首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
菹草(Potamogeton crispus)对水中氮,磷的吸收与PH,光照,水温,根/茎生物量比及底泥间隙水与上覆水中营养盐浓度比有关。在PH为8.0-9.5,水温为19-28℃的实验条件下,水中NH4-N浓度低于0.35mg.1^-1左右时,菹草茎,叶优先吸收NO3-N;水中NH4-N浓度大于0.35mg.1^-1左右时,菹草测优先吸收NH4-N这一选择吸收与NH4-N/NO3-N比值无关,强  相似文献   

2.
外加氮源对杉木叶凋落物分解及土壤养分淋失的影响   总被引:37,自引:0,他引:37       下载免费PDF全文
采用原位(In situ)模拟实验方法研究了外加N源对杉木叶凋落物分解及土壤养分淋失的影响,结果表明,施加NH^+4-N时,杉木叶凋落物的失重率与对照(未加任何N的处理)相比,没有差异:而施加NO^-1-N时,使杉木叶凋落物分解速率显著提高(p=0.05,达10%以上,与施加NH^+4-N相比,施加NO^-3-N明显促进了杉木叶凋落物的分解(p=0.05)。施加NH^+4-N和NO3^--N会产生  相似文献   

3.
不同形态N素对水曲柳幼苗生长的影响   总被引:18,自引:3,他引:18  
在温室内用砂培的方法研究了NO^-3-N、NH^+4-N及其不同配比对水曲柳(Fraxinus mandshurica)幼苗生长的影响。结果表明,水曲柳幼苗在营养液NO^-3-N:NH^+4-N为75:25时生长最好,营养液中NH^+4-N比例继续增加则生长下降。过量的NH^+4-N可抑制水曲柳幼苗根系生长,降低幼苗的地下/地上比。营养液中NH^+4-N比例增加,水曲柳幼苗的净光合速率下降,体内P  相似文献   

4.
侯学文  郭勇 《广西植物》1998,18(2):169-172
本文通过改变培养基中的氮源组成,来研究氮源的变化以悬浮培养玫瑰茄细胞的生长及硝态所同化指征的影响。实验表明,仅在含NO^-3的培养基中能检测到硝酸还的酶活力,而仅含NH^+4的配方不能检测到该酶活力,表明硝酸还原酶是底物诱导酶。  相似文献   

5.
土壤-植物系统中光照与氮素的相互关系研究   总被引:20,自引:0,他引:20  
运用盆栽试验,以莴笋为材料,在人工气候箱内进行研究,其结果表明:光照强度的变化,不仅会引起莴笋生物量和养分吸收量的改变,而且也将导致土壤养分状况的差异,不同肥力的3种紫色土,其养分含量受光照强度变化影响的状况是,NH^+4-N和NO^-3-N的含量均在大眼泥土〉沙土〉石骨子土,而碱解氮含量的变化则以沙土〉石骨子土〉大眼泥土。光照强度的变化亦影响氮肥的施用效果,在试验光强(80-320μmol/m2  相似文献   

6.
不同氮源对小麦幼苗谷氨酰胺合成酶的影响   总被引:21,自引:0,他引:21  
利用DEAE-纤维素柱层析、酶活性测定、Northern 分子杂交等技术,研究了小麦(Triticum aestivum L.)幼苗的根、叶和离体叶在不同氮源培养条件下谷氨酰胺合成酶(GS)活性和同工酶变化, 以及不同氮源对GS基因转录-GS-m RNA 的影响. 同时与硝酸还原酶(NR)活性进行比较, 结果表明∶当以NH+4 作唯一氮源时,小麦幼苗根谷氨酰胺合成酶(GSr)和叶细胞质谷氨酰胺合成酶(GS1)活性要比以NO-3 作唯一氮源的高.当以NO-3 为唯一氮源时, NO-3 则促进完整叶片和离体叶片叶绿体谷氨酰胺合成酶(GS2)活性. 从转录水平上看,NH+4 促进根GS-m RNA 的合成,而NO-3 促进叶GS-m RNA 的合成  相似文献   

