首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Phylogeographic patterns of temperate species from the Mediterranean peninsulas have been investigated intensively. Nevertheless, as more phylogeographies become available, either unique patterns or new lines of concordance continue to emerge, providing new insights on the evolution of regional biotas. Here, we investigated the phylogeography and evolutionary history of the Italian crested newt, Triturus carnifex, through phylogenetic, molecular dating and population structure analyses of two mitochondrial gene fragments (ND2 and ND4; overall 1273 bp). We found three main mtDNA lineages having parapatric distribution and estimated divergence times between Late Pliocene and Early Pleistocene. One lineage (S) was widespread south of the northern Apennine chain and was further geographically structured into five sublineages, likely of Middle Pleistocene origin. The second lineage (C) was widespread throughout the Padano-Venetian plain and did not show a clear phylogeographic structure. The third lineage (N) was observed in only two populations located on western Croatia/Slovenia. Results of analysis of molecular variance suggested that partitioning populations according to the geographic distribution of these lineages and sublineages explains 76% of the observed genetic variation. The phylogeographic structure observed within T. carnifex and divergence time estimates among its lineages, suggest that responses to Pleistocene environmental changes in this single species have been as diverse as those found previously among several codistributed temperate species combined. Consistent with the landscape heterogeneity, physiographic features, and palaeogeographical evolution of its distribution range, these responses encompass multiple refugia along the Apennine chain, lowland refugia in large peri-coastal plains, and a 'cryptic' northern refugium.  相似文献   

2.
The implementation of the phylogeographic approach for the study of biodiversity is critical in poorly sampled regions like the montane systems of Middle America, as complex evolutionary histories often result in the presence of independent lineages not properly considered by traditional taxonomy. Herein we sequenced 2370 bp of mtDNA (ND2, cyt b and ATPase) from 81 individuals of Ergaticus, a complex of birds endemic to the montane forests of Middle America. Although current taxonomy recognizes two species, the results reveal considerable genetic structure with the presence of four mtDNA lineages. Two of these lineages within Ergaticus ruber evidence the need of a revaluation of the species limits for this taxon. The general phylogeographic pattern can be explained as a consequence of relative isolation of the populations in different mountain ranges separated by low elevation barriers. Most population groups did not show signals of demographic expansion with the exception of the one corresponding to clade 1. The divergence time estimates point to the Pleistocene as an important time period for the diversification of this complex.  相似文献   

3.
K He  N-Q Hu  X Chen  J-T Li  X-L Jiang 《Heredity》2016,116(1):23-32
The mountains of southwest China (MSC) harbor extremely high species diversity; however, the mechanism behind this diversity is unknown. We investigated to what degree the topography and climate change shaped the genetic diversity and diversification in these mountains, and we also sought to identify the locations of microrefugia areas in these mountains. For these purposes, we sampled extensively to estimate the intraspecific phylogenetic pattern of the Chinese mole shrew (Anourosorex squamipes) in southwest China throughout its range of distribution. Two mitochondrial genes, namely, cytochrome b (CYT B) and NADH dehydrogenase subunit 2 (ND2), from 383 archived specimens from 43 localities were determined for phylogeographic and demographic analyses. We used the continuous-diffusion phylogeographic model, extensive Bayesian skyline plot species distribution modeling (SDM) and approximate Bayesian computation (ABC) to explore the changes in population size and distribution through time of the species. Two phylogenetic clades were identified, and significantly higher genetic diversity was preserved in the southern subregion of the mountains. The results of the SDM, continuous-diffusion phylogeographic model, extensive Bayesian skyline plot and ABC analyses were congruent and supported that the Last Interglacial Maximum (LIG) was an unfavorable period for the mole shrews because of a high degree of seasonality; A. squamipes survived in isolated interglacial refugia mainly located in the southern subregion during the LIG and rapidly expanded during the last glacial period. These results furnished the first evidence for major Pleistocene interglacial refugia and a latitudinal effect in southwest China, and the results shedding light on the higher level of species richness in the southern subregion.  相似文献   

