首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
蓝藻质粒DNA提取方法的改进   总被引:1,自引:0,他引:1  
以含pMD-489-TNF重组质粒的丝状体鱼腥藻7120和单细胞聚球藻7002为材料,比较了SDS-碱裂解法和SDS法在蓝藻质粒提取中的效果,并对SDS-碱裂解法应用于蓝藻质粒提取作了一些改进和实验条件的优化。  相似文献   

2.
几种因素诱导鱼腥藻7120短藻丝体的形成   总被引:2,自引:2,他引:0  
丝状蓝藻鱼腥藻7120(Anabaena sp.PCC7120)中可成功表达外源基因,但其转化和表达效率不高,改变细胞的生理状态可能会影响外源基因的转化和表达效率。将鱼腥藻7120藻丝体通过几种因素诱导形成短藻丝体(具有25个左右细胞),并对其光合活性进行了测定。结果表明:红光和高温对鱼腥藻7120短藻丝体较为有效,且红光诱导在48h时,短藻丝体细胞数占总细胞数的比例达到85%;DCMU单独诱导效果不明显,适当浓度的DCMU+红光诱导时诱导效率略有增加;高温以45℃诱导12h比例最高,约达87%;高温45℃诱导时,对数生长后期的鱼腥藻7120较易形成短藻丝体。光合活性测定结果显示,诱导形成的短藻丝体光合放氧速率比正常营养藻丝体的低,这种具有光合放氧能力的短藻丝体显示出作为表达外源基因受体的可能性。  相似文献   

3.
人表皮生长因子(hEGF)基因在蓝藻中的表达   总被引:3,自引:0,他引:3  
人表皮生长因子(hEGF)是由53个氨基酸组成的蛋白,在临床上内服与外敷可促进内外表皮细胞的生长。将人工合成的hEGF基因连接到质粒pRL-489上,位于启动子psb下游。验证连接成功后,用三亲接合转移方法将载体pRL-hEGF导入聚球藻Synechococcus sp.PCC7002和鱼腥藻Anabeana sp.PCC7120。由于pRL-hEGF没有能在单细胞蓝藻中自主复制的复制子,通过筛选,hEGF在聚球藻7002中是整合到蓝藻染色体上进行表达的。用PCR扩增的方法在两种转基因藻中均检测到hEGF基因的存在。放射免疫分析证明,hEGF基因在两种转基因藻中均得到了表达。而且,在聚球藻7002中是采用分泌形式将表达产物分泌到培养液中。  相似文献   

4.
赵佳琳  陈军  崔玉琳  于淑贤  陈高  秦松 《微生物学报》2018,58(10):1732-1742
丝氨酸/苏氨酸激酶是蓝藻感知和转导外界刺激的重要元件,但至今蓝藻中很多丝氨酸/苏氨酸激酶的功能尚属未知。【目的】研究集胞藻PCC6803中的丝氨酸/苏氨酸激酶Spk C是否参与对高温胁迫的响应。【方法】本研究采用同源重组的方法构建spC基因完全敲除突变株,检测突变株与野生株在高温胁迫下的生长状况、色素组成,并对高温胁迫下叶绿素荧光参数差异进行分析,比较光合系统Ⅱ活性差异。此外,通过测定生长速率来判断高温胁迫后藻株的恢复情况。【结果】经过42℃高温胁迫后,与野生株相比,突变株ΔspkC生长减缓,光合色素(叶绿素、类胡萝卜素和藻胆色素)的含量降低;45℃高温胁迫下突变株ΔspkC的光合系统Ⅱ活性下降幅度更大;经过5 d 42℃高温处理后,突变株生长几乎停滞,存活率较野生株明显降低。【结论】集胞藻PCC 6803中spkC基因的缺失导致突变株对高温胁迫响应出现缺陷,提示丝氨酸/苏氨酸激酶SpkC参与响应高温胁迫。  相似文献   

5.
为了研究甘油葡萄糖苷磷酸合成酶(GgpS)在集胞藻PCC 803甘油葡萄糖苷和甘油合成中的作用,本研究在前期获得高产甘油葡萄糖苷藻株的基础上分别过量表达来自于集胞藻PCC 6803自身和聚球藻PCC7002的甘油葡萄糖苷磷酸合成酶基因ggpS,并测定了在不同浓度NaCl胁迫时突变藻株的甘油葡萄糖苷和甘油积累量。结果发现获得的突变株甘油葡萄糖苷合成没有提高,但是甘油合成显著增强。此外,当培养基NaCl浓度从600 mmol/L提高到900 mmol/L时,集胞藻PCC 6803自身ggpS过表达藻株的甘油合成进一步提高75%。这些结果显示了GgpS在将碳代谢流导入集胞藻甘油合成途径中的作用。研究成果也为进一步通过基因工程改造提高集胞藻甘油葡萄糖苷和甘油合成效率奠定了基础。  相似文献   

