首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The Neotropical crocodylian species, Caiman crocodilus, is widely distributed through Mesoamerica, northern South America, and the Amazon basin. Four subspecies are recognized within C. crocodilus, suggesting some geographic variation in morphology. In this study, we utilized mitochondrial DNA (mtDNA) sequence data from 45 individuals of C. crocodilus throughout its range to infer its evolutionary history and population structure, as well as to evaluate genealogical support for subspecies and their geographic distributions. Our molecular phylogenetic results identified five mtDNA haplotype clades with a mean sequence divergence of 3.4%, indicating considerable evolutionary independence among phylogeographic lineages. Our results were also broadly consistent with current subspecific taxonomy, with some important additional findings. First, we found substantial genetic structuring within C. c. fuscus from southern Mesoamerica. Second, though we confirmed the existence of a widespread Amazonian clade, we also discovered a cryptic and divergent mtDNA lineage that was indistinguishable from C. c. crocodilus based on external morphology. Third, we confirm the status of C. c. chiapasius as a distinct evolutionary lineage, and provide evidence that C. c. fuscus may be moving northward and hybridizing with C. c. chiapasius in northern Mesoamerica. Finally, our results parallel previous phylogeographic studies of other organisms that have demonstrated significant genetic structure over shorter geographic distances in Mesoamerica compared with Amazonia. We support conservation efforts for all five independent lineages within C. crocodilus, and highlight the subspecies C. c. chiapasius as a unit of particular conservation concern.  相似文献   

2.
Genetic divergence among populations of marine broadcast spawners in the absence of past geological barriers presents an intriguing challenge to understanding speciation in the sea. To determine how differences in life history affect genetic divergence and demographic histories across incomplete dispersal barriers, we conducted a comparative phylogeographic study of three intertidal limpets (Siphonaria spp.) represented on either side of a biogeographic disjunction separating tropical and subtropical marine provinces in southeastern Africa. Using a combination of mitochondrial and nuclear sequence data, we identified two distinct evolutionary lineages each in both Siphonaria concinna (a planktonic disperser) and S. nigerrima (a direct developer), and panmixia in a second planktonic disperser, S. capensis. Although phylogeographic breaks were present in two species, how these became established differed depending on their life histories. In the direct developer, lack of gene flow following divergence, and demographic expansion from a small initial size in the species' subtropical population, point to a single colonisation event. In contrast, the evolutionary lineages of the planktonic disperser split into two genetic lineages with much larger initial population sizes and southward gene flow continued at least periodically, indicating that divergence in this species may have been driven by a combination of reduced larval dispersal and divergent selection. These findings help explain why the presence or absence of phylogeographic breaks often appears to be independent of species' dispersal potential.  相似文献   

3.
A primary challenge for modern phylogeography is understanding how ecology and geography, both contemporary and historical, shape the spatial distribution and evolutionary histories of species. Phylogeographic patterns are the result of many factors, including geology, climate, habitat, colonization history and lineage‐specific constraints. Assessing the relative influences of these factors is difficult because few species, regions and environments are sampled in enough detail to compare competing hypotheses rigorously and because a particular phylogeographic pattern can potentially result from different evolutionary scenarios. The silky anoles (Anolis sericeus complex) of Central America and Mexico are abundant and found in all types of lowland terrestrial habitat, offering an excellent opportunity to test the relative influences of the factors affecting diversification. Here, we performed a range‐wide statistical phylogeographic analysis on restriction site‐associated DNA (RAD) markers from silky anoles and compared the phylogeographic patterns we recovered to historical and contemporary environmental and topographic data. We constructed niche models to compare niche overlap between sister lineages and conducted coalescent simulations to characterize how the major lineages of silky anoles have diverged. Our results revealed that the mode of divergence for major lineage diversification events was geographic isolation, resulting in ecological divergence between lineages, followed by secondary contact. Moreover, comparisons of parapatric sister lineages suggest that ecological niche divergence contributed to isolation by environment in this system, reflecting the natural history differences among populations in divergent environments.  相似文献   