7.
侯学文  郭勇   《广西植物》1998,(2):169-172
本文通过改变培养基中的氮源组成,来研究氮源的变化对悬浮培养玫瑰茄细胞的生长及硝态氮同化指征(活体内硝酸还原酶活力)的影响。实验表明,仅在含NO-3的培养基中能检测到硝酸还原酶活力,而仅含NH+4的配方不能检测到该酶活力,表明硝酸还原酶是底物诱导酶。还探讨了培养基中不同的氮源组成对细胞生物量及pH的影响。  相似文献   

8.
1996~1997在芸豆(云南)、红小豆(河北)、大豆(黑龙江)和花生(山东)绿色食品产地,研究了施用有机肥和化肥对这些作物籽粒中NO^-3、NO^-2的累积特点。结果表明,芸豆和红小豆不论施用有机肥还是尿素,土壤中的速效氮与籽粒中NO^-2的灰色关联最好;施用有机肥的最大关联度分别出现在土壤库内部(全氮与速效氮之间)或籽粒库内部(NO^-3、NO^-2之间);而施用化肥的最大关联度分别出现在土壤  相似文献   

9.
菹草(Potamogeton crispus)对水中氮、磷的吸收与pH、光照、水温、根/茎生物量比及底泥间隙水与上覆水中营养盐浓度比有关。在pH为8.0-9.5、水温为19-28C的实验条件下,水中NH_4-N浓度低于0.35mg·1左右时;菹草茎、叶优先吸收NO_3-N;水中NH_4-N浓度大于0.35mg·1 ̄(-1)左右时,菹草则优先吸收NN_4-N,这一选择吸收与NH_4-N/NO_3-N比值无关。强光照、高温(30℃)和高pN的协同作用严重影响菹草硝酸盐还原酶活性。在自然条件下,菹草根部主要从底泥中吸收NH_4-N、PO_4-P,对NO_3-N吸收甚微;茎、叶主要从水层中吸收NO_3-N,对PO_4-P吸收甚少。一般情况下,浮游植物和菹草对水体中的氮、磷吸收无多大矛盾。菹草倒伏后腐败分解释放大量营养盐,为浮游植物的增殖创造了条件。  相似文献   

10.
本文用离子交换树脂袋法(Ionexchangeresinbagmethod).测定了鼎湖山季风常绿阔叶林土壤有效氮动态.结果表明,鼎湖山季风常绿阔叶林土壤有效氮主要由铵态氮(NH4+-N)组成,且具有明显的季节性变化,两种不同深度(0-10cm,10-20cm)土层比较,硝态氮(NO3-N)年平均值在10-20cm土层显著地高于在0-10cm的土层(p=0.05);铵态氮年平均值在10-20cm土层则趋向低于在0-10cm的土层.  相似文献   

11.
莴笋对不同形态氮素的反应   总被引:14,自引:2,他引:12  
探讨了不同形态氮素对莴笋生长发育的影响及其营养特性。结果表明,莴笋幼苗根系对NH4^+ -N的亲和力稍大于NO3^- -N的亲和力;分别供给NO3^- -N+NO3^- -N及NH4^+ -N,莴笋的生物学产量和吸N量均依次递减(分别为100:56.9:12.4,100:48.9:8.6),因此在水培条件下,NO3^- -N是最适合莴笋生长发育的氮源,NH4^+ -N与NO3^- -N各占50%时对莴笋的生长发育已有一定的抑制作用,仅以NH4^+ -N作氮源则莴笋很难生长;NH4^+ -N与NO3^- -N各占50%时,莴笋倾向于吸收较多的NH4^+ -N,而且在培养不同阶段NH4^+/NO3^-吸收比例均大于1,莴笋表现出喜铵性,但NH4^+ -N并非莴笋很适合的氮源;营养液中NO3^- -N不足,主要影响莴笋茎叶的生长,而NH4^+ -N所占比例达50%时,莴笋根系生长受到抑制,且有明显的受害症状;以NO3^- -N作氮源预培养两周,以含微量NO3^- -N的自来水为水源,再单独以NH4^+ -N为氮源,对莴笋生长有极大的促进作用,同时还大幅度降低了体内硝酸盐的含量。尿素作氮源莴笋未出现受害症状,但莴笋的生长发育状况明显劣于其它氮源。  相似文献   

