首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane-bound BACE1 naturally cleaves its transmembrane substrate amyloid precursor protein (APP) at the two adjacent beta- and beta'-sites. Cleavage at these two sites generates the heterogeneous N-terminal end of APP C-terminal fragments that are further processed by gamma-secretase to release Abeta-(1-40/42) or Abeta-(11-40/42). The significance underlying Abeta-(11-40/42) in Alzheimer's disease pathogenesis has remained to be experimentally elucidated, but increased production of Abeta-(1-40/42) has been broadly demonstrated to contribute to amyloid depositions in senile plaques. In this study, we show that the cleavage of APP at the beta-site by BACE1 is readily disrupted through limited structural twists, whereas the beta'-site is relatively better positioned to gain access to the BACE1 catalytic cavity. Radical insertion or deletion of residues between beta- and beta'-site also favors cleavage of APP at the beta'-site. On the other hand, either lengthening or shortening the loop region of BACE1 has a minor impact on the selective cleavage of APP at these two adjacent sites, but significantly shortening the loop region impairs the ability of BACE1 to process APP at both sites. Thus, processing of APP by BACE1 is clearly dependent on a mutual structural compatibility in addition to the sequence feature. The knowledge gained from this study will potentially offer an opportunity for rational design of small molecule drugs to block the cleavage of APP specifically at the beta-site while not disturbing the functions of other cellular aspartyl proteases.  相似文献   

2.
Introducing mutations within the amyloid precursor protein (APP) that affect beta- and gamma-secretase cleavages results in amyloid plaque formation in vivo. However, the relationship between beta-amyloid deposition and the subcellular site of Abeta production is unknown. To determine the effect of increasing beta-secretase (BACE) activity on Abeta deposition, we generated transgenic mice overexpressing human BACE. Although modest overexpression enhanced amyloid deposition, high BACE overexpression inhibited amyloid formation despite increased beta-cleavage of APP. However, high BACE expression shifted the subcellular location of APP cleavage to the neuronal perikarya early in the secretory pathway. These results suggest that the production, clearance, and aggregation of Abeta peptides are highly dependent on the specific neuronal subcellular domain wherein Abeta is generated and highlight the importance of perikaryal versus axonal APP proteolysis in the development of Abeta amyloid pathology in Alzheimer's disease.  相似文献   

3.
Extracellular deposits of aggregated amyloid-beta (Abeta) peptides are a hallmark of Alzheimer disease; thus, inhibition of Abeta production and/or aggregation is an appealing strategy to thwart the onset and progression of this disease. The release of Abeta requires processing of the amyloid precursor protein (APP) by both beta- and gamma-secretase. Using an assay that incorporates full-length recombinant APP as a substrate for beta-secretase (BACE), we have identified a series of compounds that inhibit APP processing, but do not affect the cleavage of peptide substrates by BACE1. These molecules also inhibit the processing of APP and Abeta by BACE2 and selectively inhibit the production of Abeta(42) species by gamma-secretase in assays using CTF99. The compounds bind directly to APP, likely within the Abeta domain, and therefore, unlike previously described inhibitors of the secretase enzymes, their mechanism of action is mediated through APP. These studies demonstrate that APP binding agents can affect its processing through multiple pathways, providing proof of concept for novel strategies aimed at selectively modulating Abeta production.  相似文献   

4.
Amyloid beta-peptide (Abeta) is implicated as the major causative agent in Alzheimer's disease (AD). Abeta is produced by the processing of the amyloid precursor protein (APP) by BACE1 (beta-secretase) and gamma-secretase. Many inhibitors have been developed for the secretases. However, the inhibitors will interfere with the processing of not only APP but also of other secretase substrates. In this study, we describe the development of inhibitors that prevent production of Abeta by specific binding to the beta-cleavage site of APP. We used the hydropathic complementarity (HC) approach for the design of short peptide inhibitors. Some of the HC peptides were bound to the substrate peptide (Sub W) corresponding to the beta-cleavage site of APP and blocked its cleavage by recombinant human BACE1 (rhBACE1) in vitro. In addition, HC peptides specifically inhibited the cleavage of Sub W, and not affecting other BACE1 substrates. Chemical modification allowed an HC peptide (CIQIHF) to inhibit the processing of APP as well as the production of Abeta in the treated cells. Such novel APP-specific inhibitors will provide opportunity for the development of drugs that can be used for the prevention and treatment of AD with minimal side effects.  相似文献   