4.
New Guinea is a biologically diverse island, with a unique geologic history and topography that has likely played a role in the evolution of species. Few island-wide studies, however, have examined the phylogeographic history of lowland species. The objective of this study was to examine patterns of phylogeographic variation of a common and widespread New Guinean bird species (Colluricincla megarhyncha). Specifically, we test the mechanisms hypothesized to cause geographic and genetic variation (e.g., vicariance, isolation by distance and founder-effect with dispersal). To accomplish this, we surveyed three regions of the mitochondrial genome and a nuclear intron and assessed differences among 23 of the 30 described subspecies from throughout their range. We found support for eight highly divergent lineages within C. megarhyncha. Genetic lineages were found within continuous lowland habitat or on smaller islands, but all individuals within clades were not necessarily structured by predicted biogeographic barriers. There was some evidence of isolation by distance and potential founder-effects. Mitochondrial DNA sequence divergence among lineages was at a level often observed among different species or even genera of birds (5-11%), suggesting lineages within regions have been isolated for long periods of time. When topographical barriers were associated with divergence patterns, the estimated divergence date for the clade coincided with the estimated time of barrier formation. We also found that dispersal distance and range size are positively correlated across lineages. Evidence from this research suggests that different phylogeographic mechanisms concurrently structure lineages of C. megarhyncha and are not mutually exclusive. These lineages are a result of evolutionary forces acting at different temporal and spatial scales concordant with New Guinea's geological history.  相似文献   

5.
Comparative phylogeography of Nearctic and Palearctic fishes   总被引:24,自引:2,他引:22  
Combining phylogeographic data from mitochondrial DNA (mtDNA) of Nearctic and Palearctic freshwater and anadromous fishes, we used a comparative approach to assess the influence of historical events on evolutionary patterns and processes in regional fish faunas. Specifically, we (i) determined whether regional faunas differentially affected by Pleistocene glaciations show predictable differences in phylogeographic patterns; (ii) evaluated how processes of divergence and speciation have been influenced by such differential responses; and (iii) assessed the general contribution of phylogeographic studies to conservation issues. Comparisons among case studies revealed fundamental differences in phylogeographic patterns among regional faunas. Tree topologies were typically deeper for species from nonglaciated regions compared to northern species, whereas species with partially glaciated ranges were intermediate in their characteristics. Phylogeographic patterns were strikingly similar among southern species, whereas species in glaciated areas showed reduced concordance. The extent and locations of secondary contact among mtDNA lineages varied greatly among northern species, resulting in reduced intraspecific concordance of genetic markers for some northern species. Regression analysis of phylogeographic data for 42 species revealed significant latitudinal shifts in intraspecific genetic diversity. Both relative nucleotide diversity and estimates of evolutionary effective population size showed significant breakpoints matching the median latitude for the southern limit of the Pleistocene glaciations. Similarly, analysis of clade depth of phylogenetically distinct lineages vs. area occupied showed that evolutionary dispersal rates of species from glaciated and nonglaciated regions differed by two orders of magnitude. A negative relationship was also found between sequence divergence among sister species as a function of their median distributional latitude, indicating that recent bursts of speciation events have occurred in deglaciated habitats. Phylogeographic evidence for parallel evolution of sympatric northern species pairs in postglacial times suggested that differentiation of cospecific morphotypes may be driven by ecological release. Altogether, these results demonstrate that comparative phylogeography can be used to evaluate not only phylogeographic patterns but also evolutionary processes. As well as having significant implications for conservation programs, this approach enables new avenues of research for examining the regional, historical, and ecological factors involved in shaping intraspecific genetic diversity.  相似文献   