6.
增强型绿色荧光蛋白在集胞藻6803中的表达   总被引:1,自引:1,他引:0  
利用聚球藻7942热休克基因groESL的启动子和报告基因egfp,构建了表达载体pUC-Tegfp并转化集胞藻6803,并通过所制备抗体对转基因藻进行蛋白免疫印迹检测.结果发现,在转基因藻株T-egfp的细胞粗提液中含有能与eGFP抗体特异结合的蛋白质,表明外源增强型绿色荧光蛋白基因(egfp)在集胞藻6803中成功表达.  相似文献   

7.
转基因鱼腥藻7120适宜生长条件的初步研究   总被引:3,自引:0,他引:3  
以前的研究报导了将人肿瘤坏死因子基因(TNF-α)成功转入鱼腥藻7120中,这项研究在实验室小规模范围内探讨了其转TNF-α基因鱼腥藻7120的适宜生长条件。结果表明,转基因鱼腥藻7120最适生长温度在25~30℃,最适pH7.0~7.5。不同光照强度下的净光合放氧速率测定结果表明,转基因鱼腥藻7120与野生型具有一致的光饱和点和光补偿点,且适合在10~700μE.m-2.s-1下生长。外加有机碳源(4g/L葡萄糖)一定程度上可以增加转基因鱼腥藻7120生长速度。对不同藻龄转基因鱼腥藻7120中TNF-α的累积量的检测发现:生长8d左右时转基因鱼腥藻7120中TNF-α累积量达到最大值。这将为产业化生产、适时收获转基因蓝藻提供理论指导,同时讨论了葡萄糖对转基因鱼腥藻7120代谢的调节。  相似文献   

8.
利用聚球藻7002中编码藻蓝蛋白基因(cpcβ)的启动子(Pcpcβ),替代穿梭表达载体pDC-GM中的启动子PpsbA,启动外源人粒巨噬细胞集落刺激因子(hGM-CSF)基因在鱼腥藻7120中的表达。蛋白免疫印迹证实,在含Pcpcβ启动子的cGM藻株中,hGM-CSF基因的表达水平比原先构建的含PpsbA启动子的GM藻株中提高了90%,且该基因的高效表达对宿主细胞的生长未产生明显影响。结果表明,对于在蓝藻中表达hGM-CSF基因而言,Pcpcβ启动子可能是较适宜的强启动子之一。  相似文献   

9.
集胞藻6803的混合培养——光照强度和葡萄糖的影响   总被引:4,自引:0,他引:4  
利用摇瓶研究了混合营养条件下单细胞蓝藻集胞藻6803(Synechocystissp.PCC6803)的生长特性,以及葡萄糖和光照强度对集胞藻6803生长的影响。实验结果表明,在葡萄糖消耗完之前,集胞藻6803的混合营养型生长处于对数生长期,且葡萄糖浓度及光照强度都对集胞藻6803的混合营养型生长有显著影响:在初始葡萄糖浓度097~480g/L范围内,同一光照强度培养下藻细胞的比生长速率随葡萄糖浓度的增大而降低;而在光照强度15~55μE·m-2·s-1范围内,初始葡萄糖浓度相同条件下藻细胞的比生长速率及对葡萄糖的藻体得率都随光照强度的增强而增大,但当光照强度在55~96μE·m-2·s-1时,集胞藻6803混合培养的比生长速率基本不变,出现了光饱和现象。  相似文献   

10.
张晨  刘志伟  郭勇 《生物技术》2003,13(4):27-29
为了进一步探索转基因鱼腥藻高密度培养的方法,在小型气升式反应器中研究了CO2对转基因鱼腥藻7120培养的影响。结果发现转基因鱼腥藻培养过程中通入5% CO2能促进藻细胞生长,12d生物量提高7.44%,由于光照限制,不能大幅提高15d收获生物量,但生长周期能缩短近20%;而高浓度(10%)的CO2抑制转基因鱼腥藻的生长。CO2是通过调节pH值和影响碳源利用来影响藻细胞生长的,合适浓度的CO2有利于转基因鱼腥藻的培养。  相似文献   

