首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The use of date juice as a substrate for lactic acid production was investigated. Various nitrogen sources were compared with yeast extract for efficient lactic acid production by Lactobacillus casei subsp. rhamnosus. Among different nitrogen sources added to date juice (yeast extract, ammonium sulfate, tryptic soy, urea, peptone, and casein hydrolysate), yeast extract was the most efficient. The effect of yeast extract could have been due to its B vitamin content. The addition of five B vitamins at less than 25 mg/l to date juice with any nitrogen source enhanced lactic acid production to some extent, except for date juice with yeast extract or urea or peptone. The most significant increase was obtained with ammonium sulfate. Half of the yeast extract content (10 g/l) in a supplemented date juice could be replaced by a mixture of B vitamins at less than 25 mg/l, and ammonium sulfate at 2.6 g/l with no significant decrease in lactic acid production.  相似文献   

2.
Statistical screening of media components for production of lactic acid by Lactobacillus sp. KCP01 using date juice as a sugar source was carried out by Plackett-Burman design. Date juice at 5% sugar concentration when used alone showed 2.6 g/l of lactic acid production. Increase in lactic acid production (15.1 g/l) was observed with supplementation of salts and organic nitrogen sources of MRS medium and after optimization of pH and temperature using date juice as a C-source. Plackett-Burman design showed peptone, K2HPO4, sodium acetate and date juice as significant components influencing the lactic acid production.  相似文献   

3.
AIMS: Development of cost-effective production medium by applying statistical designs for single-step fermentation of starch (corn flour - CF) to L-(+) lactic acid, using inexpensive nitrogen sources as substitutes for peptone and yeast extract in MRS medium by amylolytic Lactobacillus amylophilus GV6. METHODS AND RESULTS: A two-level Plackett-Burman design was employed for screening various available crude starches (flours) for L-(+) lactic acid production by Lact. amylophilus GV6 using red lentil flour (RL) and bakers yeast cells (YC) as substitutes for commercial peptone and yeast extract in MRS medium in anaerobic submerged fermentation. Of all the tested flours, CF was found to be the most significant. Central composite rotatable design was employed to determine maximum production of L-(+) lactic acid at optimum values of process variables, CF, RL, YC, CaCO(3) and incubation period (IP). minitab analyses showed that lactic acid production was significantly affected by the linear terms CF, RL, CaCO(3) and IP. The interactions of CF-RL, CF-YC, CF-CaCO(3), RL-YC and RL-CaCO(3) and the square terms CF and IP were significant. The maximum lactic acid production of 29 g/37 g of starch present in 50 g of CF was obtained at optimized concentrations of CF 5%, RL 0.7%, YC 0.8%, CaCO(3) 0.8% and IP 2.9 days. CONCLUSIONS: Successful application of Plackett-Burman design helped in identifying CF as the best carbon source among the tested flours for L-(+) lactic acid production using inexpensive nitrogen sources. Further optimization of the process variables by response surface methods (RSMs) led to maximum production of lactic acid (29 g lactic acid from 37 g of starch present in 50 g of flour). SIGNIFICANCE AND IMPACT OF THE STUDY: Lactobacillus amylophilus GV6 showed 78.4% lactic acid production efficiency (g lactic acid produced/g starch taken) and 96% lactic acid yield efficiency (g lactic acid produced/g starch utilized). Information from the present studies provides a better understanding on production of L-(+) lactic acid on fermentation of CF using inexpensive nitrogen sources and on changes in the production as a response from interaction of factors. Use of inexpensive nitrogen sources and starch as substrate in MRS medium for single-step fermentation of lactic acid can become an efficient, economic and viable process. This report is on optimization of inexpensive nitrogen sources completely replacing peptone and yeast extract in single-step submerged fermentation of starch (present in CF) to lactic acid with high production efficiency.  相似文献   