4.
Phylogeographic studies of flora in species-rich south-western Australia point to complex evolutionary histories, reflecting patterns of persistence and resilience to climatic changes during the Pleistocene. We asked whether coastal areas of the mid-west and south, as well as granite outcrops and inland ranges, have acted as major refugia within this region during Pleistocene climatic fluctuations by analysing phylogeographic patterns in the shrub Calothamnus quadrifidus R.Br. (Myrtaceae). We determined variation in chloroplast DNA data for 41 populations across the geographic range. Relationships and major clades were resolved using parsimony and Bayesian analyses. We tested for demographic and spatial expansion of the major clades and estimated clade divergence dates using an uncorrelated, lognormal relaxed clock based on two conservative chloroplast mutation rates. Two distinct phylogeographic clades were identified showing divergence during the Pleistocene, consistent with other phylogeographic studies of south-west Australian flora, emphasising the impact of climatic oscillations in driving divergence in this landscape. The southern clade was more diverse, having higher haplotype diversity and greater genetic structure, while the northern clade showed evidence of fluctuation in population size. Regions of high haplotype diversity with adjacent areas of low diversity observed in each clade indicated the locations of two coastal refugia: one on the south coast and another along the mid-west coast. This is the first evidence for major Pleistocene refugia using chloroplast genetic data in a common, widespread species from this region.  相似文献   

5.
Environmental changes over the Plio‐Pleistocene have been key drivers of speciation patterns and genetic diversification in high‐latitude and mesic environments, yet comparatively little is known about the evolutionary history of species in arid environments. We applied phylogenetic and phylogeographic analyses to understand the evolutionary history of Warramaba grasshoppers from the Australian arid zone, a group including sexual and parthenogenetic lineages. Sequence data (mitochondrial COI) showed that the four major sexual lineages within Warramaba most likely diverged in the Pliocene, around 2–7 million years ago. All sexual lineages exhibited considerable phylogenetic structure. Detailed analyses of the hybrid parthenogenetic species W. virgo and its sexual progenitors showed a pattern of high phylogenetic diversity and phylogeographic structure in northern lineages, and low diversity and evidence for recent expansion in southern lineages. Northern sexual lineages persisted in localized refugia over the Pleistocene, with sustained barriers promoting divergence over this period. Southern parts of the present range became periodically unsuitable during the Pleistocene, and it is into this region that parthenogenetic lineages have expanded. Our results strongly parallel those for sexual and parthenogenetic lineages of the gecko Heteronotia from the same region, indicating a highly general effect of Plio‐Pleistocene environmental change on diversification processes in arid Australia.  相似文献   

6.
Pleistocene glacial cycles undoubtedly altered the evolutionary trajectories of many taxa, yet few studies have examined the impact of such events on genetic differentiation and phylogeography at large geographic scales. Here we present the results of a circumarctic survey of mitochondrial DNA diversity in members of the Daphnia pulex complex. The analysis involved the survey of restriction site polymorphisms in a 2100-bp fragment of the NADH-4 (ND4) and NADH-5 (ND5) genes for 276 populations representing the two major groups (tenebrosa and pulicaria) in this complex across their Holarctic range. A comparison of the distribution patterns for seven clades in this complex revealed very clear phylogeographic structuring. Most notably, pulicaria group lineages were restricted primarily to the Nearctic, with some colonization of formerly glaciated portions of northern Europe. This group was not detected from vast expanses of northern Eurasia, including the Beringian glacial refuge. In contrast, tenebrosa group haplotypes showed considerable intercontinental divergence between Eurasian and North American lineages, but were absent from Greenland and Iceland, as well as the Canadian arctic archipelago. Dispersal in Eurasia was primarily in a westerly direction from Beringia, whereas dispersal in the Nearctic followed proglacial drainage patterns. Long-distance dispersal of certain lineages was observed in both groups, and variation in haplotype richness and nucleotide diversity allowed us to make inferences about the positioning of putative glacial refugia. Overall, the phylogeographic pattern of diversification in this arctic complex is characterized by the apparently unique postglacial histories for each clade, indicating that even closely allied taxa can respond independently to the allopatric effects of glacial cycles. This is in sharp contrast to other phylogeographic studies of species assemblages from more southern (unglaciated) latitudes, which are often characterized by concordant patterns.  相似文献   

