首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
梁新全  杜贻鹏  王东来  杨洋 《遗传》2013,35(3):241-254
PR-SET7, 也称SET8、KMT5a , 是现今发现唯一能够特异性单甲基化H4K20的赖氨酸甲基转移酶(Lysine methyltransferase, KMT)。在细胞周期不同时相PR-SET7的含量处于波动之中, 主要受泛素连接酶调节。PR-SET7与细胞增殖密切相关, 其催化的组蛋白H4K20单甲基化修饰在DNA复制、染色体固缩及细胞周期检验点激活中发挥重要调控作用。PR-SET7缺失将导致DNA损伤, 细胞周期阻滞, 甚至发生细胞凋亡。而且, PR-SET7可以调节ERa、Wnt、p53等多种基因的转录, 进而影响相应基因的表达。PR-SET7为个体发育所必需, 并参与了基因组印记的形成。另外, PR-SET7还能促进肿瘤的发生和转移, 有望成为肿瘤治疗的新靶点。文章主要从PR-SET7的结构、对组蛋白修饰的调节、在细胞周期、基因转录过程中的调控, 以及其在个体发育和肿瘤发生中的作用等方面综述了PR-SET7的研究进展。  相似文献   

2.
侯芷晗  陶敏  白晓彦 《生命的化学》2023,(11):1670-1680
牛痘相关激酶1(vaccinia-related kinase 1,VRK1)是一种核染色质丝苏氨酸蛋白激酶,在癌症中不发生基因突变,但在很多类型的肿瘤中表达上调并与不良预后相关。在细胞核内,VRK1可以磷酸化几种转录因子、组蛋白和涉及DNA损伤反应途径的蛋白质,还可以参与转录过程中组蛋白的乙酰化修饰,调节细胞周期、有丝分裂等过程促进细胞增殖,并且在DNA损伤修复中发挥至关重要的作用。在DNA损伤修复反应中,VRK1调控组蛋白乙酰化,介导DNA损伤反应的触发,进一步参与非同源末端连接DNA修复途径,还可以调控p53相关的DNA损伤修复过程。基于VRK1的以上生物学功能,癌组织中VRK1的高表达可以促进肿瘤细胞增殖、转移以及参与肿瘤细胞DNA修复过程。在癌症靶向治疗研究中,VRK1可以作为癌症合成致死性策略的选择靶点用于多种癌症的防治。  相似文献   

3.
Polo样激酶1(polo-like kinase1,PLK1)是一种广泛存在于真核细胞中的丝/苏氨酸激酶,在细胞周期调控中发挥关键的作用。其主要功能包括参与激活cyclin B/CDK1复合体,协助中心体的功能成熟,活化细胞分裂后期促进复合物(anaphase promoting complex,APC),促进染色体正常分离、分配和调控胞质分裂等。现已发现PLK1在多种肿瘤中表达增高并与某些肿瘤的预后密切相关。利用反义寡核苷酸、RNA干扰技术和化学合成PLK1小分子抑制剂等方法阻断PLK1的表达或降低其激酶活性,能够有效抑制肿瘤细胞的增殖并介导肿瘤细胞的凋亡,但对正常细胞没有明显影响,因此PLK1在肿瘤靶向治疗中具有重要的应用前景。  相似文献   

4.
长链非编码RNA (long non-coding RNA, lncRNA)种类繁多且生物学功能复杂,能与不同的分子相互作用,参与细胞核染色质结构的调控、mRNA的转录及转录后的加工运输、蛋白质的翻译等过程。细胞周期是保证细胞正常生命活动的过程,哺乳动物细胞通过细胞周期的调控实现自我的更新及个体的发育,而肿瘤细胞通过细胞周期的调控参与癌细胞的增殖及凋亡等过程。lncRNA在肿瘤细胞中可发挥抑癌基因或癌基因的作用调控细胞周期进程,了解其调控细胞周期的机制可揭示肿瘤发生发展的本质,阐释癌症的发生机制,为肿瘤的早期诊断及治疗提供分子标志物。本研究就近年来报道的lncRNA在肿瘤细胞中调控细胞周期的机制作一综述。  相似文献   