4.
L(+) Lactic acid fermentation was studied by Lactobacillus amylophilus GV6 under the influence of inexpensive nitrogen sources (red lentil-RL, and Baker's yeast cells-YC) and starch by response surface methodology (RSM). Central composite rotatable design (CCRD) was employed to determine maximum lactic acid production at optimum values for process variables RL, YC and incubation period (IP) and a satisfactory fit model was realized. Lactic acid production was significantly affected by RL and IP interactions as well as by independent variables RL and YC. Maximum lactic acid production of 13.5 g/15.2g starch was obtained with RL 0.8%, YC 1% and IP of 48 h, with 92% lactic acid yield efficiency (g lactic acid produced/g substrate utilized) and 40% increase (from 50 g to 92 g/100 g starch utilized) in lactic acid production. This is the first report on response optimization in direct fermentation of starch to lactic acid using inexpensive nitrogen sources substituting peptone and yeast extract in anaerobic submerged fermentation by amylolytic lactic acid bacteria (LAB).  相似文献   

5.
Summary Lactic acid was produced by Rhizopus arrhizus using waste potato starch as the substrate. The aim of this study was to identify the role of nitrogen sources and their impact on the formation of lactic acid and associated byproducts. Ammonium sulphate, ammonium nitrate, urea, yeast extract and peptone were assessed in conjunction with various ratios of carbon to nitrogen (C:N). Fermentation media with a low C:N ratio enhanced the production of lactic acid, biomass and ethanol, while a high C:N ratio favoured the production of fumaric acid. Ammonium nitrate appeared to be the most suitable nitrogen source for achieving a high and stable lactic acid yield, and minimizing the production of byproducts such as biomass and ethanol, while urea proved to be the least favourable nitrogen source. Yeast extract and peptone appeared to improve fungal cell growth. The kinetics data revealed that a high concentration of ammonium nitrate enhanced the lactic acid productivity. The maximum lactic acid concentration of 36.4 g/l, representing a yield of 91%, was obtained with addition of 0.909 g/l ammonium nitrate in 32 h.  相似文献   

6.
The production of penicillic acid by Aspergillus sclerotiorum CGF for the biocontrol of Phytophthora disease was investigated in submerged fermentation using media composed of different nutrients. Soluble starch was found to be the most effective substrate among the carbon sources used, and produced the highest penicillic acid concentration of 2.98 mg ml(-1). When organic nitrogen sources were used, pharmamedia, yeast extract, and polypeptone-S were found to be suitable organic nitrogen sources (2.46-2.71 mg ml(-1)). The production of penicillic acid was not detected in when inorganic nitrogen sources were used. Only Na2HPO4, among the metal ions and phosphate salts tested, increased the production of penicillic acid (approximately 20%). When A. sclerotiorum CGF was cultured in optimal medium [8.0% (w/v) soluble starch, 0.6% (w/v) yeast extract, and 0.3% (w/v) Na2HPO4], maximum penicillic acid concentration (approximately 9.40 mg ml(-1)) and cell mass (approximately 17.4 g l(-1)) were obtained after 12 days.  相似文献   

7.
鼠李糖乳杆菌经实验室耐高糖高酸选育,能够在高糖浓度下高效高产L-乳酸。以酵母粉为氮源和生长因子,葡萄糖初始浓度分别为120 g/L和146 g/L,摇瓶培养120h,L-乳酸产量分别为104g/L和117.5g/L,L-乳酸得率分别为86.7%和80.5%。高葡萄糖浓度对菌的生长和乳酸发酵有一定的抑制。增加接种量,在高糖浓度发酵条件下,可以缩短发酵时间,但对增加乳酸产量效果不明显。乳酸浓度对鼠李糖乳杆菌生长和产酸有显著的影响。初始乳酸浓度到达70g/L以上时,鼠李糖乳杆菌基本不生长和产酸,葡萄糖消耗也被抑制。酵母粉是鼠李糖乳杆菌的优良氮源,使用其它被测试的氮源菌体生长和产酸都有一定程度的下降。用廉价的黄豆粉并补充微量维生素液,替代培养基中的酵母粉,可以使产酸浓度和碳源得率得以基本维持。  相似文献   

