首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
将小分子抗癌药物PHA-767491和携带TRAIL基因的非复制型腺病毒(Ad-TRAIL)共同作用于肝癌细胞Bel-7404,探讨PHA-767491联合TRAIL蛋白对肝癌细胞增殖的协同抑制作用及其作用机理. MTT法检测细胞存活率,Hoechst 33342荧光检测细胞凋亡现象和流式细胞仪检测细胞凋亡水平. 结果表明,PHA-767491联合Ad-TRAIL抑制Bel-7404细胞增殖的能力显著优于单一用药. Western印迹进一步分析蛋白表达水平显示,PHA-767491可以通过下调抗凋亡蛋白Mcl-1和Xiap的表达,从而显著增强TRAIL蛋白诱导Bel-7404细胞凋亡的能力;PHA-767491联合Ad-TRAIL处理Bel-7404细胞后,不仅Bel-7404细胞凋亡水平显著增加,并且伴随着PARP和Caspase3的大量剪切. 本研究证实, PHA-767491和TRAIL的联合使用对抑制肝癌细胞Bel-7404增殖表现出了显著的协同效应,为今后癌症药物的联合治疗提供了新的思路.  相似文献   

2.
p53凋亡刺激蛋白2(apoptosis stimulating protein 2 of p53, ASPP2)能特异性地与p53蛋白结合并增强其促凋亡功能,进而发挥抗肿瘤作用.最近文献提示,自噬对肿瘤发生、发展及肿瘤细胞对抗肿瘤药物的反应都具有重要作用.在本研究中,甲基磺酸(MMS)处理HepG2细胞24 h后,用calcein AM/PI和M30染色检测细胞凋亡,可引起早期(M30免疫组化阳性)和晚期细胞凋亡(PI染色阳性). 给HepG2细胞转染GFP-LC3质粒后,发现MMS处理24 h可引起自噬的发生. ASPP2腺病毒(rAd-ASPP2)感染HepG2细胞引起ASPP2过表达后,再用MMS处理24 h,能引起更明显的早期、晚期细胞凋亡和自噬. 荧光定量PCR检测发现,rAd-ASPP2诱导了更高的BCL-2相关X蛋白基因(BAX)和p53蛋白的目的基因p53诱导的自噬调节蛋白(p53-induced modulator of autophagy,DRAM)的表达. 但仅用rAd-ASPP2处理HepG2细胞不能引起自噬和凋亡.利用2条DRAM特异性的siRNA下调DRAM的表达,发现rAd-ASPP2引起的自噬被完全抑制, 早期和晚期凋亡均部分被抑制,同时BAX 的mRNA水平也明显下降. 以上结果说明,ASPP2可通过上调BAX和DRAM基因的转录而促进MMS引起的HepG2细胞凋亡; 另外,DRAM介导的自噬是ASPP2促进MMS引起的肿瘤细胞凋亡的机制之一. 该研究可为肝癌的基因治疗提供新的思路.  相似文献   

3.
自噬与凋亡被认为是细胞程序性死亡的两种重要途径,二者的交互联系对阐明药物的抗肿瘤机理有重要价值.众多的研究表明,雷公藤甲素对多种肿瘤细胞都具有显著的抑制作用.细胞凋亡与自噬可被相同的因素所诱导,p53蛋白可以同时对二者起调控作用,在自噬与凋亡的交互作用(crosstalk)中扮演着重要角色.本文以He La细胞为模型,研究雷公藤甲素诱导He La细胞发生自噬和凋亡的机制,并通过抑制p53依赖的转录,研究雷公藤甲素诱导He La细胞p53依赖的自噬和凋亡交互联系.  相似文献   

4.
本研究的目的是为了探索小檗碱对乳腺癌MDA-MB-231细胞增殖的影响以及阐明小檗碱促乳腺癌细胞凋亡的分子机制。在实验过程中,我们通过MTT检测小檗碱对乳腺癌MDA-MB-231细胞增殖的抑制作用,采用Annexin-V/PI染色定量考察小檗碱对肿瘤细胞凋亡的影响,运用Western Blot实验检测肿瘤相关通路蛋白表达来进行研究。实验表明小檗碱对乳腺癌MDA-MB-231细胞增殖具有抑制作用,使细胞中自噬因子Beclin 1表达增加,诱导细胞自噬泡的形成,导致肿瘤细胞发生凋亡。综上说明小檗碱是通过抑制AKT-mTOR通路,诱导MDA-MB-231细胞的自噬以及凋亡,从而发挥抗肿瘤作用。  相似文献   