5.
The cleavage of the transmembrane amyloid precursor protein (APP) by beta-secretase leaves the C-terminal fragment of APP, C99, anchored in the plasma membrane. C99 is subsequently processed by gamma-secretase, an unusual aspartyl protease activity largely dependent on presenilin (PS), generating the amyloid beta-peptide (Abeta) that accumulates in the brain of patients with Alzheimer's disease. It has been suggested that PS proteins are the catalytic core of this proteolytic activity, but a number of other proteins mandatory for gamma-secretase cleavage have also been discovered. The exact role of PS in the gamma-secretase activity remains a matter of debate, because cells devoid of PS still produce some forms of Abeta. Here, we used insect cells expressing C99 to demonstrate that the expression of presenilin 1 (PS1), which binds C99, not only increases the production of Abeta by these cells but also increases the intracellular levels of C99 to the same extent. Using pulse-chase experiments, we established that this results from an increased half-life of C99 in cells expressing PS1. In Chinese hamster ovary cells producing C99 from full-length human APP, similar results were observed. Finally, we show that a functional inhibitor of gamma-secretase does not alter the ability of PS1 to increase the intracellular levels of C99. This finding suggests that the binding of PS1 to C99 does not necessarily lead to its immediate cleavage by gamma-secretase, which could be a spatio-temporally regulated or an induced event, and provides biochemical evidence for the existence of a substrate-docking site on PS1.  相似文献   

6.
Mounting evidence indicates that aberrant production and aggregation of amyloid beta-peptide (Abeta)-(1-42) play a central role in the pathogenesis of Alzheimer disease (AD). Abeta is produced when amyloid precursor protein (APP) is cleaved by beta- and gamma-secretases at the N and C termini of the Abeta domain, respectively. The beta-secretase is membrane-bound aspartyl protease, most commonly known as BACE1. Because BACE1 cleaves APP at the N terminus of the Abeta domain, it catalyzes the first step in Abeta generation. PAR-4 (prostate apoptosis response-4) is a leucine zipper protein that was initially identified to be associated with neuronal degeneration and aberrant Abeta production in models of AD. We now report that the C-terminal domain of PAR-4 is necessary for forming a complex with the cytosolic tail of BACE1 in co-immunoprecipitation assays and in vitro pull-down experiments. Overexpression of PAR-4 significantly increased, whereas silencing of PAR-4 expression by RNA interference significantly decreased, beta-secretase cleavage of APP. These results suggest that PAR-4 may be directly involved in regulating the APP cleavage activity of BACE1. Because the increased BACE1 activity observed in AD patients does not seem to arise from genetic mutations or polymorphisms in BACE1, the identification of PAR-4 as an endogenous regulator of BACE1 activity may have significant implications for developing novel therapeutic strategies for AD.  相似文献   

7.
beta-Site APP-cleaving enzyme (BACE) initiates the processing of the amyloid precursor protein (APP) leading to the generation of beta-amyloid, the main component of Alzheimer's disease senile plaques. BACE (Asp2, memapsin 2) is a type I transmembrane aspartyl protease and is responsible for the beta-secretase cleavage of APP producing different endoproteolytic fragments referred to as the carboxy-terminal C99, C89 and the soluble ectodomain sAPPbeta. Here we describe two transgenic mouse lines expressing human BACE in the brain. Overexpression of BACE augments the amyloidogenic processing of APP as demonstrated by decreased levels of full-length APP and increased levels of C99 and C89 in vivo. In mice expressing huBACE in addition to human APP wild-type or carrying the Swedish mutation, the induction of APP processing characterized by elevated C99, C89 and sAPPbeta, results in increased brain levels of beta-amyloid peptides Abeta40 and Abeta42 at steady-state.  相似文献   