8.
Batch fermentation studies were performed to evaluate the potentials of a complex nitrogen source, soybean, as an alternative to yeast extract for the economical production of lactic acid by Lactobacillus rhamnosus. An enzyme-hydrolysate of soybean meal, Soytone, with an adequate supplementation of vitamins was found to be highly effective in supporting lactic acid production from glucose and lactose. The effects of seven selected vitamins: d-biotin, pyridoxine, p-aminobenzoic acid, nicotinic acid, thiamine, pantothenic acid, and riboflavin, on cell growth and lactic acid production were investigated to provide the basis for the optimization of vitamin supplementation to minimize the cost. Pantothenic acid was the most required compound while the other six vitamins were also essential for high lactic acid productivity. As a result of the optimization, 15 g/l yeast extract could be successfully replaced with 19.3 g/l Soytone supplemented with the vitamins, resulting in a production of 125 g/l lactic acid from 150 g/l glucose. The volumetric productivity and lactate yield were 2.27 g/l/h and 92%, respectively, which were higher than those with 15 g/l yeast extract. The raw material cost was estimated to be 21.4 cent/kg lactic acid, which was only approximately 41% of that with yeast extract.  相似文献   

9.
Ethanol and endopolygalacturonase (endoPG) are simultaneously produced by the yeast Kluyveromyces marxianus CCEBI 2011. The aim of this study was to determine the optimal combination of seven environmental and nutritional variables, as well as the influence of each one, with respect to the fermentation process in yeast cultures in which sugarcane juice was the substrate. Simplex sequential optimization showed that after 15 runs the optimal conditions were: pH, 4.6; temperature, 31 oC; total reducing sugars (TRS), 125 g/l; (NH(4))(2)SO(4), 2.48 g/l; (NH(4))(2)HPO(4), 2.73 g/l; CaCl(2), 0.33 g/l and MgSO(4)·7H(2)O, 0.54 g/l. Under these conditions, the ethanol concentration was 47.6 g/l and endoPG concentration was 9.8 U/ml, which represented increases of 22% and 10%, respectively, over the concentrations obtained under suboptimal conditions. Temperature and (NH(4))(2)SO(4) supplementation were the most significant factors influencing the co-production process.  相似文献   

10.
Process variables and concentration of carbon in media were optimised for lactic acid production by Lactobacillus casei NRRL B-441. Lactic acid yield was inversely proportional to initial glucose concentration within the experimental area (80-160 g l(-1)). The highest lactic acid concentration in batch fermentation, 118.6 g l(-1), was obtained with 160 g 1(-1) glucose. The maximum volumetric productivity, 4.4 g 1(-1) h(-1) at 15 h, was achieved at an initial glucose concentration of 100 g l(-1). Similar lactic acid concentrations were reached with a fedbatch approach using growing cells, in which case the fermentation time was much shorter. Statistical experimental design and response surface methodology were used for optimising the process variables. The temperature and pH optima for lactic acid production were 35 degrees C, pH 6.3. Malt sprout extract supplemented with yeast extract (4 g l(-1)) appeared to be an economical alternative to yeast extract alone (22 g l(-1)) although the fermentation time was a little longer. The results demonstrated both the separation of the growth and lactic acid production phases and lactic acid production by non-growing cells without any nutrient supplements. Resting L. casei cells converted 120 g l(-1) glucose to lactic acid with 100% yield and a maximum volumetric productivity of 3.5 g l(-1) h(-1).  相似文献   