5.
白藜芦醇作为一种广泛存在于药食同源植物中的非黄酮类多酚化合物,其抗肿瘤效果受到广泛关注,但在抑制宫颈癌方面仍缺乏体内效应的实验依据。本研究通过体内实验发现白藜芦醇具有明显的抗肿瘤生长作用,组织水平LC3B、P62和Beclin-1表达改变,推测白藜芦醇可能通过促进癌细胞的过度自噬抑制宫颈癌的进展;进一步通过体外细胞实验验证,发现白藜芦醇诱导自噬相关蛋白的表达,促进自噬小体和自噬溶酶体形成增多,分别与自噬激活剂雷帕霉素、自噬抑制剂巴伐洛霉素A1联用后检测细胞自噬流以及线粒体膜电位和细胞凋亡指标,发现白藜芦醇在自噬激活与自噬抑制的情况下可通过不同方式促进宫颈癌细胞的死亡。  相似文献   

6.
自噬是一种在正常细胞和病理状态细胞中普遍存在的生理机制。自噬与肿瘤细胞的生存与凋亡关系密切,在很多肿瘤细胞中,其自噬活性均有改变。抑制肿瘤细胞中自噬活动可以促进肿瘤细胞的凋亡。在化疗诱导肿瘤细胞凋亡的同时,以自噬抑制剂抑制肿瘤细胞的自噬活动,可改善肿瘤的治疗效果。  相似文献   

7.
p53凋亡刺激蛋白2(apoptosis stimulating protein 2 of p53, ASPP2)能特异性地与p53蛋白结合并增强其促凋亡的功能,进而发挥抗肿瘤作用. 本室前期研究发现,ASPP2可以通过p53-DRAM自噬途径诱导细胞凋亡. 在本研究中,利用ASPP2 腺病毒感染Hep3B细胞(p53缺陷型肝癌细胞系)并用甲基磺酸(MMS)处理后; Calcein AM/PI和M30染色检测细胞凋亡;GFP-LC3质粒转染细胞后检测自噬; 荧光定量PCR和免疫印迹检测自噬基因表达. 结果表明,ASPP2在p53缺陷的Hep3B细胞内可诱导发生凋亡;在MMS存在和缺失条件下, Adr-ASPP2均引起自噬体水平升高及自噬基因的表达增 加,且MMS协同Adr-ASPP2能使自噬水平增加; 进一步用VPS34 siRNA和DRAM siRNA抑 制自噬发现,细胞凋亡水平下降, 说明由Adr-ASPP2诱发经损伤相关自噬调节蛋白( DRAM)介导的自噬参与了肝癌细胞系凋亡的发生. 综上结果表明,ASPP2可以通过非p53依赖的DRAM介导自噬,并促进肝癌细胞凋亡. 该研究可为肝癌的基因治疗提供新的思路.  相似文献   

8.
细胞自噬是一种细胞自我降解的过程,在适应代谢应激、保持基因组完整性及维持内环境稳定方面发挥重要作用. 在肿瘤治疗中,凋亡耐受是产生肿瘤耐药的重要机制. 细胞自噬可防止抗肿瘤药诱导的凋亡,促进肿瘤耐药. 然而,自噬性细胞死亡可能是凋亡耐受肿瘤细胞的一种死亡方式. 因此,细胞自噬对肿瘤细胞的耐药性有双重影响. 本文综述了细胞自噬的分子机制、细胞自噬与凋亡的关系、细胞自噬与肿瘤耐药以及治疗的主要研究进展.  相似文献   

9.
恶性肿瘤是严重威胁人类健康的重大疾病。尽管治疗手段不断发展,但推广度及疗效仍极为有限。新近研究发现,经典抗疟一线药青蒿素及其衍生物具有广泛抗肿瘤活性。大量研究提示,青蒿素及其衍生物通过细胞毒性效应直接杀死肿瘤细胞,也可诱导细胞周期阻滞从而抑制细胞增殖。另一方面,可通过凋亡、自噬、铁死亡途径导致细胞死亡。还可调控肿瘤微环境,从而抑制肿瘤细胞侵袭与转移。然而,尽管青蒿素及其衍生物展现出强大的抗肿瘤潜能,但其作用机制仍十分复杂。本文就青蒿素及其衍生物的抗肿瘤机制及其研究进展作一综述。  相似文献   