5.
昼夜节律和细胞周期是生命有机体中两种主要的节律性、周期性的活动,参与机体代谢与生理节律.在分子水平上,它们的周期性活动是由一种周期性振荡的网络构成的,这种网络由一系列节律性表达的蛋白所形成.研究发现,多种节律因子通过调节周期蛋白的表达影响细胞周期进程,如G 1-S期,REV-ERBa抑制p21促进细胞进程,RORα激活p21抑制细胞进程,DEC1抑制cyclinD1,CLOCK/BMAL1负调控c-Myc;G 2-M期,BMAL1/CLOCK、BMAL1/NPAS2或Cry1作用于Wee1抑制或激活G2-M期进程.此外,昼夜节律钟蛋白也参与了DNA损伤修复及细胞死亡的过程:Per1、Tim分别作用于ATM、ATR,因而促进细胞周期停滞,p53缺失的细胞中敲除Cry促进细胞凋亡过程,抑制了肿瘤的形成,DEC1以p53依赖的方式促细胞衰老等.同时,节律因子的紊乱引起多种疾病的产生.因此,阐明昼夜节律对细胞周期及死亡的影响,将为肿瘤的治疗提供分子理论基础.  相似文献   

6.
为了研究端粒酶催化亚基TERT与细胞周期相关基因的调控关系及其在肿瘤细胞增殖中的调控作用,应用基因芯片及RT-PCR等技术,对靶向mTERT的RNA干涉后的小鼠EL-4淋巴瘤细胞进行细胞周期相关基因的表达谱分析,筛选到43个基因在TERT受抑制前后存在表达差异,并且全部为下调基因.表明在小鼠EL-4淋巴瘤细胞中内源性TERT的表达抑制,导致了调控G1期和S期进程的相关细胞周期相关基因的表达变化,并可能通过此途径影响肿瘤细胞的生长和增殖.  相似文献   

7.
Survivin是在肿瘤组织及胚胎中发现的一类细胞因子,它是IAPs(inhibitorsofapoptosisprotein)家族的成员之一,具有其独特的分子结构和组织表达特异性,在细胞中参与细胞周期的调控,主要在细胞周期的G2/M期通过抑制caspase-3及caspase-7的活性发挥作用.Survivin在细胞中的活性可能受p53的调节.Survivin也是胚胎发育早期过程中调节细胞分裂分化的一类重要的因子.对Survivin的研究对于肿瘤治疗的研究及揭示胚胎早期的发育机制有重要的意义.  相似文献   

8.
候选抑瘤基因 BRD7 及家族蛋白的功能研究进展   总被引:1,自引:0,他引:1  
溴区结构(bromodomain)是近年来发现的广泛分布于多种生物中的一种高度保守的结构域,溴区结构蛋白通过参与信号依赖性的基因转录调控而广泛参与细胞内重要的生命活动.BRD7基因是1999年克隆的一个新的bromodomain基因,GenBank登录号为AF152604或AF152605.eMotif分析表明,BRD7蛋白包含多个磷酸化位点和一个保守bromodomain功能域,Blast显示BRD7蛋白与人的Celtix-1及鼠的bromodomain蛋白BP75具有高度的同源性.利用转基因技术已证实,在鼻咽癌细胞系HNEl中过表达BRD7基因可以抑制其细胞生长和细胞周期G1-S的进程,并部分逆转鼻咽痛细胞HNE1的恶性表型.为了全面地揭示BRD7基因的细胞内生物学功能,深入了解BRD7基因的细胞内整体信息流向,中南大学肿瘤研究所细胞遗传室已从上、中、下游三个不同层面对BRD7基因的功能研究展开了初步的探索.  相似文献   

9.
UHRF2(ubiquitin like with PHD and ring finger domains 2)是新近发现的具有多个结构域的核蛋白,在细胞周期调控和表观遗传学中发挥重要作用.近期研究提示,UHRF2是肿瘤抑制蛋白p53的1个E3连接酶,在体内外能与p53相互结合并促进其泛素化,过表达UHRF2能使细胞周期停滞于G1期.然而,UHRF2介导的G1期阻滞及其与p53联系尚不清楚.通过共转染UHRF2质粒及p53特异性小干扰RNA(siRNAs)到HEK293细胞构建细胞模型,探索UHRF2引起细胞周期停滞与p53之间的关系.结果显示,UHRF2能促进HEK293细胞中p53的稳定,从而引起p21 (CIP1/WAF1)基因表达,并使细胞周期停滞于G1期;但在siRNA抑制p53的表达后p21(CIP1/WAF1)表达降低,UHRF2引起的细胞周期阻滞消除.研究结果提示,UHRF2可通过稳定p53,上调p21的表达,从而介导细胞周期阻滞于G1期;同时UHRF2可能参与细胞周期调控及DNA损伤反应(DNA damage response, DDR).UHRF2稳定p53的具体分子机制及其在DDR中的作用有待进一步研究证明.  相似文献   