7.
Determining the factors promoting speciation is a major task in ecological and evolutionary research and can be aided by phylogeographic analysis. The Qinling–Daba Mountains (QDM) located in central China form an important geographic barrier between southern subtropical and northern temperate regions, and exhibit complex topography, climatic, and ecological diversity. Surprisingly, few phylogeographic analyses and studies of plant speciation in this region have been conducted. To address this issue, we investigated the genetic divergence and evolutionary histories of three closely related tree peony species (Paeonia qiui, P. jishanensis, and P. rockii) endemic to the QDM. Forty populations of the three tree peony species were genotyped using 22 nuclear simple sequence repeat markers (nSSRs) and three chloroplast DNA sequences to assess genetic structure and phylogenetic relationships, supplemented by morphological characterization and ecological niche modeling (ENM). Morphological and molecular genetic analyses showed the three species to be clearly differentiated from each other. In addition, coalescent analyses using DIYABC conducted on nSSR variation indicated that the species diverged from each other in the late Pleistocene, while ecological niche modeling (ENM) suggested they occupied a larger area during the Last Glacial Maximum (LGM) than at present. The combined genetic evidence from nuclear and chloroplast DNA and the results of ENM indicate that each species persisted through the late Pleistocene in multiple refugia in the Qinling, Daba, and Taihang Mountains with divergence favored by restricted gene flow caused by geographic isolation, ecological divergence, and limited pollen and seed dispersal. Our study contributes to a growing understanding of the origin and population structure of tree peonies and provides insights into the high level of plant endemism present in the Qinling–Daba Mountains of Central China.  相似文献   

8.
The role of Pleistocene glacial cycles in forming the contemporary genetic structure of organisms has been well studied in China with a particular focus on the Tibetan Plateau. However, China has a complex topography and diversity of local climates, and how glacial cycles may have shaped the subtropical and tropical biota of the region remains mostly unaddressed. To investigate the factors that affected the phylogeography and population history of a widely distributed and nondeciduous forest species, we analysed morphological characters, mitochondrial DNA sequences and nuclear microsatellite loci in the Silver Pheasant (Lophura nycthemera). In a pattern generally consistent with phenotypic clusters, but not nominal subspecies, deeply divergent mitochondrial lineages restricted to different geographic regions were detected. Coalescent simulations indicated that the time of main divergence events corresponded to major glacial periods in the Pleistocene and gene flow was only partially lowered by drainage barriers between some populations. Intraspecific cytonuclear discordance was revealed in mitochondrial lineages from Hainan Island and the Sichuan Basin with evidence of nuclear gene flow from neighbouring populations into the latter. Unexpectedly, hybridization was revealed in Yingjiang between the Silver Pheasant and Kalij Pheasant (Lophura leucomelanos) with wide genetic introgression at both the mtDNA and nuclear levels. Our results highlight a novel phylogeographic pattern in a subtropical area generated from the combined effects of climate oscillation, partial drainage barriers and interspecific hybridization. Cytonuclear discordance combined with morphological differentiation implies that complex historical factors shaped the divergence process in this biodiversity hot spot area of southern China.  相似文献   