11.
12.
Three new Anabaena sp. strain PCC 7120 genes encoding group 2 alternative sigma factors have been cloned and characterized. Insertional inactivation of sigD, sigE, and sigF genes did not affect growth on nitrate under standard laboratory conditions but did transiently impair the abilities of sigD and sigE mutant strains to establish diazotrophic growth. A sigD sigE double mutant, though proficient in growth on nitrate and still able to differentiate into distinct proheterocysts, was unable to grow diazotrophically due to extensive fragmentation of filaments upon nitrogen deprivation. This double mutant could be complemented by wild-type copies of sigD or sigE, indicating some degree of functional redundancy that can partially mask phenotypes of single gene mutants. However, the sigE gene was required for lysogenic development of the temperate cyanophage A-4L. Several other combinations of double mutations, especially sigE sigF, caused a transient defect in establishing diazotrophic growth, manifested as a strong and prolonged bleaching response to nitrogen deprivation. We found no evidence for developmental regulation of the sigma factor genes. luxAB reporter fusions with sigD, sigE, and sigF all showed slightly reduced expression after induction of heterocyst development by nitrogen stepdown. Phylogenetic analysis of cyanobacterial group 2 sigma factor sequences revealed that they fall into several subgroups. Three morphologically and physiologically distant strains, Anabaena sp. strain PCC 7120, Synechococcus sp. strain PCC 7002, and Synechocystis sp. strain PCC 6803 each contain representatives of four subgroups. Unlike unicellular strains, Anabaena sp. strain PCC 7120 has three additional group 2 sigma factors that cluster in subgroup 2.5b, which is perhaps specific for filamentous or heterocystous cyanobacteria.  相似文献   

13.
The pathway from beta-carotene to astaxanthin is a crucial step in the synthesis of astaxanthin, a red antioxidative ketocarotenoid that confers beneficial effects on human health. Two enzymes, a beta-carotene ketolase (carotenoid 4,4'-oxygenase) and a beta-carotene hydroxylase (carotenoid 3,3'-hydroxylase), are involved in this pathway. Cyanobacteria are known to utilize the carotenoid ketolase CrtW and/or CrtO, and the carotenoid hydroxylase CrtR. Here, we compared the catalytic functions of CrtW ketolases, which originated from Gloeobacter violaceus PCC 7421, Anabaena (also known as Nostoc) sp. PCC 7120 and Nostoc punctiforme PCC 73102, and CrtR from Synechocystis sp. PCC 6803, Anabaena sp. PCC 7120 and Anabaena variabilis ATCC 29413 by complementation analysis using recombinant Escherichia coli cells that synthesized various carotenoid substrates. The results demonstrated that the CrtW proteins derived from Anabaena sp. PCC 7120 as well as N. punctiforme PCC 73102 (CrtW148) can convert not only beta-carotene but also zeaxanthin into their 4,4'-ketolated products, canthaxanthin and astaxanthin, respectively. In contrast, the Anabaena CrtR enzymes were very poor in accepting either beta-carotene or canthaxanthin as substrates. By comparison, the Synechocystis sp. PCC 6803 CrtR converted beta-carotene into zeaxanthin efficiently. We could assign the catalytic functions of the gene products involved in ketocarotenoid biosynthetic pathways in Synechocystis sp. PCC 6803, Anabaena sp. PCC 7120 and N. punctiforme PCC 73102, based on the present and previous findings. This explains why these cyanobacteria cannot produce astaxanthin and why only Synechocystis sp. PCC 6803 can produce zeaxanthin.  相似文献   

14.
The nucleotide sequence of the entire genome of a filamentous cyanobacterium, Anabaena sp. strain PCC 7120, was determined. The genome of Anabaena consisted of a single chromosome (6,413,771 bp) and six plasmids, designated pCC7120alpha (408,101 bp), pCC7120beta (186,614 bp), pCC7120gamma (101,965 bp), pCC7120delta (55,414 bp), pCC7120epsilon (40,340 bp), and pCC7120zeta (5,584 bp). The chromosome bears 5368 potential protein-encoding genes, four sets of rRNA genes, 48 tRNA genes representing 42 tRNA species, and 4 genes for small structural RNAs. The predicted products of 45% of the potential protein-encoding genes showed sequence similarity to known and predicted proteins of known function, and 27% to translated products of hypothetical genes. The remaining 28% lacked significant similarity to genes for known and predicted proteins in the public DNA databases. More than 60 genes involved in various processes of heterocyst formation and nitrogen fixation were assigned to the chromosome based on their similarity to the reported genes. One hundred and ninety-five genes coding for components of two-component signal transduction systems, nearly 2.5 times as many as those in Synechocystis sp. PCC 6803, were identified on the chromosome. Only 37% of the Anabaena genes showed significant sequence similarity to those of Synechocystis, indicating a high degree of divergence of the gene information between the two cyanobacterial strains.  相似文献   

