首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sequential production of bioethanol and lactic acid from starch materials and lignocellulosic materials was investigated as ethanol fermentation broth (EFB) can provide nutrients for lactic acid bacteria. A complete process was developed, and all major operations are discussed, including ethanol fermentation, broth treatment, lactic acid fermentation, and product separation. The effect of process parameters, including ethanol fermentation conditions, treatment methods, and the amount of EFB used in simultaneous saccharification and fermentation (SSF), is investigated. Under the selected process conditions, the integrated process without additional chemical consumption provides a 1.08 acid/alcohol ratio (the broth containing 22.4 g/L ethanol and 47.6 g/L lactic acid), which corresponds to a polysaccharide utilization ratio of 86.9 %. Starch ethanol can thus promote cellulosic lactic acid by providing important nutrients for lactic acid bacteria, and in turn, cellulosic lactic acid could promote starch ethanol by improving the profit of the ethanol production process. Two process alternatives for the integration of starch ethanol and cellulosic lactic acid are compared, and some suggestions are given regarding the reuse of yeast following the cellulosic SSF step for lactic acid production.  相似文献   

2.
Cost-effective conversion of lignocellulose hydrolysate to optically pure lactic acid is commercially attractive but very challenging. Bacillus coagulans JI12 was isolated from natural environment and used to produce L-lactic acid (optical purity?>?99.5 %) from lignocellulose sugars and acid hydrolysate of oil palm empty fruit bunch (EFB) at 50 °C and pH 6.0 without sterilization of the medium. In fed-batch fermentation with 85 g/L initial xylose and 55 g/L xylose added after 7.5 h, 137.5 g/L lactic acid was produced with a yield of 98 % and a productivity of 4.4 g/L?h. In batch fermentation of a sugar mixture containing 8.5 % xylose, 1 % glucose, and 1 % L-arabinose, the lactic acid yield and productivity reached 98 % and 4.8 g/L?h, respectively. When EFB hydrolysate was used, 59.2 g/L of lactic acid was produced within 9.5 h at a yield of 97 % and a productivity of 6.2 g/L?h, which are the highest among those ever reported from lignocellulose hydrolysates. These results indicate that B. coagulans JI12 is a promising strain for industrial production of L-lactic acid from lignocellulose hydrolysate.  相似文献   

3.
The by-products of bioethanol production such as thin stillage (TS) and condensed distillers solubles (CDS) were used as a potential nitrogen source for economical production of lactic acid. The effect of those by-products and their concentrations on lactic acid fermentation were investigated using Lactobacillus paracasei CHB2121. Approximately, 6.7 g/L of yeast extract at a carbon source to nitrogen source ratio of 15 was required to produce 90 g/L of lactic acid in the medium containing 100 g/L of glucose. Batch fermentation of TS medium resulted in 90 g/L of lactic acid after 48 h, and the medium containing 10 % CDS resulted in 95 g/L of lactic acid after 44 h. Therefore, TS and CDS could be considered as potential alternative fermentation medium for the economical production of lactic acid. Furthermore, lactic acid fermentation was performed using only cassava and CDS for commercial production of lactic acid. The volumetric productivity of lactic acid [2.94 g/(L·h)] was 37 % higher than the productivity obtained from the medium with glucose and CDS.  相似文献   

4.
Process variables and concentration of carbon in media were optimised for lactic acid production by Lactobacillus casei NRRL B-441. Lactic acid yield was inversely proportional to initial glucose concentration within the experimental area (80-160 g l(-1)). The highest lactic acid concentration in batch fermentation, 118.6 g l(-1), was obtained with 160 g 1(-1) glucose. The maximum volumetric productivity, 4.4 g 1(-1) h(-1) at 15 h, was achieved at an initial glucose concentration of 100 g l(-1). Similar lactic acid concentrations were reached with a fedbatch approach using growing cells, in which case the fermentation time was much shorter. Statistical experimental design and response surface methodology were used for optimising the process variables. The temperature and pH optima for lactic acid production were 35 degrees C, pH 6.3. Malt sprout extract supplemented with yeast extract (4 g l(-1)) appeared to be an economical alternative to yeast extract alone (22 g l(-1)) although the fermentation time was a little longer. The results demonstrated both the separation of the growth and lactic acid production phases and lactic acid production by non-growing cells without any nutrient supplements. Resting L. casei cells converted 120 g l(-1) glucose to lactic acid with 100% yield and a maximum volumetric productivity of 3.5 g l(-1) h(-1).  相似文献   

