser light scattering, dynamic light scattering, and viscometry at 25 degrees C. The dependences among the values of intrinsic viscosity ([eta]), radius of gyration (z 1/2), and hydradynamic radius (Rh) on weight-average molecular weight (Mw) were found as the following: [eta] = 0.46Mw0.30+/-0.01, z 1/2 = 4.79 x 10-2Mw0.43+/-0.04, and Rh = 5.01 x 10-2Mw0.41+/-0.02 in the Mw range from 1.94 x 105 to 2.06 x 107 for TM3a in a 0.25 M LiCl/DMSO solution at 25 degrees C. The current theory of polymer solution was applied to explain the relationship among the fractal dimension, ratio of geometric to hydrodynamic radius (rho = z 1/2/Rh), and MwA2/[eta] of TM3a. The results indicated that TM3a existed as a compact chain conformation with a sphere-like structure in LiCl/DMSO solution. Furthermore, by using transmission electron microscopy, we observed directly the spherical molecules with an average diameter of 23.0 +/- 1.8 nm.  相似文献   

9.
Eight samples of a polysaccharide schizophyllan ranging in weight-average molecular weight Mw (in water) from 5 x 10(3) to 1.3 x 10(5) were prepared and their antitumor activity (expressed in terms of the tumor inhibition ratio) against Sarcoma 180 ascites, intrinsic viscosities [eta], and gel-filtration chromatograms in aqueous solution were determined. The tumor inhibition ratio was essentially unity for samples with Mw higher than 9 x 10(4), but reduced to zero or even to a negative value when Mw was lower than 10(4). The [eta] data combined with the chromatographic data showed that above Mw approximately 9 x 10(4) the predominant species of schizophyllan in aqueous solution is the previously found rigid triple helix, whereas below Mw approximately 9 x 10(4) both triple helices and single chains coexist in the solution and the fraction of triple helices decreases monotonically to zero as Mw is decreased to 5 x 10(3). From these findings it was concluded that the antitumor potency of schizophyllan in water is related to the amount of triple helices relative to that of single chains.  相似文献   

10.
Four water-insoluble (1-->3)-alpha-D-glucans, coded L-II1, L-II2, L-II3 and L-II4, with different molecular weights were isolated from four kinds of fruiting bodies of Lentinus Edodes. The four alpha-D-glucans were O-sulfonated to obtain derivatives (SL-II) having degrees of substitution (DS) from 0.9 to 2.1 respectively. The structure of the samples was analyzed by infrared spectra, elemental analysis, and 13C NMR. The weight-average molecular weight (Mw), radii of gyration (z1/2) and intrinsic viscosity ([eta]) of the native alpha-D-glucans and O-sulfonated derivatives were measured by size-exclusion chromatography combined with laser light scattering (SEC-LLS), LLS, and viscometry in 0.2 M aqueous NaCl and in dimethyl sulfoxide (DMSO) containing 0.25 M LiCl at 25 degrees C respectively. The Mw values of the O-sulfonated derivatives were much lower than those of the native alpha-D-glucans. The experimental results indicate that the O-sulfonated derivatives are water-soluble and exist as an expanded flexible chain in aqueous solution owing to intramolecular hydrogen bonding or interaction between charge groups. The in vivo and in vitro antitumor activities of the native alpha-D-glucans and their O-sulfonated derivatives against solid tumor Sarcoma 180 cells were evaluated and compared. Interestingly, all of the O-sulfonated derivatives exhibited higher antitumor activities than those of the native glucans. The results reveal that the effect of O-sulfonation of the alpha-D-glucan on the improvement of their antitumor activities was considerable.  相似文献   