12.
Zhou XJ  Wang HH  Shu LZ  Zhu PF  Shen JB  Li ZZ  Liang C 《应用生态学报》2010,21(8):2017-2024
通过向玉米幼苗分根装置一侧根室的营养液中加入聚乙二醇(PEG 6000)来模拟植物水分胁迫,并设3种供氮形态(硝态氮、铵态氮、两者各占50%的混合氮),且只加入到一侧根室(当氮加入到和PEG同侧时为水氮异区,加入到无PEG一侧时为水氮同区),测定各处理的光合、生理指标,以研究局部根区水分胁迫下氮形态与供给部位对玉米幼苗生长的影响.结果表明:同一氮形态供给下水氮同区植株的光合速率(Pn)、最大净光合速率(Pmax)、光饱和点(LSP)、CO2饱和点(CSP)、叶绿素a、b及叶绿素总含量、根系活力、氮含量和生物量高于水氮异区,光呼吸速率(Rp)、CO2补偿点(CCP)、木质部汁液脱落酸(ABA)浓度、氮利用效率、水分利用效率低于水氮异区;供混合氮和硝态氮的植株Pn、Pmax、LSP、CSP、氮含量和生物量高于供铵态氮的植株,而CCP、Rp、木质部汁液ABA浓度、氮利用效率、水分利用效率变化趋势则相反.可见,同一供氮形态下,水氮同区比水氮异区更利于植物生长,而水氮利用效率在水氮异区下较高;混合氮和硝态氮对植物生长的促进作用优于单一供给铵态氮,但铵态氮更有利于提高水氮利用效率.  相似文献   

13.
氮素形态对树木养分吸收和生长的影响   总被引:26,自引:1,他引:25  
张彦东  白尚斌 《应用生态学报》2003,14(11):2044-2048
由于NH4+-N和NO3--N形态的差异,二者对树木养分吸收和生长发育的影响不同,树木常表现出对NH4+-N和NO3--N的选择性吸收,树种对NH4+-N和NO3--N吸收的偏好特性可能与生长地的土壤pH有关,来自于酸性土壤的树种通常具有喜NHON的特性,而来自于中性或碱性土壤的树种常表现出喜NO3--N的趋势,由于NH4+-N和NO3^--N所带电荷的差异,通常NH4+-N有利于阴离子的吸收,而NO3^--N则促进阳离子的吸收,在有些情况下,NH4+-N会抑制NO3--N的吸收,但抑制的机制目前还不清楚,树木吸收NH4+-N时,引起根际pH下降,相反吸收NO3--N时根际pH升高,根际pH变化可以改变土壤养分的有效性,并影响树木对养分的吸收利用,树木对NH4+-N和NO3--N的生长反应不同,有些喜NH4+-N的针叶树在供应NH4+-N时生长较好,多数植物在同时供应NH4+-N和NO3--N时生长量最大,有些树种在同时供应NH4+-N和NO3--N时也表现出最高的生长,但对于树木类似的研究还少,这一现象对于树木是否具有普遍性还需要大量试验证明。  相似文献   

14.
There is still disagreement about whether crop growth rate orsoil nitrate concentration control nitrogen absorption by cropsunder field conditions. The influence of these factors on thecontrol of N uptake rate was examined in the absence of waterstress, using data on dry matter production, above-ground nitrogenaccumulation and soil nitrate concentration from several N-fertilizerexperiments on winter wheat, winter oilseed rape and maize.The results confirmed that crops can accumulate nitrogen farin excess of the ‘critical dilution curve’, whichdefines the minimum amount of nitrogen needed for maximal growthrate: the N concentration in plants could exceed the criticalN concentration by 70 to 80% for the three species studied.The nitrate uptake rate index (NUI) was calculated as the ratioof actual and critical N uptake rates, at intervals of 1 week.NUI varied with nitrate concentration in the 0–30 cm soillayer according to a Michaelis–Menten equation (with oneor two components). This response was compared with the kineticsof saturation of the nitrate uptake systems: the high affinitytransport system (HATS) and the low affinity transport system(LATS). As a result, it is proposed that there is a criticalN dilution curve delimiting two domains of N use by plants.This is linked to the two nitrate transport systems, with HATSworking at low nitrate concentrations, below the critical dilutioncurve, and LATS at high nitrate concentrations, above the curve.NUI provides another method for calculating the actual nitrateuptake rate, which depends on the maximal crop growth rate (withoutN deficiency) and on the external nitrate concentration. Copyright2000 Annals of Botany Company Nitrate, uptake rate, growth rate, wheat, maize, oilseed rape, soil N availability  相似文献   