8.
Amyloid-beta (Abeta) the primary component of the senile plaques found in Alzheimer's disease (AD) is generated by the rate-limiting cleavage of amyloid precursor protein (APP) by beta-secretase followed by gamma-secretase cleavage. Identification of the primary beta-secretase gene, BACE1, provides a unique opportunity to examine the role this unique aspartyl protease plays in altering Abeta metabolism and deposition that occurs in AD. The current experiments seek to examine how modulating beta-secretase expression and activity alters APP processing and Abeta metabolism in vivo. Genomic-based BACE1 transgenic mice were generated that overexpress human BACE1 mRNA and protein. The highest expressing BACE1 transgenic line was mated to transgenic mice containing human APP transgenes. Our biochemical and histochemical studies demonstrate that mice overexpressing both BACE1 and APP show specific alterations in APP processing and age-dependent Abeta deposition. We observed elevated levels of Abeta isoforms as well as significant increases of Abeta deposits in these double transgenic animals. In particular, the double transgenics exhibited a unique cortical deposition profile, which is consistent with a significant increase of BACE1 expression in the cortex relative to other brain regions. Elevated BACE1 expression coupled with increased deposition provides functional evidence for beta-secretase as a primary effector in regional amyloid deposition in the AD brain. Our studies demonstrate, for the first time, that modulation of BACE1 activity may play a significant role in AD pathogenesis in vivo.  相似文献   

9.
Aggregates of beta-amyloid peptide (Abeta) are the major component of the amyloid core of the senile plaques observed in Alzheimer's disease (AD). Abeta results from the amyloidogenic processing of its precursor, the amyloid precursor protein (APP), by beta- and gamma-secretase activities. If beta-secretase has recently been identified and termed BACE, the identity of gamma-secretase is still obscure. Studies with knock-out mice showed that presenilin 1 (PS1), of which mutations are known to be the first cause of inherited AD, is mandatory for the gamma-secretase activity. However, the proteolytic activity of PS1 remains a matter of debate. Here we used transfected Sf9 insect cells, a cellular model lacking endogenous beta- and/or gamma-secretase activities, to characterize the role of BACE and PS1 in the amyloidogenic processing of human APP. We show that, in Sf9 cells, BACE performs the expected beta-secretase cleavage of APP, generating C99. We also show that C99, which is a substrate of gamma-secretase, tightly binds to the human PS1. Despite this interaction, Sf9 cells still do not produce Abeta. This strongly argues against a direct proteolytic activity of PS1 in APP processing, and points toward an implication of PS1 in trafficking/presenting its substrate to the gamma-secretase.  相似文献   

10.
Liu K  Doms RW  Lee VM 《Biochemistry》2002,41(9):3128-3136
Amyloid beta peptides (A beta) are generated by the proteolytic processing of the amyloid beta precursor protein (APP). The newly identified beta-site APP-cleaving enzyme (BACE) cleaves APP at Asp1 as well as between Tyr10 and Glu11 of A beta, producing C-terminal fragments (CTFs) C99 and C89, respectively. Subsequent cleavage by gamma-secretase gives rise to A beta 1-40/42 and A beta 11-40/42. Although both full-length and A beta peptides truncated at residue 11 have been identified in amyloid plaques in the AD brain, the relative proportion of these two cleavage products produced by BACE and secreted into the medium by cultured cells is unknown. Using cell lines stably overexpressing BACE, we found that A beta 11-40 and A beta 11-42 are major A beta cleavage products generated by BACE. We further showed that BACE utilizes both full-length APP as well as C99 as substrates for the production of C89, and that A beta 11-40/42 can be generated by sequential cleavage of single APP molecules by BACE and gamma-secretase. Taken together, the abundance of A beta 11-40/42 produced by BACE suggests that their roles in AD pathogenesis may be underestimated.  相似文献   

11.
Biogenesis and metabolism of Alzheimer's disease Abeta amyloid peptides   总被引:10,自引:0,他引:10  
Evin G  Weidemann A 《Peptides》2002,23(7):1285-1297
Biochemical and genetic evidence indicates the balance of biogenesis/clearance of Abeta amyloid peptides is altered in Alzheimer's disease. Abeta is derived, by two sequential cleavages, from the receptor-like amyloid precursor protein (APP). The proteases involved are beta-secretase, identified as the novel aspartyl protease BACE, and gamma-secretase, a multimeric complex containing the presenilins (PS). Gamma-secretase can release either Abeta40 or the more aggregating and cytotoxic Abeta42. Secreted Abeta peptides become either degraded by the metalloproteases insulin-degrading enzyme (IDE) and neprilysin or metabolized through receptor uptake mediated by apolipoprotein E. Therapeutic approaches based on secretase inhibition or amyloid clearance are currently under development.  相似文献   