10.
自噬诱导是肿瘤细胞对化疗药物抵抗性的原因之一,该研究探讨溶酶体抑制剂氯喹对喜树碱(camptothecin,CPT)诱导的宫颈癌细胞Si Ha死亡的增敏效果。CPT和/或氯喹处理宫颈癌Si Ha细胞,MTT法检测细胞增殖,DAPI和TUNEL染色观察细胞凋亡,Western blot和免疫荧光检测自噬及凋亡相关蛋白。结果发现,CPT处理后,Si Ha细胞MAP1LC3B荧光点和LC3II(microtubuleassociated protein light chain 3II)蛋白水平增加,p62荧光点和蛋白质水平则减少;而采用氯喹特异抑制自噬后,可明显提高CPT诱导的细胞凋亡、caspase-9的激活和PARP(poly ADP-ribose polymerase)的切割,而全长caspase-2水平显著下降。以上结果提示,氯喹可通过抑制细胞自噬而增强宫颈癌细胞株Si Ha对CPT诱导细胞凋亡的敏感性。  相似文献   

11.
Cdc7 is an essential kinase that promotes DNA replication by activating origins of replication. Here, we characterized the potent Cdc7 inhibitor PHA-767491 (1) in biochemical and cell-based assays, and we tested its antitumor activity in rodents. We found that the compound blocks DNA synthesis and affects the phosphorylation of the replicative DNA helicase at Cdc7-dependent phosphorylation sites. Unlike current DNA synthesis inhibitors, PHA-767491 prevents the activation of replication origins but does not impede replication fork progression, and it does not trigger a sustained DNA damage response. Treatment with PHA-767491 results in apoptotic cell death in multiple cancer cell types and tumor growth inhibition in preclinical cancer models. To our knowledge, PHA-767491 is the first molecule that directly affects the mechanisms controlling initiation as opposed to elongation in DNA replication, and its activities suggest that Cdc7 kinase inhibition could be a new strategy for the development of anticancer therapeutics.  相似文献   

12.
Cdc7-Dbf4 kinase or DDK (Dbf4-dependent kinase) is required to initiate DNA replication by phosphorylating and activating the replicative Mcm2-7 DNA helicase. DDK is overexpressed in many tumor cells and is an emerging chemotherapeutic target since DDK inhibition causes apoptosis of diverse cancer cell types but not of normal cells. PHA-767491 and XL413 are among a number of potent DDK inhibitors with low nanomolar IC50 values against the purified kinase. Although XL413 is highly selective for DDK, its activity has not been extensively characterized on cell lines. We measured anti-proliferative and apoptotic effects of XL413 on a panel of tumor cell lines compared to PHA-767491, whose activity is well characterized. Both compounds were effective biochemical DDK inhibitors but surprisingly, their activities in cell lines were highly divergent. Unlike PHA-767491, XL413 had significant anti-proliferative activity against only one of the ten cell lines tested. Since XL413 did not effectively inhibit DDK in multiple cell lines, this compound likely has limited bioavailability. To identify potential leads for additional DDK inhibitors, we also tested the cross-reactivity of ∼400 known kinase inhibitors against DDK using a DDK thermal stability shift assay (TSA). We identified 11 compounds that significantly stabilized DDK. Several inhibited DDK with comparable potency to PHA-767491, including Chk1 and PKR kinase inhibitors, but had divergent chemical scaffolds from known DDK inhibitors. Taken together, these data show that several well-known kinase inhibitors cross-react with DDK and also highlight the opportunity to design additional specific, biologically active DDK inhibitors for use as chemotherapeutic agents.  相似文献   

13.
huCdc7激酶及其与肿瘤的关系   总被引:2,自引:0,他引:2  
Cdc7在人类细胞里的同源蛋白huCdc7几乎在人体所有组织中均有表达,在细胞周期中huCdc7可以通过磷酸化作用行使调控DNA复制起始的功能,同时也可通过参与ATR/Chk1途径调控细胞周期中DNA损伤的S期检验点.而近来研究发现,huCdc7表达水平的改变也参与恶性肿瘤的发生发展,在肿瘤细胞里huCdc7能加快肿瘤细胞的异常增殖同时对抗化疗药物也起到关键性的作用.目前,huCdc7已成为治疗肿瘤的一个重要靶标,最新发现的huCdc7有效抑制剂——PHA-767491在癌症治疗中显示出了独特的抑制肿瘤的作用,并且对正常细胞无毒副作用.因此,对huCdc7激酶及其抑制剂的进一步深入研究有望为临床治疗肿瘤开辟新的途径.  相似文献   