10.
非受体酪氨酸激酶c-Abl广泛表达于人和哺乳动物等的细胞中并受到严格调控,通过蛋白之间相互作用、与DNA相互作用及其酪氨酸激酶活性在一系列的重要生命活动中发挥调节作用。在应激损伤反应如DNA损伤反应中.c-Abl的Ser^465被ATM和DNA-PK磷酸化而激活,通过与Rad51、p53和p73等分子的相互作用参与DNA重组修复、细胞周期和细胞凋亡等的调控,不同信号途径之间的平衡决定细胞的生存和死亡。  相似文献   

11.
huCdc7 encodes a catalytic subunit for Saccharomyces cerevisae Cdc7-related kinase complex of human. ASK, whose expression is cell cycle-regulated, binds and activates huCdc7 kinase in a cell cycle-dependent manner (Kumagai, H., Sato, N., Yamada, M., Mahony, D. , Seghezzi, W., Lees, E., Arai, K., and Masai, H. (1999) Mol. Cell. Biol. 19, 5083-5095). We have expressed huCdc7 complexed with ASK regulatory subunit using the insect cell expression system. To facilitate purification of the kinase complex, glutathione S-transferase (GST) was fused to huCdc7 and GST-huCdc7-ASK complex was purified. GST-huCdc7 protein is inert as a kinase on its own, and phosphorylation absolutely depends on the presence of the ASK subunit. It autophosphorylates both subunits in vitro and phosphorylates a number of replication proteins to different extents. Among them, MCM2 protein, either in a free form or in a MCM2-4-6-7 complex, serves as an excellent substrate for huCdc7-ASK kinase complex in vitro. MCM4 and MCM6 are also phosphorylated by huCdc7 albeit to less extent. MCM2 and -4 in the MCM2-4-6-7 complex are phosphorylated by Cdks as well, and prior phosphorylation of the MCM2-4-6-7 complex by Cdks facilitates phosphorylation of MCM2 by huCdc7, suggesting collaboration between Cdks and Cdc7 in phosphorylation of MCM for initiation of S phase. huCdc7 and ASK proteins can also be phosphorylated by Cdks in vitro. Among four possible Cdk phosphorylation sites of huCdc7, replacement of Thr-376, corresponding to the activating threonine of Cdk, with alanine (T376A mutant) dramatically reduces kinase activity, indicative of kinase activation by phosphorylation of this residue. In vitro, Cdk2-Cyclin E, Cdk2-Cyclin A, and Cdc2-Cyclin B, but not Cdk4-Cyclin D1, phosphorylates the Thr-376 residue of huCdc7, suggesting possible regulation of huCdc7 by Cdks.  相似文献   

12.
A novel human protein, ASK (activator of S phase kinase), was identified on the basis of its ability to bind to human Cdc7-related kinase (huCdc7). ASK forms an active kinase complex with huCdc7 that is capable of phosphorylating MCM2 protein. ASK appears to be the major activator of huCdc7, since immunodepletion of ASK protein from the extract is accompanied by the loss of huCdc7-dependent kinase activity. Expression of ASK is regulated by growth factor stimulation, and levels oscillate through the cell cycle, reaching a peak during S phase. Concomitantly, the huCdc7-dependent kinase activity significantly increases when cells are in S phase. Furthermore, we have demonstrated that ASK serves an essential function for entry into S phase by showing that microinjection of ASK-specific antibodies into mammalian cells inhibited DNA replication. Our data show that ASK is a novel cyclin-like regulatory subunit of the huCdc7 kinase complex and that it plays a pivotal role in G1/S transition in mammalian cells.  相似文献   