11.
Production of lactic acid from beet molasses by Lactobacillus delbrueckii NCIMB 8130 in static and shake flask fermentation was investigated. Shake flasks proved to be a better fermentation system for this purpose. Substitution of yeast extract with other low cost protein sources did not improve lactic acid production. The maximum lactic acid concentration was achieved without treatment of molasses. A Central Composite Design was employed to determine the maximum lactic acid concentration at optimum values for the process variables (sucrose, yeast extract, CaCO3). A satisfactory fit of the model was realized. Lactic acid production was significantly affected both by sucrose–yeast extract and sucrose–CaCO3 interactions, as well as by the negative quadratic effects of these variables. Sucrose and yeast extract had a linear effect on lactic acid production while the CaCO3 had no significant linear effect. The maximum lactic acid concentration (88.0 g/l) was obtained at concentrations for sucrose, yeast extract and CaCO3 of 89.93, 45.71 and 59.95 g/l, respectively.  相似文献   

12.
The optimum levels of sucrose, (NH4)2SO4, MgSO4, KH2PO4 and ZnSO4 for aflatoxin production in a chemically defined medium have been established. The last two were found to be essential for fungal growth and aflatoxin production. The effect of various carbon sources on aflatoxin production was tested using the defined medium. Asparagine was found to be essential for aflatoxin production. Very little aflatoxin was produced in the absence of asparagine with any of the other inorganic nitrogen sources tested. Supplementation with yeast extract, Casamino acids, Casitone and peptone increased the aflatoxin yield, but omission of asparagine led to decreased aflatoxin yields even when complex nitrogen sources were present. Asparagine could be replaced by aspartic acid or alanine.  相似文献   

13.
考察有机氮源种类、蛋白胨用量以及(NH4)2SO4用量对重组E.coli发酵产L-精氨酸的影响.结果表明:以蛋白胨作为有机氮源且用量在10 g/L,( NH4 )2SO4用量在15 g/L时,摇瓶发酵产L-精氨酸产量最高,达到9.4g/L.在5L发酵罐进行补料分批培养,通过补加(NH4)2 SO4,L-精氨酸产量可以达到18.8 g/L,比未补加提高了108.9%.  相似文献   

14.
对戊糖乳杆菌发酵培养基的氮源条件进行了优化。通过单因素实验及响应面分析优化利用木糖高产乳酸的戊糖乳杆菌发酵培养基的不同氮源组合。优化得到的牛肉膏与柠檬酸氢二铵复合的最佳组成为牛肉膏17.72 g/L,柠檬酸氢二铵1.91 g/L,得到乳酸实际最大产量42.37 g/L。添加玉米浆与酵母粉和无机氮源复合的最佳组成为玉米浆46.54 g/L,酵母粉21.95 g/L,柠檬酸氢二铵9.95 g/L,可得到乳酸最大产量41.06 g/L。通过响应面优化减少了有机氮源的种类。牛肉膏与柠檬酸氢二铵的复合得到了更高的乳酸产量,且减少了有机氮源用量,节约了成本。玉米浆与酵母粉的复合解决了单一玉米浆造成的木糖利用速率过低的问题,同样得到较高浓度的乳酸。  相似文献   

15.
Corn silage juice was found to be a favorable substrate for production of fodder yeasts. Kluyveromyces marxianus NRRL Y-610 yielded significantly more cell dry weight than other cultures examined. In shake-flask experiments, the yeast produced over 13 g of cell dry weight per liter of corn silage juice and completely consumed the organic pollutants (lactic acid, acetic acid, and ethanol). The yeast settled rapidly and had a yeast volume index of 21 ml/g. The results indicate that K. marxianus NRRL Y-610 could be used to efficiently remove lactic acid and other organic compounds from corn silage juice with the concomitant production of fodder yeast.  相似文献   

16.
目的:提高酵母产γ-氨基丁酸的能力。方法:采用单因素及正交设计实验对酵母产γ-氨基丁酸(GABA)的培养基进行优化。结果:确定最适碳源为葡萄糖,最佳氮源为蛋白胨和硫酸铵复合氮源,合适的无机盐为KH2PO4;最佳发酵培养基为3%葡萄糖,3%蛋白胨,0.3%(NH4)2SO4和0.1%KH2PO4。在此培养条件下,摇瓶发酵可以获得1.690g.L-1的GABA产量。结论:发酵培养基的优化,提高了菌株产γ-氨基丁酸的能力。  相似文献   