5.
Pichia kudriavzevii DMKU 3-ET15 was isolated from traditional fermented pork sausage by an enrichment technique in a yeast extract peptone dextrose (YPD) broth, supplemented with 4 % (v/v) ethanol at 40 °C and selected based on its ethanol fermentation ability at 40 °C in YPD broth composed of 16 % glucose, and in a cassava starch hydrolysate medium composed of cassava starch hydrolysate adjusted to 16 % glucose. The strain produced ethanol from cassava starch hydrolysate at a high temperature up to 45 °C, but the optimal temperature for ethanol production was at 40 °C. Ethanol production by this strain using shaking flask cultivation was the highest in a medium containing cassava starch hydrolysate adjusted to 18 % glucose, 0.05 % (NH4)2SO4, 0.09 % yeast extract, 0.05 % KH2PO4, and 0.05 % MgSO4·7H2O, with a pH of 5.0 at 40 °C. The highest ethanol concentration reached 7.86 % (w/v) after 24 h, with productivity of 3.28 g/l/h and yield of 85.4 % of the theoretical yield. At 42 °C, ethanol production by this strain became slightly lower, while at 45 °C only 3.82 % (w/v) of ethanol, 1.27 g/l/h productivity and 41.5 % of the theoretical yield were attained. In a study on ethanol production in a 2.5-l jar fermenter with an agitation speed of 300 rpm and an aeration rate of 0.1 vvm throughout the fermentation, P. kudriavzevii DMKU 3-ET15 yielded a final ethanol concentration of 7.35 % (w/v) after 33 h, a productivity of 2.23 g/l/h and a yield of 79.9 % of the theoretical yield.  相似文献   

6.
Considered to be the cleanest liquid fuel, bio-ethanol can be a reliable alternative to fossil fuels. It is produced by fermentation of sugar components of plant materials. The common onions are considered to be a favorable source of fermentation products as they have high sugar contents as well as contain various nutrients. This study focused on the effective production of ethanol from Green onion (Allium fistulosum L.) by the yeast “Saccharomyces cerevisiae” in repeated batch. The results showed that the total sugar concentration of onion juice was 68.4 g/l. The maximum rate of productivity, ethanol yield and final bio-ethanol percentage was 7 g/l/h (g ethanol per liter of onion juice per hour), 35 g/l (g ethanol per liter of onion juice) and 90 %, respectively.  相似文献   

7.
Oh H  Wee YJ  Yun JS  Ho Han S  Jung S  Ryu HW 《Bioresource technology》2005,96(13):1492-1498
Agricultural resources such as barley, wheat, and corn were hydrolyzed by commercial amylolytic enzymes and fermented into lactic acid by Enterococcus faecalis RKY1. Although no additional nutrients were supplemented to those resources, lactic acid productivities were obtained at >0.8 g/l h from barley and wheat. When 200 g/l of whole wheat flour was hydrolyzed by amylolytic enzymes after the pre-treatment with 0.3% (v/v) sulfuric acid and sterilized by filtration, E. faecalis RKY1 efficiently produced lactic acid with 2.6 g/l h of lactic acid productivity and 5.90 g/l of maximal dry cell weight without additional nutrients. Lactic acid productivity and cell growth could be enhanced to 31% and 12% higher values than those of non-adapted RKY1, by adaptation of E. faecalis RKY1 to CSL-based medium. When the medium contained 200 g/l of whole wheat flour hydrolyzate, 15 g/l of corn steep liquor, and 1.5 g/l of yeast extract, lactic acid productivity and maximal dry cell weight were obtained at 5.36 g/l h and 14.08 g/l, respectively. This result represented an improvement of up to 106% of lactic acid productivity and 138% of maximal dry cell weight in comparison to the fermentation from whole wheat flour hydrolyzate only.  相似文献   

8.

This study proposed a novel waste utilization bioprocess for production of lactic acid and fungal biomass from waste streams by fungal species of Rhizopus arrhizus 36017 and R. oryzae 2062. The lactic acid and fungal biomass were produced in a single-stage simultaneous saccharification and fermentation process using potato, corn, wheat and pineapple waste streams as production media. R. arrhizus 36017 gave a high lactic acid yield up to 0.94–0.97 g/g of starch or sugars associated with 4–5 g/l of fungal biomass produced, while 17–19 g/l fungal biomass with a lactic acid yield of 0.65–0.76 g/g was produced by the R. oryzae 2062 in 36–48 h fermentation. Supplementation of 2 g/l of ammonium sulfate, yeast extract and peptone stimulated an increase in 8–15% lactic acid yield and 10–20% fungal biomass.