6.
Patagonia was shaped by a complex geological history, including the Miocene uplift of the Andes, followed by volcanism, marine introgressions, and extreme climatic oscillations during Pliocene–Pleistocene glaciation–deglaciation cycles. The distributional patterns and phylogenetic relationships of southern patagonian animals and plants were affected in different ways, and those imprints are reflected in the seven phylogeographic breaks and eight refugia that have been previously proposed. In this study, we estimated time‐calibrated phylogenetic/phylogeographic patterns in lizards of the Liolaemus lineomaculatus group and relate them to historical Miocene‐to‐Pleistocene events of Patagonia and the previously proposed phylogeographic patterns. Individuals from 51 localities were sequenced for the mitochondrial marker (cyt‐b) and a subsample of individuals from each mitochondrial lineage was sequenced for one nuclear (LDA12D) and one slow evolving mitochondrial gene (12S). Our analyses revealed strong phylogeographic structure among lineages and, in most cases, no signal of demographic changes through time. The lineomaculatus group is composed of three strongly supported clades (lineomaculatus, hatcheri and kolengh + silvanae), and divergence estimates suggested their origins associated with the oldest known Patagonian glaciation (7–5 Ma); subsequent diversification within the lineomaculatus clade coincided with the large Pliocene glaciations (~3.5 Ma). The lineomaculatus clade includes nine strongly genetically and geographically structured lineages, five of which are interpreted as candidate species. Our findings suggest that some Liolaemus lineages have persisted in situ, each of them in a different refugium, through several glaciation–deglaciation cycles without demographic fluctuations. We also summarize and update qualitative evidence of some shared phylogeographic breaks and refugia among plants, rodents and lizards.  相似文献   

7.
Phylogeographic endemism, the degree to which the history of recently evolved lineages is spatially restricted, reflects fundamental evolutionary processes such as cryptic divergence, adaptation and biological responses to environmental heterogeneity. Attempts to explain the extraordinary diversity of the tropics, which often includes deep phylogeographic structure, frequently invoke interactions of climate variability across space, time and topography. To evaluate historical versus contemporary drivers of phylogeographic endemism in a tropical system, we analyse the effects of current and past climatic variation on the genetic diversity of 25 vertebrates in the Brazilian Atlantic rainforest. We identify two divergent bioclimatic domains within the forest and high turnover around the Rio Doce. Independent modelling of these domains demonstrates that endemism patterns are subject to different climatic drivers. Past climate dynamics, specifically areas of relative stability, predict phylogeographic endemism in the north. Conversely, contemporary climatic heterogeneity better explains endemism in the south. These results accord with recent speleothem and fossil pollen studies, suggesting that climatic variability through the last 250 kyr impacted the northern and the southern forests differently. Incorporating sub-regional differences in climate dynamics will enhance our ability to understand those processes shaping high phylogeographic and species endemism, in the Neotropics and beyond.  相似文献   

8.
Ecological niche modeling is a useful tool that can support phylogeographic analyses, offering insight into the evolutionary processes that have generated present-day patterns of biodiversity. Findings of ecological divergence across evolutionary lineages can be utilized to bolster inferences of parapatric or sympatric modes of speciation, and provide support for species-level classifications. Conversely, conserved ecological niches across evolutionary timescales are thought to have facilitated allopatric speciation. Here, we examined the climatic niche of three genetic lineages of the Nile monitor (Varanus niloticus) to better understand the processes involved in generating patterns of genetic variation, and to potentially clarify their taxonomic status. We built ecological niche models using genetically confirmed occurrence points from the three evolutionary lineages of V. niloticus, occupying the western, northern, and southern regions of Africa. Pairwise comparisons of climatic niche overlap provided evidence in support of niche conservatism across all V. niloticus lineages. These findings are consistent with an allopatric mode of differentiation. Furthermore, climatic niche conservatism could have played a role in isolating V. niloticus populations during historic climate oscillations, generating the observed genetic patterns across Africa.  相似文献   