12.
BACE1 suppression by RNA interference in primary cortical neurons   总被引:19,自引:0,他引:19  
Extracellular deposition of amyloid-beta (Abeta) aggregates in the brain represents one of the histopathological hallmarks of Alzheimer's disease (AD). Abeta peptides are generated from proteolysis of the amyloid precursor proteins (APPs) by beta- and gamma-secretases. Beta-secretase (BACE1) is a type I integral membrane glycoprotein that can cleave APP first to generate C-terminal 99- or 89-amino acid membrane-bound fragments containing the N terminus of Abeta peptides (betaCTF). As BACE1 cleavage is an essential step for Abeta generation, it is proposed as a key therapeutic target for treating AD. In this study, we show that small interfering RNA (siRNA) specifically targeted to BACE1 can suppress BACE1 (but not BACE2) protein expression in different cell systems. Furthermore, BACE1 siRNA reduced APP betaCTF and Abeta production in primary cortical neurons derived from both wild-type and transgenic mice harboring the Swedish APP mutant. The subcellular distribution of APP and presenilin-1 did not appear to differ in BACE1 suppressed cells. Importantly, pretreating neurons with BACE1 siRNA reduced the neurotoxicity induced by H2O2 oxidative stress. Our results indicate that BACE1 siRNA specifically impacts on beta-cleavage of APP and may be a potential therapeutic approach for treating AD.  相似文献   

13.
Kametani F 《FEBS letters》2004,570(1-3):73-76
Abeta is the major component of amyloid in the brain in Alzheimer's disease and is derived from Alzheimer amyloid precursor protein (APP) by sequential proteolytic cleavage involving alpha-, beta- and gamma-secretase. Recently, gamma-secretase was shown to cleave near the cytoplasmic membrane boundary of APP (called the epsilon-cleavage), as well as in the middle of the membrane domain (gamma-cleavage). However, the precise relationship between gamma- and epsilon-cleavage is still unknown. In this paper, I analyzed Abeta-related peptides using immunoprecipitation and liquid chromatography ion trap mass spectrometer and found some long Abeta-related peptides, starting at Abeta residues 16Lys-23Asp and ending at 43Thr-52Leu, in the culture media of COS-1 cells and in human brain extract. These results indicated that longer Abeta-related peptides cleaved at epsilon-cleavage site were secreted under normal conditions and were dependent on the alpha-secretase cleavage products.  相似文献   

14.
gamma-Secretase is an enzymatic activity responsible for the final cleavage of the amyloid precursor protein leading to the production of the amyloid beta-peptide (Abeta). gamma-Secretase is likely an aspartyl protease, since its activity can be inhibited by both pepstatin and active-site directed aspartyl protease inhibitors. Recent work has indicated that presenilins 1 and 2 may actually be the gamma-secretase enzymes. Presenilin (PS) mutations, which lead to an increase in the production of a longer form of Abeta, are also the most common cause of familial Alzheimer's disease (FAD). Therefore, in an attempt to better characterize the substrate preferences of gamma-secretase, we performed experiments to determine how FAD-linked mutations in PS1 would affect the generation of Abeta peptides from full length precursor substrates that we have previously demonstrated to be proteolytically cleaved at alternative sites and/or by enzymatic activities that are pharmacologically distinct. Presenilin mutations increased the production of Abeta peptides from sites distal to the primary cleavage site ('longer' peptides) and in several cases also decreased production of 'shorter' peptides. These results support a model in which the FAD-linked mutants subtly alter the conformation of the gamma-secretase complex to favor the production of long Abeta.  相似文献   