13.
14.
Cdc7 is a serine/threonine kinase conserved from yeasts to human and is known to play a key role in the regulation of initiation at each replication origin. Its catalytic function is activated via association with the activation subunit Dbf4/activator of S phase kinase (ASK). It is known that two conserved motifs of Dbf4/ASK are involved in binding to Cdc7, and both are required for maximum activation of Cdc7 kinase. Cdc7 kinases possess unique kinase insert sequences (kinase insert I-III) that are inserted at defined locations among the conserved kinase domains. However, precise mechanisms of Cdc7 kinase activation are largely unknown. We have identified two segments on Cdc7, DAM-1 (Dbf4/ASK interacting motif-1; amino acids 448-457 near the N terminus of kinase insert III) and DAM-2 (C-terminal 10-amino acid segment), that interact with motif-M and motif-C of ASK, respectively, and are essential for kinase activation by ASK. The C-terminal 143-amino acid polypeptide (432-574) containing DAM-1 and DAM-2 can interact with Dbf4/ASK. Characterization of the purified ASK-free Cdc7 and Cdc7-ASK complex shows that ATP binding of the Cdc7 catalytic subunit requires Dbf4/ASK. However, the "minimum" Cdc7, lacking the entire kinase insert II and half of kinase insert III, binds to ATP and shows autophosphorylation activity in the absence of ASK. However, ASK is still required for phosphorylation of exogenous substrates by the minimum Cdc7. These results indicate bipartite interaction between Cdc7 and Dbf4/ASK subunits facilitates ATP binding and substrate recognition by the Cdc7 kinase.  相似文献   

15.
Cdc7 is a serine-threonine kinase that phosphorylates components of the pre-replication complex during DNA replication initiation. Cdc7 is highly conserved, and Cdc7 orthologs have been characterized in organisms ranging from yeast to humans. Cdc7 is activated specifically during late G1/S phase by binding to its regulatory subunit, Dbf4. Drosophila melanogaster contains a Dbf4 ortholog, Chiffon, which is essential for chorion amplification in Drosophila egg chambers. However, no Drosophila ortholog of Cdc7 has yet been characterized. Here, we report the functional and biochemical characterization of a Drosophila ortholog of Cdc7. Co-expression of Drosophila Cdc7 and Chiffon is able to complement a growth defect in yeast containing a temperature-sensitive Cdc7 mutant. Cdc7 and Chiffon physically interact and can be co-purified from insect cells. Cdc7 phosphorylates the known Cdc7 substrates Mcm2 and histone H3 in vitro, and Cdc7 kinase activity is stimulated by Chiffon and inhibited by the Cdc7-specific inhibitor XL413. Drosophila egg chamber follicle cells deficient for Cdc7 have a defect in two types of DNA replication, endoreplication and chorion gene amplification. However, follicle cells deficient for Chiffon have a defect in chorion gene amplification but still undergo endocycling. Our results show that Cdc7 interacts with Chiffon to form a functional Dbf4-dependent kinase complex and that Cdc7 is necessary for DNA replication in Drosophila egg chamber follicle cells. Additionally, we show that Chiffon is a member of an expanding subset of DNA replication initiation factors that are not strictly required for endoreplication in Drosophila.  相似文献   

16.
Claspin is a critical mediator protein in the DNA replication checkpoint, responsible for ATR-dependent activation of the effector kinase Chk1. Cdc7, an essential kinase required for the initiation of DNA replication, can also interact with and phosphorylate Claspin. In this study we use small-molecule inhibitors of Cdc7 kinase to further understand the relationship between Cdc7, Claspin and Chk1 activation. We demonstrate that inhibition of Cdc7 kinase delays HU-induced phosphorylation of Chk1 but does not affect the maintenance of the replication checkpoint once it is established. We find that while chromatin association of Claspin is not affected by Cdc7 inhibition, Claspin phosphorylation is attenuated following HU treatment, which may be responsible for the altered kinetics of HU-induced Chk1 phosphorylation. We demonstrate that Claspin is an in vitro substrate of Cdc7 kinase, and using mass-spectrometry, we identify multiple phosphorylation sites that help to define a Cdc7 phosphorylation motif. Finally, we show that the interaction between Claspin and Cdc7 is not dependent on Cdc7 kinase activity, but Claspin interaction with the DNA helicase subunit Mcm2 is lost upon Cdc7 inhibition. We propose Cdc7-dependent phosphorylation regulates critical protein-protein interactions and modulates Claspin’s function in the DNA replication checkpoint.  相似文献   

17.
Cdc7激酶抑制剂PHA-767491是最新发现的一类抗肿瘤新药.本实验利用不同浓度的PHA-767491对肿瘤细胞进行抑制研究.实验结果显示,PHA-767491对肿瘤细胞有很强的生长抑制作用,且抑制效果随着药物浓度或时间的增加而增强;通过和化疗药物5-氟尿嘧啶对比发现,PHA-767491只需较低剂量就能发挥出抑制肿瘤的作用,且疗效远高于5-氟尿嘧啶.研究进一步还发现,PHA-767491可通过促使PARP和casepase3蛋白的剪切诱导肿瘤细胞凋亡,同时PHA-767491还可以引起肿瘤细胞自噬.综上研究表明,PHA-767491可以通过诱导细胞凋亡和引起细胞自噬作用对多种肿瘤细胞有较好的治疗效果,而对正常细胞毒性很低.因此该实验研究为今后抗肿瘤新药PHA-767491的进一步应用于癌症的临床治疗提供了重要的实验依据.  相似文献   