9.
Lizards have been model organisms for ecological and evolutionary studies from individual to community levels at multiple spatial and temporal scales. Here we highlight lizards as models for phylogeographic studies, review the published population genetics/phylogeography literature to summarize general patterns and trends and describe some studies that have contributed to conceptual advances. Our review includes 426 references and 452 case studies: this literature reflects a general trend of exponential growth associated with the theoretical and empirical expansions of the discipline. We describe recent lizard studies that have contributed to advances in understanding of several aspects of phylogeography, emphasize some linkages between phylogeography and speciation and suggest ways to expand phylogeographic studies to test alternative pattern‐based modes of speciation. Allopatric speciation patterns can be tested by phylogeographic approaches if these are designed to discriminate among four alternatives based on the role of selection in driving divergence between populations, including: (i) passive divergence by genetic drift; (ii) adaptive divergence by natural selection (niche conservatism or ecological speciation); and (iii) socially‐mediated speciation. Here we propose an expanded approach to compare patterns of variation in phylogeographic data sets that, when coupled with morphological and environmental data, can be used to to discriminate among these alternative speciation patterns. [Correction made after online publication (28/07/2010): (minor deletion in the last line of the abstract)].  相似文献   

10.
Paleogeological events and Pleistocene climatic fluctuations have had profound influences on the genetic patterns and phylogeographic structure of species in southern China. In this study, we investigated the population genetic structure and Phylogeography of the Odorrana schmackeri species complex, mountain stream-dwelling odorous frogs, endemic to southern China. We obtained mitochondrial sequences (1,151bp) of the complete ND2 gene and two flanking tRNAs of 511 individuals from 25 sites for phylogeographic analyses. Phylogenetic reconstruction revealed seven divergent evolutionary lineages, with mean pairwise (K2P) sequence distances from 7.8% to 21.1%, except for a closer ND2 distance (3.4%). The complex geological history of southern China drove matrilineal divergence in the O. schmackeri species complex into highly structured geographical units. The first divergence between lineage A+B and other lineages (C-G) had likely been influenced by the uplift of coastal mountains of Southeast China during the Mio-Pliocene period. The subsequent divergences between the lineages C-G may have followed the formation of the Three Gorges and the intensification of the East Asian summer monsoon during the late Pliocene and early Pleistocene. Demographic analyses indicated that major lineages A and C have been experienced recent population expansion (c. 0.045–0.245 Ma) from multiple refugia prior to the Last Glacial Maximum (LGM). Molecular analysis suggest that these seven lineages may represent seven different species, three described species and four cryptic species and should at least be separated into seven management units corresponding to these seven geographic lineages for conservation.  相似文献   

11.
The structure and geographic location of hybrid zones change through time. Current patterns result from present and historical population-environment interactions that act on each of the hybridizing taxa. This is particularly evident for species involved in complex hybrid zones, such as that formed by the toad species Bombina bombina and Bombina variegata (Anura: Discoglossidae), which interact along extensive areas in Central Europe. We used data on external morphology and partial sequences of the cytochrome oxidase I (cox1) and nicotinamide adenine dinucleotid dehydrogenase subunit 4 (nad4) mitochondrial DNA (mt-DNA) genes to analyze the current patterns of genetic structure shown by both species of Bombina along their contact zone in Hungary. Phylogenetic, phylogeographic, and historical demography analyses were applied to 1.5kb mt-DNA obtained from 119 individuals representing 24 populations from Hungary and additional specimens from Slovakia, Albania, and Bosnia-Herzegovina. We use these data to infer the evolutionary history of the isolated populations of B. variegata in Hungary and to discriminate between competing biogeographic scenarios accounting for the historical interactions between species in this region. Results from the inferred phylogenetic branching pattern and sequence divergence among species and populations support the following: (i) recent population expansion has occurred in Hungarian populations of B. bombina, which are genetically very homogeneous; (ii) the Hungarian populations of B. variegata correspond to two distinct mitochondrial lineages (Carpathian and Alpine, respectively); average maximum-likelihood-corrected sequence divergence between these lineages is 8.96% for cox1 and 10.85% for nad4; (iii) mt-DNA divergence among the three isolated western populations of B. variegata from Transdanubia is low, with four closely related haplotypes, which suggests that the isolation between these populations is the result of a recent process, possibly mediated by the invasion of B. bombina; and (iv) we have detected discordances between morphology and mt-DNA data in the Transdanubia region (Bakony Mountains, Mecsek Mountains, Orség area), suggesting mt-DNA introgression across species in this regions. These results are discussed with reference to previous biogeographic hypotheses.  相似文献   