17.
A newly isolated sucrose-tolerant, lactic acid bacterium, Lactobacillus sp. strain FCP2, was grown on sugar-cane juice (125 g sucrose l−1, 8 g glucose l−1 and 6 g fructose l−1) for 5 days and produced 104 g lactic acid l−1 with 90% yield. A higher yield (96%) and productivity (2.8 g l−1 h−1) were obtained when strain FCP2 was cultured on 3% w/v (25 g sucrose l−1, 2 g glucose l−1 and 1 g fructose l−1) sugar-cane juice for 10 h. Various cheap nitrogen sources such as silk worm larvae, beer yeast autolysate and shrimp wastes were also used as a substitute to yeast extract.  相似文献   

18.
Moon C  Lee CH  Sang BI  Um Y 《Bioresource technology》2011,102(22):10561-10568
Medium compositions favoring butanol and 1,3-propanediol (1,3-PDO) production from glycerol by Clostridium pasteurianum DSM525 were investigated using statistical experimental designs. Medium components affecting butanol and 1,3-PDO production were screened using a fractional factorial experimental design. Among the six tested variables (phosphate buffer, MnSO4·H2O, MgSO4·7H2O, FeSO4·7H2O, (NH4)2SO4, and yeast extract), FeSO4·7H2O, (NH4)2SO4, and yeast extract were found to be significant variables for further optimization of medium using a Box-Behnken design. Optimal butanol (0.98 g/L/h) and 1,3-PDO (1.19 g/L/h) productivities were predicted by the corresponding quadratic model for each product and the models were validated experimentally under optimized conditions. The optimal medium composition for butanol production was significantly different from that for 1,3-PDO production (0.06 vs. 0 g/L for FeSO4·7H2O, 7.35 vs. 0 g/L for (NH4)2SO4, and 5.08 vs. 8.0 g/L for yeast extract), suggesting that the product formation from glycerol by C. pasteurianum DSM525 can be controlled by changing medium compositions.  相似文献   

19.
Plackett-Burman design was employed for screening 15 parameters for production of L(+) lactic acid from wheat bran, an inexpensive substrate and solid support, by Lactobacillus amylophilus GV6 in solid state fermentation (SSF). Eleven nutrients belonging to two categories viz.; nitrogen sources and salt sources along with three physical parameters and a buffer were screened. This design screens n variables in n + 1 number of experiments. Coefficients and sum of squares ratio in percentage (SS%) of these variables were calculated by subjecting the experimental data to statistical analysis. The nitrogen sources peptone, yeast extract and tri-ammonium citrate, along with NaH2PO4.2H2O and Tween 80, were found to influence productivity, which can be further optimized for increased lactic acid production. Use of this design is scarce in solid state fermentation and has not been attempted previously for single step conversion of starch to L(+) lactic acid using a bacterial system.  相似文献   

20.
In this study, an ethanol fermentation waste (EFW) was characterized for use as an alternative to yeast extract for bulk fermentation processes. EFW generated from a commercial plant in which ethanol is produced from cassava/rice/wheat/barley starch mixtures using Saccharomyces cerevisiae was used for lactic acid production by Lactobacillus paracasei. The effects of temperature, pH, and duration on the autolysis of an ethanol fermentation broth (EFB) were also investigated. The distilled EFW (DEFW) contained significant amounts of soluble proteins (2.91 g/l), nitrogen (0.47 g/l), and amino acids (24.1 mg/l). The autolysis of the EFB under optimum conditions released twice as much amino acids than in the DEFW. Batch fermentation in the DEFW increased the final lactic acid concentration, overall lactic acid productivity, and lactic acid yield on glucose by 17, 41, and 14 %, respectively, in comparison with those from comparable fermentation in a lactobacillus growth medium (LGM) that contained 2 g/l yeast extract. Furthermore, the overall lactic acid productivity in the autolyzed then distilled EFW (ADEFW) was 80 and 27 % higher than in the LGM and DEFW, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号