9.
Historical events, such as changes in sea level during the Pleistocene glacial cycles, had a strong impact on coastal habitats, limiting connectivity and promoting the genetic divergence of various species. In this study, we evaluated the influence of climate oscillations and the possibility of estuary function as a barrier to gene flow among populations of the four-eyed fish, Anableps anableps. This species is fully estuarine-resident, has internal fertilization, is viviparous and does not migrate across long distances. These features make the four-eyed fish an excellent model for the study of evolutionary processes related to genetic differentiation of species and populations in estuaries. The evolutionary history of A. anableps was inferred from phylogeographic and population analyses using sequences of the mitochondrial DNA Control Region of 13 populations distributed in the Amazon and Northeast Coast of Brazil from Calcoene (Amapa) to Parnaiba (Piaui). The 83 retrieved haplotypes show a pattern of four distinct mitochondrial lineages, with up to 3.4% nucleotide divergence among them. The evolutionary reconstruction suggests that these lineages diverged recently in the late Pleistocene/early Holocene after the Atlantic Ocean reaching current levels. Analysis of variability, neutrality and the genetic expansion pattern revealed that the lineages have distinct characteristics, which were shaped by the different geomorphological features of coastal regions combined with sea level oscillations over a very long period of time. Only few neighboring populations show a discreet gene flow. This study may also be helpful for designing new experiments to better understand the geomorphological evolutionary history of the estuaries of the Amazon and the Northeast Coast of Brazil using estuarine-resident species as a model.  相似文献   

10.
The Pleistocene glacial cycles left a genetic legacy on taxa throughout the world; however, the persistence of genetic lineages that diverged during these cycles is dependent upon levels of gene flow and introgression. The consequences of secondary contact among taxa may reveal new insights into the history of the Pleistocene’s genetic legacy. Here, we use phylogeographic methods, using 20 nuclear loci from regional populations, to infer the consequences of secondary contact following divergence in the Mountain Chickadee (Poecile gambeli). Analysis of nuclear data identified two geographically-structured genetic groups, largely concordant with results from a previous mitochondrial DNA (mtDNA) study. Additionally, the estimated multilocus divergence times indicate a Pleistocene divergence, and are highly concordant with mtDNA. The previous mtDNA study showed a paucity of sympatry between clades, while nuclear patterns of gene flow show highly varied patterns between populations. The observed pattern of gene flow, from coalescent-based analyses, indicates southern populations in both clades exhibit little gene flow within or between clades, while northern populations are experiencing higher gene flow within and between clades. If this pattern were to persist, it is possible the historical legacy of Pleistocene divergence may be preserved in the southern populations only, and the northern populations would become a genetically diverse hybrid species.  相似文献   

11.
Leptobrachium ailaonicum is a vulnerable anuran restricted to a patchy distribution associated with small mountain streams surrounded by forested slopes at mid-elevations (approximately 2000–2600 m) in the subtropical Mount Wuliang and Mount Ailao ranges in southwest China (Yunnan Province) and northern Vietnam. Given high habitat specificity and lack of suitable habitat in lower elevations between these ranges, we hypothesized limited gene flow between populations throughout its range. We used two mitochondrial genes to construct a phylogeographic pattern within this species in order to test our hypothesis. We also examined whether this phylogeographic pattern is a response to past geological events and/or climatic oscillations. A total of 1989 base pairs were obtained from 81 individuals of nine populations yielding 51 unique haplotypes. Both Bayesian and maximum parsimony phylogenetic analyses revealed four deeply divergent and reciprocally monophyletic mtDNA lineages that approximately correspond to four geographical regions separated by deep river valleys. These results suggest a long history of allopatric separation by vicariance. The distinct geographic distributions of four major clades and the estimated divergence time suggest spatial and temporal separations that coincide with climatic and paleogeographic changes following the orogeny and uplift of Mount Ailao during the late Miocene to mid Pliocene in southwest China. At the southern distribution, the presence of two sympatric yet differentiated clades in two areas are interpreted as a result of secondary contact between previously allopatric populations during cooler Pleistocene glacial cycles. Analysis of molecular variance indicates that most of the observed genetic variation occurs among the four regions implying long-term interruption of maternal gene flow, suggesting that L. ailaonicum may represent more than one distinct species and should at least be separated into four management units corresponding to these four geographic lineages for conservation.  相似文献   