12.
Bumble bees (Bombus Latreille) are an important group of social insects, well recognized throughout northern temperate regions as important pollinators of wild and agricultural plants. Little is known about the biology of this group in southern portions of the Americas, especially in Mesoamerica, a region of geological and ecological complexity from Mexico through Central America. One ubiquitous Mesoamerican species, Bombus ephippiatus, is enigmatic. Like many other Bombus, this species is homogeneous in body structure yet exhibits striking intraspecific color pattern polymorphism across its range, leading to uncertainty about its genealogical boundaries. It has been grouped taxonomically with B. wilmattae, a species narrowly restricted to southern Mexico and northern Guatamala. Furthermore, the relationships between these two taxa and a third species, B. impatiens, found only in America north of Mexico, have been controversial. Our phylogenetic analysis of DNA sequences from mitochondrial COI and nuclear PEPCK and CAD resolves the phylogeny of these three taxa as (B. impatiens, (B. ephippiatus, B. wilmattae)). Additional data from eight nuclear microsatellite markers reveal complex patterns of genetic divergence and isolation among populations of B. ephippiatus across its extensive geographic range, providing evidence for multiple independent evolutionary lineages. These lineages correspond not only to geographic and habitat variation across their range, but also to distinct color pattern groups present in the species. Knowledge of the phylogeny and genetic divergence of the B. ephippiatus group will provide a framework for understanding evolutionary and ecological origins of color pattern polymorphism in bumble bees, as well as providing insight into geographical factors enhancing speciation in Mesoamerica.  相似文献   

13.
Parasites and hosts interact across both micro‐ and macroevolutionary scales where congruence among their phylogeographic and phylogenetic structures may be observed. Within southern Africa, the four‐striped mouse genus, Rhabdomys, is parasitized by the ectoparasitic sucking louse, Polyplax arvicanthis. Molecular data recently suggested the presence of two cryptic species within P. arvicanthis that are sympatrically distributed across the distributions of four putative Rhabdomys species. We tested the hypotheses of phylogeographic congruence and cophylogeny among the two parasite lineages and the four host taxa, utilizing mitochondrial and nuclear sequence data. Despite the documented host‐specificity of P. arvicanthis, limited phylogeographic correspondence and nonsignificant cophylogeny was observed. Instead, the parasite–host evolutionary history is characterized by limited codivergence and several duplication, sorting and host‐switching events. Despite the elevated mutational rates found for P. arvicanthis, the spatial genetic structure was not more pronounced in the parasite lineages compared with the hosts. These findings may be partly attributed to larger effective population sizes of the parasite lineages, the vagility and social behaviour of Rhabdomys, and the lack of host‐specificity observed in areas of host sympatry. Further, the patterns of genetic divergence within parasite and host lineages may also be largely attributed to historical biogeographic changes (expansion‐contraction cycles). It is thus evident that the association between P. arvicanthis and Rhabdomys has been shaped by the synergistic effects of parasite traits, host‐related factors and biogeography over evolutionary time.  相似文献   

14.
Understanding the remarkably high species diversity and levels of endemism found among Madagascar’s flora and fauna has been the focus of many studies. One hypothesis that has received much attention proposes that Quaternary climate fluctuations spurred diversification. While spatial patterns of distribution and phylogenetic relationships can provide support for biogeographic predictions, temporal estimates of divergence are required to determine the fit of these geospatial patterns to climatic or biogeographic mechanisms. We use multilocus DNA sequence data to test whether divergence times among Malagasy iguanid lizards of the subfamily Oplurinae are compatible with a hypotheses of Pliocene–Pleistocene diversification. We estimate the oplurine species tree and associated divergence times under a relaxed‐clock model. In addition, we examine the phylogeographic structure and population divergence times within two sister species of Oplurus primarily distributed in the north‐west and south‐west of Madagascar (Oplurus cuvieri and Oplurus cyclurus, respectively). We find that divergence events among oplurine lineages occurred in the Oligocene and Miocene and are thus far older and incompatible with the hypothesis that recent climate fluctuations are related to current species diversity. However, the timing of intraspecific divergences and spatial patterns of population genetic structure within O. cuvieri and O. cyclurus suggest a role for both intrinsic barriers and recent climate fluctuations at population‐level divergences. Integrating information across spatial and temporal scales allows us to identify and better understand the mechanisms generating patterns diversity.  相似文献   