15.
Beta-amyloid peptides (Abeta) are produced by a sequential cleavage of amyloid precursor protein (APP) by beta- and gamma-secretases. The lack of Abeta production in beta-APP cleaving enzyme (BACE1)(-/-) mice suggests that BACE1 is the principal beta-secretase in mammalian neurons. Transfection of human APP and BACE1 into neurons derived from wild-type and BACE1(-/-) mice supports cleavage of APP at the canonical beta-secretase site. However, these studies also revealed an alternative BACE1 cleavage site in APP, designated as beta', resulting in Abeta peptides starting at Glu11. The apparent inability of human BACE1 to make this beta'-cleavage in murine APP, and vice versa, led to the hypothesis that this alternative cleavage was species-specific. In contrast, the results from human BACE1 transgenic mice demonstrated that the human BACE1 is able to cleave the endogenous murine APP at the beta'-cleavage site. To address this discrepancy, we designed fluorescent resonance energy transfer peptide substrates containing the beta- and beta'-cleavage sites within human and murine APP to compare: (i) the enzymatic efficiency; (ii) binding kinetics of a BACE1 active site inhibitor LY2039911; and (iii) the pharmacological profiles for human and murine recombinant BACE1. Both BACE1 orthologs were able to cleave APP at the beta- and beta'-sites, although with different efficiencies. Moreover, the inhibitory potency of LY2039911 toward recombinant human and native BACE1 from mouse or guinea pig was indistinguishable. In summary, we have demonstrated, for the first time, that recombinant BACE1 can recognize and cleave APP peptide substrates at the postulated beta'-cleavage site. It does not appear to be a significant species specificity to this cleavage.  相似文献   

16.
The amyloid beta-protein (Abeta), implicated in the pathogenesis of Alzheimer's disease (AD), is a proteolytic metabolite generated by the sequential action of beta- and gamma-secretases on the amyloid precursor protein (APP). The two main forms of Abeta are 40- and 42-amino acid C-terminal variants, Abeta40 and Abeta42. We recently described a difluoro ketone peptidomimetic (1) that blocks Abeta production at the gamma-secretase level [Wolfe, M. S., et al. (1998) J. Med. Chem. 41, 6-9]. Although designed to inhibit Abeta42 production, 1 also effectively blocked Abeta40 formation. Various amino acid changes in 1 still resulted in inhibition of Abeta40 and Abeta42 production, suggesting relatively loose sequence specificity by gamma-secretase. The alcohol counterparts of selected difluoro ketones also lowered Abeta levels, indicating that the ketone carbonyl is not essential for activity and suggesting that these compounds inhibit an aspartyl protease. Selected compounds inhibited the aspartyl protease cathepsin D but not the cysteine protease calpain, corroborating previous suggestions that gamma-secretase is an aspartyl protease with some properties similar to those of cathepsin D. Also, since the gamma-secretase cleavage sites on APP are within the transmembrane region, we consider the hypothesis that this region binds to gamma-secretase as an alpha-helix and discuss the implications of this model for the mechanism of certain forms of hereditary AD.  相似文献   

17.
BACE1 and BACE2 define a new subfamily of membrane-anchored aspartyl proteases. Both endoproteases share similar structural organization including a prodomain, a catalytic domain formed via DTG and DSG active site motifs, a single transmembrane domain, and a short C-terminal tail. BACE1 has been identified as the Alzheimer's beta-secretase, whereas BACE2 was mapped to the Down's critical region of human chromosome 21. Herein we show that purified BACE2 can be autoactivated in vitro. Purified BACE2 cleaves human amyloid precursor protein (APP) sequences at the beta-secretase site, and near the alpha-secretase site, mainly at A beta-Phe(20)--Ala(21) and also at A beta-Phe(19)--Phe(20). Alternatively, in cells BACE2 has a limited effect on the beta-secretase site but efficiently cleaves the sequences near the alpha-secretase site. The in vitro specificity of APP processing by BACE2 is distinct from that observed in cells. BACE2 localizes in the endoplasmic reticulum, Golgi, trans-Golgi network, endosomes, and plasma membrane, and its cellular localization patterns depend on the presence of its transmembrane domain. BACE2 chimeras that increase localization of BACE2 in the trans-Golgi network do not change its APP processing patterns. Thus, BACE2 can be distinguished from BACE1 on the basis of autoprocessing of the prosegment, APP processing specificity, and subcellular localization patterns.  相似文献   