12.
Comparative phylogeography of Nearctic and Palearctic fishes   总被引:24,自引:2,他引:22  
Combining phylogeographic data from mitochondrial DNA (mtDNA) of Nearctic and Palearctic freshwater and anadromous fishes, we used a comparative approach to assess the influence of historical events on evolutionary patterns and processes in regional fish faunas. Specifically, we (i) determined whether regional faunas differentially affected by Pleistocene glaciations show predictable differences in phylogeographic patterns; (ii) evaluated how processes of divergence and speciation have been influenced by such differential responses; and (iii) assessed the general contribution of phylogeographic studies to conservation issues. Comparisons among case studies revealed fundamental differences in phylogeographic patterns among regional faunas. Tree topologies were typically deeper for species from nonglaciated regions compared to northern species, whereas species with partially glaciated ranges were intermediate in their characteristics. Phylogeographic patterns were strikingly similar among southern species, whereas species in glaciated areas showed reduced concordance. The extent and locations of secondary contact among mtDNA lineages varied greatly among northern species, resulting in reduced intraspecific concordance of genetic markers for some northern species. Regression analysis of phylogeographic data for 42 species revealed significant latitudinal shifts in intraspecific genetic diversity. Both relative nucleotide diversity and estimates of evolutionary effective population size showed significant breakpoints matching the median latitude for the southern limit of the Pleistocene glaciations. Similarly, analysis of clade depth of phylogenetically distinct lineages vs. area occupied showed that evolutionary dispersal rates of species from glaciated and nonglaciated regions differed by two orders of magnitude. A negative relationship was also found between sequence divergence among sister species as a function of their median distributional latitude, indicating that recent bursts of speciation events have occurred in deglaciated habitats. Phylogeographic evidence for parallel evolution of sympatric northern species pairs in postglacial times suggested that differentiation of cospecific morphotypes may be driven by ecological release. Altogether, these results demonstrate that comparative phylogeography can be used to evaluate not only phylogeographic patterns but also evolutionary processes. As well as having significant implications for conservation programs, this approach enables new avenues of research for examining the regional, historical, and ecological factors involved in shaping intraspecific genetic diversity.  相似文献   

13.
Diversification patterns and demography of montane species are affected by Pleistocene climate fluctuations. Empirical cases from the Qinling Mountains (QM) region, which is a major biogeographic divider of East Asia, are few. We used DNA sequence data of the complete mitochondrial ND2 gene to detect effects of the Pleistocene glaciations on phylogeographic profiles of a frog species, Feirana taihangnica, which is endemic to the QM. Four distinct lineages consisting of seven sublineages were revealed. The strongest signal of biogeographical structure (F ct = 0.971, P < 0.01) was found when populations were grouped according to these seven sublineages. One narrow secondary contact zone was detected in the middle QM between the lineage from middle QM and the lineage from eastern QM. Coalescent simulations indicated that this species colonized the QM region by a stepping-stone model. Divergences among lineages had likely been influenced by the uplift of the Tibetan Plateau during the late Miocene-to-late Pleistocene, as well as by the Pleistocene climatic cycles. Coalescent simulations also suggested that F. taihangnica populations have persisted through the Pleistocene glacial periods in multiple refugia across the QM region. Demographic analyses indicated that all lineages, except the lineage in the Funiu Mountains, have been experienced postglacial expansion of population size and distribution range. In conclusion, Pleistocene climate fluctuations and tectonic changes during the late Miocene-late Pleistocene have profoundly influenced the phylogeography and historical demography of F. taihangnica.  相似文献   

14.
This study presents phylogenetic molecular data of the Chilean species of Orestias to propose an allopatric divergence hypothesis and phylogeographic evidence that suggests the relevance of abiotic factors in promoting population divergence in this complex. The results reveal that diversification is still ongoing, e.g. in the Ascotán salt pan, where populations of Orestias ascotanensis restricted to individual freshwater springs exhibit strong genetic differentiation, reflecting putative independent evolutionary units. Diversification of Orestias in the southern Altiplano may be linked to historical vicariant events and contemporary variation in water level; these processes may have affected the populations from the Plio‐Pleistocene until the present.  相似文献   