15.
Many tropical forest tree species have broad geographic ranges, and fossil records indicate that population disjunctions in some species were established millions of years ago. Here we relate biogeographic history to patterns of population differentiation, mutational and demographic processes in the widespread rainforest tree Symphonia globulifera using ribosomal (ITS) and chloroplast DNA sequences and nuclear microsatellite (nSSR) loci. Fossil records document sweepstakes dispersal origins of Neotropical S. globulifera populations from Africa during the Miocene. Despite historical long-distance gene flow, nSSR differentiation across 13 populations from Costa Rica, Panama, Ecuador (east and west of Andes) and French Guiana was pronounced (F(ST)= 0.14, R(ST)= 0.39, P < 0.001) and allele-size mutations contributed significantly (R(ST) > F(ST)) to the divergences between cis- and trans-Andean populations. Both DNA sequence and nSSR data reflect contrasting demographic histories in lower Mesoamerica and Amazonia. Amazon populations show weak phylogeographic structure and deviation from drift-mutation equilibrium indicating recent population expansion. In Mesoamerica, genetic drift was strong and contributed to marked differentiation among populations. The genetic structure of S. globulifera contains fingerprints of drift-dispersal processes and phylogeographic footprints of geological uplifts and sweepstakes dispersal.  相似文献   

16.
Phylogeographic analyses using mitochondrial DNA (mtDNA) have revealed many examples of apparently deep historical subdivisions ('phylogroups') within many vertebrates. It remains unclear whether these phylogroups represent independently evolving, adaptively differentiated lineages or groups that show little functional differentiation and, hence, will merge on contact. Here, we use mtDNA sequence data to evaluate the phylogeographic relationships between two of the northernmost populations of black ratsnakes (Pantherophis obsoletus complex) in Ontario, Canada and previously analysed populations in the United States. We then use population-level analyses to evaluate the level of adaptive divergence between previously established mtDNA phylogroups. Phylogenetic analyses show that southern Ontario snakes have mtDNA haplotypes that fall within the Central mtDNA phylogroup, as designated by Burbrink et al. (2000). In contrast, snakes in eastern Ontario carry either Central or Eastern-specific haplotypes. Within the hybrid region, we found highly variable frequencies of mtDNA haplotypes among isolated sub-populations, no association between variation in cytonuclear (mtDNA) and nuclear (microsatellite DNA) markers, no difference in survival or reproductive success among snakes with different mtDNA haplotypes, and no effect of mate similarity in mtDNA on female clutch size. These results argue that the Eastern and Central phylogroups have merged in this region, likely due to a lack of adaptive differentiation between individuals in each lineage. Hence, in these snakes, phylogeographic structure in mtDNA is more a reflection of historical isolation rather than adaptive divergence. The observed reticulation between lineages and lack of evidence for hybrid disgenesis also bears on the classification of these lineages as distinct species.  相似文献   

17.
Although mitochondrial DNA markers have several properties that make them suitable for phylogeographic studies, they are not free of difficulties. Phylogeographic inferences within and between closely related species can be mislead by introgression and retention of ancestral polymorphism. Here we combine different phylogenetic, phylogeographic, and population genetic methods to extract the maximum information from the Liolaemus darwinii complex. We estimate the phylogeographic structure of L. darwinii across most of its distributional range, and we then estimate relationships between L. darwinii and the syntopic species L. laurenti and L. grosseorum. Our results suggest that range expansion of these lineages brought them into secondary contact in areas where they are presently in syntopy. Here we present the first evidence for introgression in lizards from temperate South America (of L. danwinii mitochondrial DNA into L. laurenti and L. grosseorum), and for incomplete lineage sorting (between L. darwinii and L. laurenti). We show that a combination of methods can provide additional support for inferences derived from any single method and thus provide more robust interpretations and narrow the range of plausible hypotheses about mechanisms and processes of divergence. Additional studies are needed in this group of lizards and in other codistributed groups to determine if Pleistocene climatic changes could be a general factor influencing the evolutionary history of a regional biota.  相似文献   