18.
gamma-Secretase is a membrane protein complex with an unusual aspartyl protease activity that catalyses the regulated intramembranous cleavage of the beta-amyloid precursor protein (APP) to release the Alzheimer's disease (AD)-associated amyloid beta-peptide (Abeta) and the APP intracellular domain (AICD). Here we show the reconstitution of gamma-secretase activity in the yeast Saccharomyces cerevisiae, which lacks endogenous gamma-secretase activity. Reconstituted gamma-secretase activity depends on the presence of four complex components including presenilin (PS), nicastrin (Nct), APH-1 (refs 3-6) and PEN-2 (refs 4, 7), is associated with endoproteolysis of PS, and produces Abeta and AICD in vitro. Thus, the biological activity of gamma-secretase is reconstituted by the co-expression of human PS, Nct, APH-1 and PEN-2 in yeast.  相似文献   

19.
Alzheimer's disease (AD) is characterized by amyloid-beta peptide (Abeta) deposition in the brain. Abeta is produced by sequential cleavage of amyloid precursor protein (APP) by beta-secretase (BACE1: beta-site APP-cleaving enzyme 1) and gamma-secretase. Previously, we demonstrated that BACE1 also cleaves beta-galactoside alpha2,6-sialyltransferase (ST6Gal-I) and down-regulates its transferase activity. Here, we report that overexpression of ST6Gal-I in Neuro2a cells enhanced alpha2,6-sialylation of endogenous APP and increased the extracellular levels of its metabolites [Abeta by two-fold, soluble APPbeta (sAPPbeta) by three-fold and sAPPalpha by 2.5-fold). Sialylation-deficient mutant (Lec-2) cells secreted half as much Abeta as wild-type Chinese hamster ovary (CHO) cells. Furthermore, wild-type CHO cells showed enhanced secretion of the APP metabolites upon ST6Gal-I overexpression, whereas Lec-2 cells did not, indicating that the secretion enhancement requires sialylation of cellular protein(s). Secretion of metabolites from a mutant APP (APP-Asn467,496Ala) that lacked N-glycosylation sites was not enhanced upon ST6Gal-I overexpression, suggesting that the N-glycans on APP itself are required for the enhanced secretion. In the mouse brain, the amount of alpha2,6-sialylated APP appeared to be correlated with the sAPPbeta level. These results suggest that sialylation of APP promotes its metabolic turnover and could affect the pathology of AD.  相似文献   

20.
The beta-amyloid precursor protein (beta APP) is proteolytically processed by two secretase activities to produce the pathogenic amyloid beta-peptide (A beta). N-terminal cleavage is mediated by beta-secretase (BACE) whereas C-terminal intramembraneous cleavage is exerted by the presenilin (PS) gamma-secretase complex. The A beta-generating gamma-secretase cleavage principally occurs after amino acid 40 or 42 and results in secretion of A beta-(1-40) or A beta-(1-42). Upon overexpression of BACE in cultured cells we unexpectedly noticed a reduction of secreted A beta-(1-40/42). However, mass spectrometry revealed a truncated A beta species, which terminates at amino acid 34 (A beta-(1-34)) suggesting an alternative gamma-secretase cut. Indeed, expression of a loss-of-function variant of PS1 inhibited not only the production of A beta-(1-40) and A beta-(1-42) but also that of A beta-(1-34). However, expression levels of BACE correlate with the amount of A beta-(1-34), and A beta-(1-34) is produced at the expense of A beta-(1-40) and A beta-(1-42). Since this suggested that BACE is involved in a C-terminal truncation of A beta, we incubated purified BACE with A beta-(1-40) in vitro. Under these conditions A beta-(1-34) was generated. Moreover, when conditioned media containing Abeta-(1-40) and A beta-(1-42) were incubated with cells expressing a loss-of-function PS1 variant together with BACE, A beta-(1-34) was efficiently produced in vivo. These data demonstrate that an apparently gamma-secretase-dependent A beta derivative is produced after the generation of the non-truncated A beta via an additional and unexpected activity of BACE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号