15.
The study of the neutral and/or selective processes driving genetic variation in natural populations is central to determine the evolutionary history of species and lineages and understand how they interact with different historical and contemporary components of landscape heterogeneity. Here, we combine nuclear and mitochondrial data to study the processes shaping genetic divergence in the Mediterranean esparto grasshopper (Ramburiella hispanica). Our analyses revealed the presence of three main lineages, two in Europe that split in the Early-Middle Pleistocene and one in North Africa that diverged from the two European ones after the Messinian. Lineage-specific potential distribution models and tests of environmental niche differentiation suggest that the phylogeographic structure of the species was driven by allopatric divergence due to the re-opening of the Gibraltar strait at the end of the Messinian (Europe–Africa split) and population fragmentation in geographically isolated Pleistocene climatic refugia (European split). Although we found no evidence for environment as an important driver of genetic divergence at the onset of lineage formation, our analyses considering the spatial distribution of populations and different aspects of landscape composition suggest that genetic differentiation at mitochondrial loci was largely explained by environmental dissimilarity, whereas resistance-based estimates of geographical distance were the only predictors of genetic differentiation at nuclear markers. Overall, our study shows that although historical factors have largely shaped concordant range-wide patterns of mitonuclear genetic structure in the esparto grasshopper, different contemporary processes (neutral gene flow vs. environmental-based selection) seem to be governing the spatial distribution of genetic variation in the two genomes.  相似文献   

16.
The influence of Pleistocene climatic cycles on Southern Hemisphere biotas is not yet well understood. Australia's eastern coastal margin provides an ideal setting for examining the relative influence of landscape development, sea level fluctuation, and cyclic climatic aridity on the evolution of freshwater biodiversity. We examined the impact of climatic oscillations and physical biogeographic barriers on the evolutionary history of the wide‐ranging Krefft's river turtle (Emydura macquarii krefftii), using range‐wide sampling (649 individuals representing 18 locations across 11 drainages) and analysis of mitochondrial sequences (~1.3‐kb control region and ND4) and nuclear microsatellites (12 polymorphic loci). A range of phylogeographic (haplotype networks, molecular dating), demographic (neutrality tests, mismatch distributions), and population genetic analyses (pairwise FST, analysis of molecular variance, Bayesian clustering analysis) were implemented to differentiate between competing demographic (local persistence vs. range expansion) and biogeographic (arid corridor vs. drainage divide) scenarios. Genetic data reveal population genetic structure in Krefft's river turtles primarily reflects isolation across drainage divides. Striking north‐south regional divergence (2.2% ND4 p‐distance; c. 4.73 Ma, 95% higher posterior density (HPD) 2.08–8.16 Ma) was consistent with long‐term isolation across a major drainage divide, not an adjacent arid corridor. Ancient divergence among regional lineages implies persistence of northern Krefft's populations despite the recurrent phases of severe local aridity, but with very low contemporary genetic diversity. Stable demography and high levels of genetic diversity are inferred for southern populations, where aridity was less extreme. Range‐wide genetic structure in Krefft's river turtles reflects contemporary and historical drainage architecture, although regional differences in the extent of Plio–Pleistocene climatic aridity may be reflected in current levels of genetic diversity.  相似文献   

17.
The importance of protecting genetic diversity within a species is increasingly being recognised by conservation management authorities. However, discrepancies in conservation policy between authorities, such as state versus national bodies, can have significant implications for species management when they cross state boundaries. We conducted a phylogeographic study of the south-eastern Australian lizard Rankinia diemensis to identify evolutionary significant units (ESUs), including the endangered population from the Grampians National Park in western Victoria. Phylogenetic analyses of two gene regions (mtDNA: ND2; nuclear: RAG1) revealed high levels of genetic divergence between populations, indicating isolation over long evolutionary time frames. Based on criteria of genetic divergence and isolation, R. diemensis contains at least two ESUs that require specific management. We found that R. diemensis from the Grampians are closely related to Tasmanian populations, but that the divergence between these regions is great enough (3.7 % mtDNA) that they should be considered separate ESUs. However, we believe the close evolutionary ties between these two regions needs to be taken into account; yet under current practises, conservation management of subspecific ESUs relies on state-level efforts. We argue that another population that occurs on the Victorian coast also qualifies as an ESU and requires targeted conservation action. Rankinia diemensis provides a case-in-point of the discrepancy between the state-level approach of maintaining genetic variation within a species and the more conservative Commonwealth focus on conserving biodiversity at the species level.  相似文献   