11.
A linear water-insoluble (1-->3)-beta-D-glucan, coded as GL-IV-I, was isolated from the fruit body of Ganoderma lucidum by extracting with NaOH solution. Its derivatives were prepared by using sulfation, carboxymethylation, hydroxyethylation, hydroxypropylation, and methylation, respectively, and these were labeled as S-GL, CM-GL, HE-GL, HP-GL and M-GL. Five derivatives exhibited good water solubility. Their structures and chain conformations were investigated with infrared spectroscopy, elemental analysis (EA), one- and two-dimensional NMR spectroscopy, laser light scattering (LLS), and size-exclusion chromatography combined with LLS (SEC-LLS). The reactivity of the hydroxyl group of GL-IV-I was ordered as C-6>C-4>C-2 for the five derivatives. The degree of substitution (DS) of the derivatives was calculated from EA and NMR spectroscopy to be from 0.32 to 1.18. The weight-average molecular mass (M(w)) of GL-IV-I, S-GL, CM-GL, HE-GL, HP-GL, and M-GL was 13.3 x 10(4), 10.1 x 10(4), 6.3 x 10(4), 7.2 x 10(4), 5.1 x 10(4), and 14.1 x 10(4), respectively. The conformation analysis studies revealed that GL-IV-I exists as a compact coil in dimethyl sulfoxide, whereas the five derivatives are slightly expanded flexible chains in 0.9% aqueous NaCl solution.  相似文献   

12.
Zhang L  Li X  Xu X  Zeng F 《Carbohydrate research》2005,340(8):1515-1521
A (1-->3)-beta-D-glucan having (1-->6) branching (L-FV-IB) from Lentinus edodes in water was degraded into seven fractions of different molecular weights by ultrasonic irradiation, and each was further fractionated into three parts, by precipitation from water into acetone at room temperature. The weight-average molecular weight (M(w)), radius of gyration ((z)(1/2)), and intrinsic viscosity ([eta]) of lentinan and its fractions in 0.9% NaCl aqueous solution and dimethyl sulfoxide (Me(2)SO) were determined by size-exclusion chromatography combined with multi-angle laser light scattering (SEC-LLS), LLS, and viscometry. Analysis of M(w), [eta], and (z)(1/2) in terms of known theory for worm-like chains yielded 2240 +/- 100 nm(-1), and 100 +/- 10 nm for molar mass per unit contour length (M(L)), and persistence length (q), respectively, corresponding with theoretical data for triple-helical chains. The [alpha](D) of lentinan in water-Me(2)SO mixtures indicated an order-disorder transition. The results indicated that lentinan exists as a triple helix in 0.9% NaCl aqueous solution and as a single flexible chain in Me(2)SO. Assays in vivo and in vitro against the growth of Sarcoma 180 solid tumor as well as the colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method for lentinan showed that the triple-helix sample exhibited a relatively high inhibition ratio. Interestingly, the triple-helix lentinan with M(w) of 1.49 x 10(6) exhibited the highest antitumor activity in vivo, having an inhibition ratio (xi) of 49.5%, close to that of 5-fluorouracil (xi = 50.5%), whereas the bioactivity (xi = 12.3%) of its single flexible chains almost disappeared. The triple-helix conformation plays an important role in enhancing the antitumor effects of lentinan.  相似文献   

13.
Six polysaccharides were extracted sequentially from the fresh sclerotium of Poria cocos cultivated in China using 0.9% NaCl (PCS1), hot water (PCS2), 0.5M NaOH (PCS3-I and PCS3-II), and 88% formic acid (PCS4-I and PCS4-II). Their chemical and physical characteristics were determined using infrared spectroscopy (IR), gas chromatography (GC), GC-MS methylation analysis, 13C NMR spectroscopy, elementary analysis (EA), protein analysis, size exclusion chromatography combined with laser light scattering (SEC-LLS), light scattering (LS), and viscometry. The results indicated that the polysaccharides PCS1, PCS2, and PCS3-I were heteropolysaccharides containing D-glucose, D-galactose, D-mannose, D-fucose, and D-xylose; the predominant monosaccharide was D-glucose except for PCS1 where it was D-galactose. PCS3-II, the main component of the sclerotium of P. cocos, was a linear (1-->3)-beta-D-glucan of high purity. PCS4-I consisted of (1-->3)-beta-D-glucan with some beta-(1-->6) linked branches. PCS4-II was mainly composed of (1-->3)-beta-D-glucan containing some glucose branches. The M(w) values of the six polysaccharides PCS1, PCS2, PCS3-I, PCS4-I in 0.2M NaCl aqueous solution, PCS3-II, and PCS4-II in dimethyl sulfoxide (Me(2)SO) were determined to be 11.6 x 10(4), 20.8 x 10(4), 17.1 x 10(4), 9.1 x 10(4), 12.3 x 10(4), and 21.1 x 10(4), respectively. The six polysaccharides in aqueous solution or Me(2)SO exist as flexible chains.  相似文献   