  相似文献   

9.
Batch fermentation studies were performed to evaluate the potentials of a complex nitrogen source, soybean, as an alternative to yeast extract for the economical production of lactic acid by Lactobacillus rhamnosus. An enzyme-hydrolysate of soybean meal, Soytone, with an adequate supplementation of vitamins was found to be highly effective in supporting lactic acid production from glucose and lactose. The effects of seven selected vitamins: d-biotin, pyridoxine, p-aminobenzoic acid, nicotinic acid, thiamine, pantothenic acid, and riboflavin, on cell growth and lactic acid production were investigated to provide the basis for the optimization of vitamin supplementation to minimize the cost. Pantothenic acid was the most required compound while the other six vitamins were also essential for high lactic acid productivity. As a result of the optimization, 15 g/l yeast extract could be successfully replaced with 19.3 g/l Soytone supplemented with the vitamins, resulting in a production of 125 g/l lactic acid from 150 g/l glucose. The volumetric productivity and lactate yield were 2.27 g/l/h and 92%, respectively, which were higher than those with 15 g/l yeast extract. The raw material cost was estimated to be 21.4 cent/kg lactic acid, which was only approximately 41% of that with yeast extract.  相似文献   

10.
A wild-type yeast strain with a good galactose-utilization efficiency was newly isolated from the soil, and identified and named Saccharomyces cerevisiae KL17 by 18s RNA sequencing. Its performance of producing ethanol from galactose was investigated in flask cultures with media containing various combination and concentrations of galactose and glucose. When the initial galactose concentration was 20 g/L, it showed 2.2 g/L/h of substrate consumption rate and 0.63 g/L/h of ethanol productivity. Although they were about 70 % of those with glucose, such performance of S. cerevisiae KL17 with galactose was considered to be quite high compared with other strains reported to date. Its additional merit was that its galactose metabolism was not repressed by the existence of glucose. Its capability of ethanol production under a high ethanol concentration was demonstrated by fed-batch fermentation in a bioreactor. A high ethanol productivity of 3.03 g/L/h was obtained with an ethanol concentration and yield of 95 and 0.39 g/L, respectively, when the cells were pre-cultured on glucose. When the cells were pre-cultured on galactose instead of glucose, fermentation time could be reduced significantly, resulting in an improved ethanol productivity of 3.46 g/L/h. The inhibitory effects of two major impurities in a crude galactose solution obtained from acid hydrolysis of galactan were assessed. Only 5-Hydroxymethylfurfural (5-HMF) significantly inhibited ethanol fermentation, while levulinic acid (LA) was benign in the range up to 10 g/L.  相似文献   

11.
The yield of ethanol from oil palm empty fruit bunches (EFB) was increased on exploiting maleic acid pretreatment combined with fermentation of the pretreated whole slurry. The optimized conditions for pretreatment were to expose EFB to a high temperature (190 °C) with 1 % (w/v) maleic acid for a short time duration (3 min ramping to the set temperature with no holding) in a microwave digester. An enzymatic digestibility of 60.9 % (based on theoretical glucose yield) was exhibited using pretreated and washed EFB after 48 h of hydrolysis. Simultaneous saccharification and fermentation (SSF) of the whole slurry of pretreated EFB for 48 h resulted in 61.3 % theoretical yield of ethanol based on the initial amount of glucan in untreated EFB. These results indicate that maleic acid is a suitable catalyst not requiring detoxification steps for whole slurry fermentation of EFB for ethanol production, thus improving the process economics. Also, the whole slurry fermentation can significantly increase the biomass utilization by converting sugar from both solid and liquid phases of the pretreated slurry.  相似文献   

12.
Efficient lactic acid production from cane sugar molasses by Lactobacillus delbrueckii mutant Uc-3 in batch fermentation process is demonstrated. Lactic acid fermentation using molasses was not significantly affected by yeast extract concentrations. The final lactic acid concentration increased with increases of molasses sugar concentrations up to 190 g/liter. The maximum lactic acid concentration of 166 g/liter was obtained at a molasses sugar concentration of 190 g/liter with a productivity of 4.15 g/liter/h. Such a high concentration of lactic acid with high productivity from molasses has not been reported previously, and hence mutant Uc-3 could be a potential candidate for economical production of lactic acid from molasses at a commercial scale.  相似文献   