15.
The ntcA gene from Synechococcus sp. strain PCC 7942 encodes a regulatory protein which is required for the expression of all of the genes known to be subject to repression by ammonium in that cyanobacterium. Homologs to ntcA have now been cloned by hybridization from the cyanobacteria Synechocystis sp. strain PCC 6803 and Anabaena sp. strain PCC 7120. Sequence analysis has shown that these ntcA genes would encode polypeptides strongly similar (77 to 79% identity) to the Synechococcus NtcA protein. Sequences hybridizing to ntcA have been detected in the genomes of nine other cyanobacteria that were tested, including strains of the genera Anabaena, Calothrix, Fischerella, Nostoc, Pseudoanabaena, Synechococcus, and Synechocystis.  相似文献   

16.
We describe a novel mechanism of site-specific recombination in the unicellular marine cyanobacterium Synechococcus sp. PCC7002. The specific recombination sites on the smallest plasmid pAQ1 were localized by studying the properties of pAQ1-derived shuttle-vectors. We found that a palindromic element, the core sequence of which is G(G/A)CGATCGCC, functions as a resolution site for site-specific plasmid recombination. Furthermore, site-directed mutagenesis analysis of the element show that the site-specific recombination in the cyanobacterium requires sequence specificity, symmetry in the core sequence and, in part, the spacing between the elements. Interestingly, this element is over-represented not only in pAQ1 and in the genome of the cyanobacterium, but also in the accumulated cyanobacterial sequences from Synechococcus sp. PCC6301, PCC7942, vulcanus and Synechocystis sp. PCC6803 within GenBank and EMBL databases. Thus, these findings strongly suggest that the site-specific recombination mechanism based on the palindromic element should be common in these cyanobacteria.  相似文献   

17.
Multiple rpoD-related genes of cyanobacteria.   总被引:3,自引:0,他引:3  
Genomes of many eubacterial strains have been shown to encode for multiple rpoD-related genes. In this report, we describe the identification of the multiple rpoD-related genes of cyanobacterial strains. DNAs of three cyanobacterial strains, Anabaena sp. PCC7120, Synechococcus sp. PCC7942, and Synechocystis sp. PCC6803, were examined by Southern hybridization, using a synthetic probe designed for detecting rpoD or rpoD-related genes. Four or five hybridization signals were found in each DNA. Four DNA regions of Synechococcus sp. PCC7942 corresponding to the hybridization signals were cloned and partially sequenced. The sequence data indicate the presence of genes, named rpoD1, rpoD2, rpoD3, and rpoD4, whose products are highly similar to the basic structure of the principal sigma factors of eubacterial strains. The rpoD1 gene showed the greatest similarity to the sigA gene of Anabaena sp. PCC7120.  相似文献   

18.
To elucidate the biosynthetic pathways of carotenoids, especially myxol 2'-glycosides, in cyanobacteria, Anabaena sp. strain PCC 7120 (also known as Nostoc sp. strain PCC 7120) and Synechocystis sp. strain PCC 6803 deletion mutants lacking selected proposed carotenoid biosynthesis enzymes and GDP-fucose synthase (WcaG), which is required for myxol 2'-fucoside production, were analyzed. The carotenoids in these mutants were identified using high-performance liquid chromatography, field desorption mass spectrometry, and (1)H nuclear magnetic resonance. The wcaG (all4826) deletion mutant of Anabaena sp. strain PCC 7120 produced myxol 2'-rhamnoside and 4-ketomyxol 2'-rhamnoside as polar carotenoids instead of the myxol 2'-fucoside and 4-ketomyxol 2'-fucoside produced by the wild type. Deletion of the corresponding gene in Synechocystis sp. strain PCC 6803 (sll1213; 79% amino acid sequence identity with the Anabaena sp. strain PCC 7120 gene product) produced free myxol instead of the myxol 2'-dimethyl-fucoside produced by the wild type. Free myxol might correspond to the unknown component observed previously in the same mutant (H. E. Mohamed, A. M. L. van de Meene, R. W. Roberson, and W. F. J. Vermaas, J. Bacteriol. 187:6883-6892, 2005). These results indicate that in Anabaena sp. strain PCC 7120, but not in Synechocystis sp. strain PCC 6803, rhamnose can be substituted for fucose in myxol glycoside. The beta-carotene hydroxylase orthologue (CrtR, Alr4009) of Anabaena sp. strain PCC 7120 catalyzed the transformation of deoxymyxol and deoxymyxol 2'-fucoside to myxol and myxol 2'-fucoside, respectively, but not the beta-carotene-to-zeaxanthin reaction, whereas CrtR from Synechocystis sp. strain PCC 6803 catalyzed both reactions. Thus, the substrate specificities or substrate availabilities of both fucosyltransferase and CrtR were different in these species. The biosynthetic pathways of carotenoids in Anabaena sp. strain PCC 7120 are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号