14.
Tao Y  Zhang L  Cheung PC 《Carbohydrate research》2006,341(13):2261-2269
A water-soluble hyperbranched beta-glucan, coded as TM3b, extracted from sclerotia of an edible fungus (Pleurotus tuber-regium) was fractioned into eight fractions coded as F1-F8 by a nonsolvent addition method. Five fractions were treated with chlorosulfonic acid at 35 degrees C to synthesize successfully sulfated derivatives coded as S-F2, S-F3, S-F4, S-F5, and S-F8 with degree of substitution of 0.28-0.54. The 13C NMR results of these sulfated beta-glucans indicated that while the C-6 position was fully substituted, C-2, C-3, and C-4 were only partially substituted by the sulfate groups. The weight-average molecular weights (Mw) and intrinsic viscosities ([eta]) of the native and sulfated TM3b fractions were determined using multi-angle laser light scattering and viscometry in 0.15M aq NaCl at 25 degrees C, respectively. The dependences of [eta] on Mw for TM3b and sulfated TM3b were found to be [eta]=0.18Mw(0.28+/-0.03) (Mw range from 3.30 x 10(4) to 3.90 x 10(7)) and [eta]=2.24 x 10(-2)Mw(0.52+/-0.06) (Mw range from 3.24 x 10(4) to 3.15 x 10(5)) in 0.15M aq NaCl at 25 degrees C, respectively. It revealed that both the native TM3b and its sulfated derivatives exist in a spherical chain conformation in 0.15M aq NaCl. Furthermore, the native and sulfated TM3b fractions showed potent antitumor activities in vivo and in vitro. The sulfated derivatives exhibited relatively higher in vitro antitumor activity against human hepatic cancer cell line HepG2 than the native TM3b. Water solubility and introduction of sulfate groups were the main factors in enhancing the antitumor activities.  相似文献   

15.
Solution properties of chitin in alkali   总被引:1,自引:0,他引:1  
The solution properties of alpha-chitin dissolved in 2.77 M NaOH are discussed. Chitin samples in the weight-average molecular weight range 0.1 x 10(6) g/mol to 1.2 x 10(6) g/mol were prepared by heterogeneous acid hydrolysis of chitin. Dilute solution properties were measured by viscometry and light scattering. From dynamic light scattering data, relative similar size distributions of the chitin samples were obtained, except for the most degraded sample, which contained aggregates. Second virial coefficients in the range 1 to 2 x 10(-3) mL.mol.g(-2) indicated that 2.77 M NaOH is a good solvent to chitin. The Mark-Houwink-Sakurada equation and the relationship between the z-average radius of gyration (Rg) and the weight-average molecular weight (Mw) were determined to be [eta] = 0.10Mw0.68 (mL.g(-1)) and Rg = 0.17Mw0.46 (nm), respectively, suggesting a random-coil structure for the chitin molecules in alkali conditions. These random-coil structures have Kuhn lengths in the range 23-26 nm.  相似文献   