18.
Elucidating the evolutionary patterns and processes of extant species is an important objective of any research program that seeks to understand population divergence and, ultimately, speciation. The island-like nature and temporal fluctuation of limnetic habitats create opportunities for genetic differentiation in rotifers through space and time. To gain further understanding of spatio-temporal patterns of genetic differentiation in rotifers other than the well-studied Brachionus plicatilis complex in brackish water, a total of 318 nrDNA ITS sequences from the B. calyciflorus complex in freshwater were analysed using phylogenetic and phylogeographic methods. DNA taxonomy conducted by both the sequence divergence and the GMYC model suggested the occurrence of six potential cryptic species, supported also by reproductive isolation among the tested lineages. The significant genetic differentiation and non-significant correlation between geographic and genetic distances existed in the most abundant cryptic species, BcI-W and Bc-SW. The large proportion of genetic variability for cryptic species Bc-SW was due to differences between sampling localities within seasons, rather than between different seasons. Nested Clade Analysis suggested allopatric or past fragmentation, contiguous range expansion and long-distance colonization possibly coupled with subsequent fragmentation as the probable main forces shaping the present-day phylogeographic structure of the B. calyciflorus species complex.  相似文献   

19.
Tegeticula maculata is one of the most ancient and morphologically variable lineages within the yucca moths, yet has apparently undergone little diversification in comparison with much younger yucca moth lineages that have rapidly diversified. A phylogeographic approach was used to determine the number of independent lineages within T. maculata and to examine whether these patterns corresponded with morphological differences between its subspecies maculata and extranea. Phylogenetic analysis of mitochondrial DNA sequence variation indicated that the two subspecies are in separate clades, but there was also an equally deep split within subspecies maculata. There was no evidence for gene flow among regions and there was considerable substructure within clades. The phylogeographic structure of moth populations among and within subspecies can be explained in part by historical biogeographic boundaries and increasingly patchy postglacial distribution of the exclusive host plant, Hesperoyucca whipplei. Local specialization and co-adaptation would be possible in the absence of apparent gene flow, yet gross morphological divergence is limited to the very old split between the subspecies. Sorting of ancient mitochondrial lineages followed by local genetic differentiation may explain the pattern of high genetic structure with limited speciation.  相似文献   

20.
Sympatric speciation is often proposed to account for species-rich adaptive radiations within lakes or islands, where barriers to gene flow or dispersal may be lacking. However, allopatric speciation may also occur in such situations, especially when ranges are fragmented by fluctuating water levels. We test the hypothesis that Miocene fragmentation of Cuba into three palaeo-archipelagos accompanied species-level divergence in the adaptive radiation of West Indian Anolis lizards. Analysis of morphology, mitochondrial DNA (mt DNA) and nuclear DNA in the Cuban green anoles (carolinensis subgroup) strongly supports three pre dictions made by this hypothesis. First, three geographical sets of populations, whose ranges correspond with palaeo-archipelago boundaries, are distinct and warrant recognition as independent evolutionary lineages or species. Coalescence of nuclear sequence fragments sampled from these species and the large divergences observed between their mtDNA haplotypes suggest separation prior to the subsequent unification of Cuba ca. 5 Myr ago. Second, molecular phylogenetic relationships among these species reflect historical geographical relationships rather than morphological similarity. Third, all three species remain distinct despite extensive geographical contact subsequent to island unification, occasional hybridization and introgression of mtDNA haplotypes. Allopatric speciation initiated during partial island submergence may play an important role in speciation during the adaptive radiation of Anolis lizards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号