18.
This study aims to improve the estimates of fine-scale genetic diversity and to compare the population structure of Siniperca scherzeri with nuclear and mitochondrial DNA (mtDNA) markers. We first combined mtDNA sequences and seven microsatellite loci to examine the genetic diversity of S. scherzeri in China. Phylogenetic and nested clade analyses revealed two major mtDNA lineages and four subclades. Bayesian multilocus genotype clustering from the microsatellite loci revealed that regional divergence estimates were quantitatively congruent between marker classes. These lineages should be recognized as the basic evolutionary significant units for S. scherzeri in China. Contradict to the previous studies on Coreoperca whiteheadi and Siniperca chuatsi, neither the Nanling–Wuyi Mountain range nor the Qingling–Dabie Mountain range represented a major phylogeographic barrier for S. scherzeri. Our fine-scale analyses of the genetic population structure of S. scherzeri provided insights into the evolutionary processes that shaped the genetic heterogeneity of this fish. This study may serve as a basis for the protection, monitoring and breeding improvement of germplasm resources of this commercially important fish.  相似文献   

19.
A phylogeographic study of an economically important freshwater fish, the striped snakehead, Channa striata in Sundaland was carried out using data from mtDNA ND5 gene target to elucidate genetic patterning. Templates obtained from a total of 280 individuals representing 24 sampling sites revealed 27 putative haplotypes. Three distinct genetic lineages were apparent; 1)northwest Peninsular Malaysia, 2)southern Peninsular, east Peninsular, Sumatra and SW (western Sarawak) and 3) central west Peninsular and Malaysian Borneo (except SW). Genetic structuring between lineages showed a significant signature of natural geographical barriers that have been acting as effective dividers between these populations. However, genetic propinquity between the SW and southern Peninsular and east Peninsular Malaysia populations was taken as evidence of ancient river connectivity between these regions during the Pleistocene epoch. Alternatively, close genetic relationship between central west Peninsular Malaysia and Malaysian Borneo populations implied anthropogenic activities. Further, haplotype sharing between the east Peninsular Malaysia and Sumatra populations revealed extraordinary migration ability of C. striata (>500 km) through ancient connectivity. These results provide interesting insights into the historical and contemporary landscape arrangement in shaping genetic patterns of freshwater species in Sundaland.  相似文献   

20.
This study used phylogenetic analyses of mitochondrial cytochrome b sequences to investigate genetic diversity within three broadly co-distributed freshwater fish genera (Galaxias, Pseudobarbus and Sandelia) to shed some light on the processes that promoted lineage diversification and shaped geographical distribution patterns. A total of 205 sequences of Galaxias, 177 sequences of Pseudobarbus and 98 sequences of Sandelia from 146 localities across nine river systems in the south-western Cape Floristic Region (South Africa) were used. The data were analysed using phylogenetic and haplotype network methods and divergence times for the clades retrieved were estimated using *BEAST. Nine extremely divergent (3.5–25.3%) lineages were found within Galaxias. Similarly, deep phylogeographic divergence was evident within Pseudobarbus, with four markedly distinct (3.8–10.0%) phylogroups identified. Sandelia had two deeply divergent (5.5–5.9%) lineages, but seven minor lineages with strong geographical congruence were also identified. The Miocene-Pliocene major sea-level transgression and the resultant isolation of populations in upland refugia appear to have driven widespread allopatric divergence within the three genera. Subsequent coalescence of rivers during the Pleistocene major sea-level regression as well as intermittent drainage connections during wet periods are proposed to have facilitated range expansion of lineages that currently occur across isolated river systems. The high degree of genetic differentiation recovered from the present and previous studies suggest that freshwater fish diversity within the south-western CFR may be vastly underestimated, and taxonomic revisions are required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号