16.
Two kinds of water-insoluble (1-->3)-alpha-D-glucan samples, ab-PCM3-I and ac-PCM3-I, isolated from different Poria cocos mycelia were sulfated, to produce two series of water-soluble derivatives ab-PCM3-I-S1-S5 and ac-PCM3-I-S1-S5, respectively. The derivatives having different weight-average molecular mass (Mw) were produced by changing reaction temperature and time as well as molar ratios between chlorosulfonic acid and number of hydroxyl groups in the glucan. The degrees of substitution (DS) of the sulfated derivatives were analyzed by elemental analysis (EA) to be 0.39-0.67 for ab-PCM3-I-S and 0.73-0.96 for ac-PCM3-I-S, respectively. The Mw and the intrinsic viscosity ([eta]) of the samples ab-PCM3-I-S and the ac-PCM3-I-S were measured by size exclusion chromatography combined with laser light scattering (SEC-LLS) and viscometry in phosphate buffer solution (PBS) at 37 degrees C. The results indicated that their Mw ranged from 2.0 to 11.3 x 10(4) for the samples ab-PCM3-I-S, and 4.7 to 40.0 x 10(4) for the samples ac-PCM3-I-S. Moreover, the antitumor activities of the sulfated derivatives ab-PCM3-I-S and ac-PCM3-I-S against Sarcoma 180 tumor cell tested both in vitro and in vivo are significantly higher than those of the native alpha-D-glucans. Therefore, a moderate range of molecular mass from 2.0 x 10(4) to 40.0 x 10(4), relatively high chain stiffness and good water solubility of the sulfated derivatives are beneficial to the enhancement of their antitumor activities.  相似文献   

17.
Zhang L  Zhang M  Dong J  Guo J  Song Y  Cheung PC 《Biopolymers》2001,59(6):457-464
A water-insoluble polysaccharide (TM8) was isolated from sclerotium of Pleurotus tuber-regium by extraction with 0.5M NaOH aqueous solutions at 120 degrees C. Its chemical structure was confirmed by infrared, high performance liquid chromatography, gas chromatography, and (13)C NMR in dimethylsulfoxide (DMSO) to be composed of beta-(1 --> 3)-D-glucan backbone chain linked with a branched glucose, one out of every three glycosyl units being substituted at C6 position. The glucan TM8 in DMSO was fractionated by nonsolvent addition method into ten fractions, and the solution properties were studied by size exclusion chromatography combined with multiangle laser light scattering (SEC-MALLS) and viscometry in DMSO at 30 degrees C. The dependencies of intrinsic viscosity [eta] and radius of gyration [(s(2)(1/2)(z-2)] on weight-average molecular mass M(w) for this glucan were found to be [eta] = (9.24 +/- 0.2) x 10(-2)M(w)(0.51 +/- 0.02) (cm(3)g(-1)) and [(s(2)(1/2)(z-2)] = (3.67 +/- 0.3) x 10(-2)M(w)(0.56 +/- 0.02) (nm) in the range of M(w) from 1.07 x 10(4) to 77.4 x 10(4). Based on current theories for a wormlike chain, the conformational parameters of the glucan TM8 were found to be 408 (nm(-1)) for M(L), 3.1 (nm) for q, and 16.8 for C(infinity), suggesting that the polysaccharide exists as a dense random-coil chain in DMSO, due to branched structure.  相似文献   

18.
For the study of DNA conformations, conformational transitions, and DNA-protein interactions, covalently closed supercoiled ColE1-plasmid DNA has been purified from cultures of Escherichia coli harboring this plasmid and grown in the presence of chloramphenicol according to the method of D.B. Clewell [J. Bact. 110 (1972)667]. The open circular and linear forms of the plasmid were prepared by digestion of the covalently closed, supercoiled form with pancreatic deoxyribonuclease and EcoRI-restriction endonuclease, respectively. The linear form was found to be very homogeneous by electron microscopy and sedimenting boundary analysis. Its physical properties (s0 20,w=16.3 S,D0 20,W=1.98 X 10(-8) cm2 s-1 and [eta]=2605 ml g-1) have been carefully determined in 0.2 M NaCl, 0.002 M NaPO4 pH 7.0,0.002 M EDTA, at 23 degrees C. Combination of s0 20, w (obtained by quasielastic laser light scattering) gave Ms,D=4.39 x 10(6). This value is in reasonable agreement with the molecular weight from total intensity laser light scattering M=4.30 x 10(6). The covalently closed and open circular forms of the ColE1-plasmid are less homogeneous due to slight cross-contamination and the presence of small amounts of dimers in these preparations. The weight fractions of the various components as determined by boundary analysis or electron microscopy are given together with the average quantities obtained in the same solvent for the supercoiled form ((s0 20,w)w=25.4 S, (D0 20,w)z=2.89 x 10(-8) cm2 s-1, [eta]= 788 ML G-1,Ms,D=4.69 x 10(6) and Mw=4.59 x 10(6)) and the open circular form (s0 20, w)w=20.1 S, (D0 20,w)z=2.45 x 10(-8) cm2 s-1, [eta]=1421 ml g-1,Ms,D=4.37 x 10(6) and Mw=4.15 x 10(6)). Midpoint analysis of the sedimenting boundaries allows unambiguous determination of the sedimentation coefficients of these two forms: s0 20,w=24.5 S and s0 20,w=18.8 S, respectively. Also deduced from total intensity light scattering were radii of gyration Rg (103.5, 134.2 and 186 nm) and second virial coefficients A2 (0.7, 4.8 AND 5.4 x 10(-4) mole ml/g2) for the supercoiled, the open circular and linear forms, respectively. The data presented are discussed in relation to the conformational parameters for the three forms in solution.  相似文献   