13.
Low-cost technologies to overcome the recalcitrance of cellulose are the key to widespread utilization of lignocellulosic biomass for ethanol production. Efficient enzymatic hydrolysis of cellulose requires the synergism of various cellulases, and the ratios of each cellulase are required to be regulated to achieve the maximum hydrolysis. On the other hand, engineering of cellulolytic Saccharomyces cerevisiae strains is a promising strategy for lignocellulosic ethanol production. The expression of cellulase-encoding genes in yeast would affect the synergism of cellulases and thus the fermentation ability of strains with exogenous enzyme addition. However, such researches are rarely reported. In this study, ten endoglucanase and β-glucosidase co-expressing S. cerevisiae strains were constructed and evaluated by enzyme assay and fermentation performance measurement. The results showed that: (1) maximum ethanol titers of recombinant strains exhibited high variability in YPSC medium (20 g/l peptone, 10 g/l yeast extract, 100 g/l acid- and alkali-pretreated corncob) within 10 days. However, they had relatively little difference in USC medium (100 g/l acid- and alkali-pretreated corncob, 0.33 g/l urea, pH 5.0). (2) Strains 17# and 19#, with ratio (CMCase to β-glucosidase) of 7.04 ± 0.61 and 7.40 ± 0.71 respectively, had the highest fermentation performance in YPSC. However, strains 11# and 3# with the highest titers in USC medium had a higher ratio of CMCase to β-glucosidase, and CMCase activities. These results indicated that nutrition, enzyme activities and the ratio of heterologous enzymes had notable influence on the fermentation ability of cellulase-expressing yeast.  相似文献   

14.
Lactic acid is a green chemical that can be used as a raw material for biodegradable polymer. To produce lactic acid through microbial fermentation, we previously screened a novel lactic acid bacterium. In this work, we optimized lactic acid fermentation using a newly isolated and homofermentative lactic acid bacterium. The optimum medium components were found to be glucose, yeast extract, (NH4)2HPO4, and MnSO4. The optimum pH and temperature for a batch culture ofLactobacillus sp. RKY2 was found to be 6.0 and 36°C, respectively. Under the optimized culture conditions, the maximum lactic acid concentration (153.9 g/L) was obtained from 200 g/L of glucose and 15 g/L of yeast extract, and maximum lactic acid productivity (6.21 gL−1h−1) was obtained from 100 g/L of glucose and 20 g/L of yeast extract. In all cases, the lactic acid yields were found to be above 0.91 g/g. This article provides the optimized conditions for a batch culture ofLactobacillus sp. RKY2, which resulted in highest productivity of lactic acid.  相似文献   

15.
Clostridium acetobutylicum has been considered as an attractive platform host for biorefinery due to its metabolic diversity. Considering its capability to overproduce butanol through butyrate, it was thought that butyric acid can also be efficiently produced by this bacterium through metabolic engineering. The pta-ctfB-deficient C. acetobutylicum CEKW, in which genes encoding phosphotransacetylase and CoA-transferase were knocked out, was assessed for its potential as a butyric acid producer in fermentations with four controlled pH values at 5.0, 5.5, 6.0, and 6.4. Butyric acid could be best produced by fermentation of the CEKW at pH 6.0, resulting in the highest titer of 26.6 g/l, which is 6.4 times higher than that obtained with the wild type. However, due to the remaining solventogenic ability of the CEKW, 3.6 g/l solvents were also produced. Thus, the CEKW was further engineered by knocking out the adhE1-encoding aldehyde/alcohol dehydrogenase to prevent solvent production. Batch fermentation of the resulting C. acetobutylicum HCEKW at pH 6.0 showed increased butyric acid production to 30.8 g/l with a ratio of butyric-to-acetic acid (BA/AA) of 6.6 g/g and a productivity of 0.72 g/l/h from 86.9 g/l glucose, while negligible solvent (0.8 g/l ethanol only) was produced. The butyric acid titer, BA/AA ratio, and productivity obtained in this study were the highest values reported for C. acetobutylicum, and the BA/AA ratio and productivity were also comparable to those of native butyric acid producer Clostridium tyrobutyricum. These results suggested that the simultaneous deletion of the pta-ctfB-adhE1 in C. acetobutylicum resulted in metabolic switch from biphasic to acidogenic fermentation, which enhanced butyric acid production.  相似文献   

16.
The lactose in cheese whey is an interesting substrate for the production of bulk commodities such as bio-ethanol, due to the large amounts of whey surplus generated globally. In this work, we studied the performance of a recombinant Saccharomyces cerevisiae strain expressing the lactose permease and intracellular ß-galactosidase from Kluyveromyces lactis in fermentations of deproteinized concentrated cheese whey powder solutions. Supplementation with 10 g/l of corn steep liquor significantly enhanced whey fermentation, resulting in the production of 7.4% (v/v) ethanol from 150 g/l initial lactose in shake-flask fermentations, with a corresponding productivity of 1.2 g/l/h. The flocculation capacity of the yeast strain enabled stable operation of a repeated-batch process in a 5.5-l air-lift bioreactor, with simple biomass recycling by sedimentation of the yeast flocs. During five consecutive batches, the average ethanol productivity was 0.65 g/l/h and ethanol accumulated up to 8% (v/v) with lactose-to-ethanol conversion yields over 80% of theoretical. Yeast viability (>97%) and plasmid retention (>84%) remained high throughout the operation, demonstrating the stability and robustness of the strain. In addition, the easy and inexpensive recycle of the yeast biomass for repeated utilization makes this process economically attractive for industrial implementation.  相似文献   