14.
The initiation of DNA replication requires two protein kinases: cyclin-dependent kinase (Cdk) and Cdc7. Although S phase Cdk activity has been intensively studied, relatively little is known about how Cdc7 regulates progression through S phase. We have used a Cdc7 inhibitor, PHA-767491, to dissect the role of Cdc7 in Xenopus egg extracts. We show that hyperphosphorylation of mini-chromosome maintenance (MCM) proteins by Cdc7 is required for the initiation, but not for the elongation, of replication forks. Unlike Cdks, we demonstrate that Cdc7 executes its essential functions by phosphorylating MCM proteins at virtually all replication origins early in S phase and is not limiting for progression through the Xenopus replication timing programme. We demonstrate that protein phosphatase 1 (PP1) is recruited to chromatin and rapidly reverses Cdc7-mediated MCM hyperphosphorylation. Checkpoint kinases induced by DNA damage or replication inhibition promote the association of PP1 with chromatin and increase the rate of MCM dephosphorylation, thereby counteracting the previously completed Cdc7 functions and inhibiting replication initiation. This novel mechanism for regulating Cdc7 function provides an explanation for previous contradictory results concerning the control of Cdc7 by checkpoint kinases and has implications for the use of Cdc7 inhibitors as anti-cancer agents.  相似文献   

15.
Plumbagin (PL), an active naphthoquinone compound, has been demonstrated to be a potential anticancer agent. However, the underlying anticancer mechanism is not fully understood. In this study, the human hepatocellular carcinoma (HCC) SMMC-7721 cell line was studied in an in vitro model. The cell proliferation was inhibited by PL in a dose- and time-dependent manner. Electron microscopy, acridine orange staining, and immunofluorescence were used to evaluate autophagosome formation and LC3 protein expression in PL-treated SMMC-7721 cells. Real-time polymerase chain reaction and Western blot showed that PL treatment suppressed the expression of apoptosis and autophagy factors (LC3, Beclin1, Atg7, and Atg5), which are associated with tumor apoptosis and autophagy in SMMC-7721 cells. In the study of in vitro tumor nude mouse models, PL can inhibit tumor growth. Cell apoptosis and autophagy of the transplanted tumors were evaluated by hematoxylin and eosin staining, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling staining, and Western blot. In addition, in the in vivo studies of HCC cells, we found that pretreatment with the autophagy inhibitor 3-methyladenine blocked the formation of apoptosis induced by PL. In contrast, administration of the apoptosis inhibitor Z-VAD did not affect PL-induced autophagy. Taken together, our findings strongly suggest that PL is a promising drug with significant antitumor activity in HCC.  相似文献   

16.
Han W  Sun J  Feng L  Wang K  Li D  Pan Q  Chen Y  Jin W  Wang X  Pan H  Jin H 《PloS one》2011,6(12):e28491
Anthracycline daunorubicin (DNR) is one of the major antitumor agents widely used in the treatment of myeloid leukemia. Unfortunately, the clinical efficacy of DNR was limited because of its cytotoxity at high dosage. As a novel cytoprotective mechanism for tumor cell to survive under unfavorable conditions, autophagy has been proposed to play a role in drug resistance of tumor cells. Whether DNR can activate to impair the sensitivity of cancer cells remains unknown. Here, we first report that DNR can induce a high level of autophagy, which was associated with the activation of extracellular signal-regulated kinase 1/2 (ERK1/2). Moreover, cell death induced by DNR was greatly enhanced after autophagy inhibition by the pharmacological inhibitor chloroquine (CQ) and siRNAs targeting Atg5 and Atg7, the most important components for the formation of autophagosome. In conclusion, we found that DNR can induce cytoprotective autophagy by activation of ERK in myeloid leukemia cells. Autophagy inhibition thus represents a promising approach to improve the efficacy of DNR in the treatment of patients with myeloid leukemia.  相似文献   