18.
The initiation of DNA replication requires two protein kinases: cyclin-dependent kinase (Cdk) and Cdc7. Although S phase Cdk activity has been intensively studied, relatively little is known about how Cdc7 regulates progression through S phase. We have used a Cdc7 inhibitor, PHA-767491, to dissect the role of Cdc7 in Xenopus egg extracts. We show that hyperphosphorylation of mini-chromosome maintenance (MCM) proteins by Cdc7 is required for the initiation, but not for the elongation, of replication forks. Unlike Cdks, we demonstrate that Cdc7 executes its essential functions by phosphorylating MCM proteins at virtually all replication origins early in S phase and is not limiting for progression through the Xenopus replication timing programme. We demonstrate that protein phosphatase 1 (PP1) is recruited to chromatin and rapidly reverses Cdc7-mediated MCM hyperphosphorylation. Checkpoint kinases induced by DNA damage or replication inhibition promote the association of PP1 with chromatin and increase the rate of MCM dephosphorylation, thereby counteracting the previously completed Cdc7 functions and inhibiting replication initiation. This novel mechanism for regulating Cdc7 function provides an explanation for previous contradictory results concerning the control of Cdc7 by checkpoint kinases and has implications for the use of Cdc7 inhibitors as anti-cancer agents.  相似文献   

19.
Cdc7 (cell division cycle 7) kinase together with its activation subunit ASK (also known as Dbf4) play pivotal roles in DNA replication and contribute also to other aspects of DNA metabolism such as DNA repair and recombination. While the biological significance of Cdc7 is widely appreciated, the molecular mechanisms through which Cdc7 kinase regulates these various DNA transactions remain largely obscure, including the role of Cdc7-ASK/Dbf4 under replication stress, a condition associated with diverse (patho)physiological scenarios. In this review, we first highlight the recent findings on a novel pathway that regulates the stability of the human Cdc7-ASK/Dbf4 complex under replication stress, its interplay with ATR-Chk1 signaling, and significance in the RAD18-dependent DNA damage bypass pathway. We also consider Cdc7 function in a broader context, considering both physiological conditions and pathologies associated with enhanced replication stress, particularly oncogenic transformation and tumorigenesis. Furthermore, we integrate the emerging evidence and propose a concept of Cdc7-ASK/Dbf4 contributing to genome integrity maintenance, through interplay with RAD18 that can serve as a molecular switch to dictate DNA repair pathway choice. Finally, we discuss the possibility of targeting Cdc7, particularly in the context of the Cdc7/RAD18-dependent translesion synthesis, as a potential innovative strategy for treatment of cancer.  相似文献   

20.
Cdc7 is an S‐phase‐promoting kinase (SPK) that is required for the activation of replication initiation complex assembly because it phosphorylates the MCM protein complex serving as the replicative helicase in eukaryotic organisms. Cdc7 activity is undetectable in immature mouse GV oocytes, although Cdc7 protein is already expressed at the same level as in mature oocytes or early one‐cell embryos at zygotic S‐phase, in which Cdc7 kinase activity is clearly detectable. Dbf4 is a regulatory subunit of Cdc7 and is required for Cdc7 kinase activity. Dbf4 is not readily detectable in immature GV oocytes but accumulates to a level similar to that in one‐cell embryos during oocyte maturation, suggesting that Cdc7 is already activated in unfertilized eggs (metaphase II). RNAi‐mediated knockdown of maternal Dbf4 expression prevents the maturation‐associated increase in Dbf4 protein, abolishes the activation of Cdc7, and leads to the failure of DNA replication in one‐cell embryos, demonstrating that Dbf4 expression is the key regulator of Cdc7 activity in mouse oocytes. Dormant Dbf4 mRNA in immature GV oocytes is recruited by cytoplasmic polyadenylation during oocyte maturation and is dependent on MPF activity via its cytoplasmic polyadenylation element (CPE) upstream of the hexanucleotide (HEX) in the 3′ untranslated region (3′UTR). Our results suggest that Cdc7 is inactivated in immature oocytes, preventing it from the unwanted phosphorylation of MCM proteins, and the oocyte is qualified by proper maturation to proceed following embryogenesis after fertilization through zygotic DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号