17.
Escherichia coli KO11, carrying the ethanol pathway genes pdc (pyruvate decarboxylase) and adh (alcohol dehydrogenase) from Zymomonas mobilis integrated into its chromosome, has the ability to metabolize pentoses and hexoses to ethanol, both in synthetic medium and in hemicellulosic hydrolysates. In the fermentation of sugar mixtures simulating hemicellulose hydrolysate sugar composition (10.0 g of glucose/l and 40.0 g of xylose/l) and supplemented with tryptone and yeast extract, recombinant bacteria produced 24.58 g of ethanol/l, equivalent to 96.4% of the maximum theoretical yield. Corn steep powder (CSP), a byproduct of the corn starch-processing industry, was used to replace tryptone and yeast extract. At a concentration of 12.5 g/l, it was able to support the fermentation of glucose (80.0 g/l) to ethanol, with both ethanol yield and volumetric productivity comparable to those obtained with fermentation media containing tryptone and yeast extract. Hemicellulose hydrolysate of sugar cane bagasse supplemented with tryptone and yeast extract was also readily fermented to ethanol within 48 h, and ethanol yield achieved 91.5% of the theoretical maximum conversion efficiency. However, fermentation of bagasse hydrolysate supplemented with 12.5 g of CSP/l took twice as long to complete. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

18.
A new succinic acid and lactic acid production bioprocess by Corynebacterium crenatum was investigated in mineral medium under anaerobic conditions. Corynebacterium crenatum cells with sustained acid production ability and high acid volumetric productivity harvested from the glutamic acid fermentation broth were used to produce succinic acid and lactic acid. Compared with the first cycle, succinic acid production in the third cycle increased 120% and reached 43.4 g/L in 10 h during cell-recycling repeated fermentations. The volumetric productivities of succinic acid and lactic acid could maintain above 4.2 g/(L·h) and 3.1 g/(L·h), respectively, for at least 100 h. Moreover, wheat bran hydrolysates could be used for succinic acid and lactic acid production by the recycled C. crenatum cells. The final succinic acid concentration reached 43.6 g/L with a volumetric productivity of 4.36 g/(L·h); at the same time, 32 g/L lactic acid was produced.  相似文献   

19.
In order to obtain a high ethanol yield from the Jerusalem artichoke raw extract and reduce the fermentation cost, we have engineered a new recombinant Saccharomyces cerevisiae strain that could produce ex-inulinase. The response surface methodology based on Plackett–Burman and Box–Behnken design was used to optimize the medium for the ethanol production from the Jerusalem artichoke raw extracts by the recombinant strain. In the first optimization step, Plackett–Burman design was employed to select significant factors, including concentrations of yeast extract, inoculum, and MgSO4·7H2O. In the second step, the steepest ascent experiment was carried out to determine the center point with the three significant factors; the selected combinations were further optimized using the Box–Behnken design. The maximum ethanol production rate was predicted at 91.1 g/l, which was based on a medium consisting of yeast extract 9.24 g/l, inoculum 39.8 ml/l, and MgSO4·7H2O 0.45 g/l. In the validating experiment, the ethanol fermentation rate reached 102.1 g/l, closely matching the predicted rate.  相似文献   

20.
Production of lactic acid from beet molasses by Lactobacillus delbrueckii NCIMB 8130 in static and shake flask fermentation was investigated. Shake flasks proved to be a better fermentation system for this purpose. Substitution of yeast extract with other low cost protein sources did not improve lactic acid production. The maximum lactic acid concentration was achieved without treatment of molasses. A Central Composite Design was employed to determine the maximum lactic acid concentration at optimum values for the process variables (sucrose, yeast extract, CaCO3). A satisfactory fit of the model was realized. Lactic acid production was significantly affected both by sucrose–yeast extract and sucrose–CaCO3 interactions, as well as by the negative quadratic effects of these variables. Sucrose and yeast extract had a linear effect on lactic acid production while the CaCO3 had no significant linear effect. The maximum lactic acid concentration (88.0 g/l) was obtained at concentrations for sucrose, yeast extract and CaCO3 of 89.93, 45.71 and 59.95 g/l, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号