19.
The physical properties of a polysaccharide produced by the lactic acid bacterium Lactococcus lactis subsp. cremoris strain NIZO B40 were investigated. Separation of the polysaccharide from most low molar mass compounds in the culture broth was performed by filtration processes. Residual proteins and peptides were removed by washing with a mixture of formic acid, ethanol, and water. Gel permeation chromatography (GPC) was used to size fractionate the polysaccharide. Fractions were analyzed by multiangle static light scattering in aqueous 0.10 M NaNO3 solutions from which a number- (Mn) and weight-averaged (Mw) molar mass of (1.47 +/- 0.06).10(3) and (1.62 +/- 0.07).10(3) kg/mol, respectively, were calculated so that Mw/Mn approximately 1.13. The number-averaged radius of gyration was found to be 86 +/- 2 nm. From dynamic light scattering an apparent z-averaged diffusion coefficient was obtained. Upon correcting for the contributions from intramolecular modes by extrapolating to zero wave vector a hydrodynamic radius of 86 +/- 4 nm was calculated. Theoretical models for random coil polymers show that this z-averaged hydrodynamic radius is consistent with the z-averaged radius of gyration, 97 +/- 3 nm, as found with GPC.  相似文献   

20.
A water-insoluble alpha-(1-->3)-D-glucan (A) from Lentinus edodes was fractionated into 13 fractions in dimethyl sulfoxide containing 0.25 M lithium chloride (0.25 M LiCl-Me(2)SO). Five fractions were treated with sulfur trioxide-pyridine complex at 25 degrees C to synthesize water-soluble sulfated derivatives (S-A). The weight-average molecular weights, M(w), and intrinsic viscosities [eta], of the samples A and S-A were determined by multi-angler laser light scattering (MALLS), and viscosity. The M(w) dependence of [eta] and of the radius of gyration (z)(1/2), was found to be represented approximately by [eta]=4.9 x 10(-2) M(w)(0.67) (cm(3) g(-1)), and (z)(1/2)=4.8 x 10(-2) M(w)(0.54) (nm) for the alpha-glucan in 0.25 M LiCl-Me(2)SO in the M(w) range from 7.24 x 10(4) to 4.21 x 10(5), and by [eta]=6.8 x 10(-4) M(w) 1.06 (cm(3) g(-1)), and (z)(1/2)=9.4 x 10(-4) M(w)(0.92) (nm) for the sulfated alpha-glucan in aqueous 0.5 M NaCl in the M(w) range from 5.92 x 10(4) to 1.42 x 10(5) at 25 degrees C. The results indicate that the alpha-(1-->3)-D-glucan exists as a flexible chain in 0.25 M LiCl-Me(2)SO, and its sulfated derivative in 0.5 M NaCl aqueous has stiffer chains than the original. (13)C NMR indicated that intramolecular hydrogen bonding occurred in the sulfated alpha-glucan, causing the observed chain stiffness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号