17.
The sonic hedgehog (Shh) pathway is highly activated in a variety of malignancies and plays important roles in tumorigenesis, tumor growth, drug resistance, and metastasis. Our recent study showed that the inhibitors of the Shh pathway such as cyclopamine (CP), a Smothened (SMO) inhibitor, and GANT61, a Gli1 inhibitor, have modest inhibitory effects on thyroid tumor cell proliferation and tumor growth. The objective of this study was to determine whether autophagy was induced by inhibition of the Shh pathway and could negatively regulate GANT61-induced apoptosis. Here we report that inhibition of the Shh pathway by Gli1 siRNA or by cyclopamine and GANT61 induced autophagy in SW1736 and KAT-18 cells, two anaplastic thyroid cancer cell lines; whereas Gli1 overexpression suppressed autophagy. Mechanistic investigation revealed that inhibition of the Shh pathway activated TAK1 and its two downstream kinases, the c-Jun-terminal kinase (JNK) and AMP-activated protein kinase (AMPK). GANT61-induced autophagy was blocked by TAK1 siRNA and the inhibitors of TAK1 (5Z-7-oxozeaenol, 5Z), JNK (SP600125), and AMPK (Compound C, CC). Inhibition of autophagy by chloroquine and 5Z and by TAK1 and Beclin-1 siRNA enhanced GANT61-induced apoptosis and its antiproliferative activity. Our study has shown that inhibition of the Shh pathway induces autophagy by activating TAK1, whereas autophagy in turn suppresses GANT61-induced apoptosis. We have uncovered a previously unrecognized role of TAK1 in Shh pathway inhibition-induced autophagy and apoptosis.Subject terms: Thyroid cancer, Macroautophagy, Apoptosis, Drug development  相似文献   

18.
Osteosarcoma (OS) is the most prevalent bone malignancy in childhood and adolescence, with highly aggressive and early systemic metastases. Here, we reported that celecoxib, a selective COX-2 inhibitor in the NSAID class, exhibits strong antitumor activity in dose dependent manner in two OS cell lines-143B and U2OS. We showed that celecoxib inhibits OS cell growth, causes G0/G1-phase arrest, modulates apoptosis and autophagy and reduces migration in OS cells. In addition, the results of fluorescent mitochondrial probe JC-1 test indicated that the mitochondrial pathway mediates celecoxib-induced apoptosis. Significantly, the autophagy inhibitor CQ combined with celecoxib causes greater cell proliferation inhibition and apoptosis. Pharmacologic inhibition of autophagy with another potent autophagy inhibitor SAR405 also enhances celecoxib-mediated suppression of cell viability. These results were confirmed with shRNAs targeting the autophagy-related gene Atg5. In OS tumor xenografts in vivo, celecoxib also presents antitumor activity. Taken together, our results shed light on the function and mechanism of antitumor action of celecoxib for treatment of OS patients.  相似文献   

19.
Autophagy is considered as an important cell death mechanism that closely interacts with other common cell death programs like apoptosis. Critical role of autophagy in cell death makes it a promising, yet challenging therapeutic target for cancer. We identified a series of 1,2,3-triazole analogs having significant breast cancer inhibition property. Therefore, we attempted to study whether autophagy and apoptosis were involved in the process of cancer cell inhibition. The lead molecule, 1-(1-benzyl-5-(4-chlorophenyl)-1H-1,2,3-triazol-4-yl)-2-(4-bromophenylamino)-1-(4-chlorophenyl)ethanol (T-12) induced significant cell cycle arrest, mitochondrial membrane depolarization, apoptosis and autophagy in MCF-7 and MDA-MB-231 cells. T-12 increased reactive oxygen species and its inhibition by N-acetyl-l-cysteine protected breast cancer cells from autophagy and apoptosis. Autophagy inhibitor, 3-methyladenine abolished T-12 induced apoptosis, mitochondrial membrane depolarization and reactive oxygen species generation. This suggested that T-12 induced autophagy facilitated cell death rather than cell survival. Pan-caspase inhibition did not abrogate T-12 induced autophagy, suggesting that autophagy precedes apoptosis. In addition, T-12 inhibited cell survival pathway signaling proteins, Akt, mTOR and Erk1/2. T-12 also induced significant regression of tumor with oral dose of as low as 10 mg/kg bodyweight in rat mammary tumor model without any apparent toxicity. In presence of reactive oxygen species inhibitor (N-acetyl-l-cysteine) and autophagy inhibitor (chloroquine), T-12 induced tumor regression was significantly decreased. In conclusion, T-12 is a potent inducer of autophagy-dependent apoptosis in breast cancer cells both in vitro and in vivo and can serve as an important lead in development of new anti-tumor therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号