15.
Following a precultivation with pedospheric nitrogen nutrition, Ricinus plants were supplied with nitrogen solely by spraying nitrate or ammonium solution onto the leaves during the experimental period. The chemical composition of tissues, xylem and phloem exudates was determined and on the basis of the previously determined nitrogen flows (Peuke et al., New Phytologist (1998), 138 , 657–687) the flows of potassium, sodium, magnesium, calcium, chloride and ABA were modelled. These data, which permit quantification of net-uptake, transport in xylem and phloem, and utilization in shoot and root, were compared with results obtained in plants with pedospherically-supplied nitrate or ammonium and data in the literature. Although the overall effects on the chemical composition of supplying ammonium to the leaves were not as pronounced as in pedospherically supplied plants, there were some typical responses of plants fed with ammonium (ammonium syndrome). In particular, in ammonium-sprayed plants uptake and transport of magnesium decreased and chloride uptake was increased compared with nitrate-sprayed plants. Furthermore, acropetal ABA transport in the xylem in ammonium-sprayed Ricinus was threefold higher than in nitrate-sprayed plants. Additionally, concentrations of anions were more or less increased in tissues, particularly in the roots, and transport fluids. The overall signal from ammonium-sprayed leaves without a direct effect of ammonium ions on uptake and transport systems in the root is discussed.  相似文献   

16.
Seedlings of carob ( Ceratonia siliqua L. cv. Mulata) were used in two sets of experiments in order to evaluate; (1) the reciprocal effects of each nitrogen form on net uptake of nitrate and ammonium, and (2) the effect of earlier nitrogen nutrition on ammonium versus nitrate uptake. In the former group of experiments we studied the kinetics of nitrate and ammonium uptake as well as the interference of each of the two forms with net uptake of ammonium and nitrate by both nitrogen depleted and nitrogen fed carob seedlings. On the whole, nitrogen depletion led to increase in both affinity and Vmax of the system for both forms of nitrogen, at the same time as the effects of nitrate on uptake of ammonium and vice versa were concentration dependent. In the second group of experiments the effects of earlier nitrogen nutrition on nitrate and ammonium uptake were characterized, and in this case we observed that: (a) if only one form of N was supplied, ammonium was taken up in greater amounts than nitrate; (b) the presence of ammonium enhanced nitrate uptake; (c) ammonium uptake was inhibited by nitrate; (d) there was a significant effect of the earlier nitrogen nutrition on the response of the plants to a different nitrogen source. The latter was evident mainly as regards ammonium uptake by plants grown in ammonium nitrate. The interactions between nitrate and ammonium uptake systems are discussed on the basis of the adaptation to the nitrogen source during early growth.  相似文献   

17.
Summary Wheat and ryegrass were grown in pots containing soil that had either been irradiated, fumigated with methyl bromide, fumigated with formaldehyde, or left untreated. All pots received a basal dressing of potassium, phosphorus and magnesium; response to nitrogen was tested by applying either 0, 0.177 or 0.354 g nitrogen per pot. Irradiation increased the growth of wheat and ryegrass; uptake of nitrogen was also increased in both crops. The amount of fertilizer nitrogen equivalent to the nitrogen supplied by seeds and soil (the “N value”) can be calculated from the efficiency of uptake of fertilizer nitrogen and used to allow for the effect on crop growth of the nitrogen released by irradiated soil. With wheat the increase in growth can be attributed solely to the extra mineral nitrogen released by irradiated soil. However, ryegrass grew a little better than would have been expected if the only effect of irradiation was to increase the release of soil nitrogen. Fumigation with methyl bromide or formaldehyde increased the growth of wheat and ryegrass not given fertilizer nitrogen. However, fumigation with methyl bromide left ionic bromide in the soil, and this depressed the growth of wheat receiving fertilizer nitrogen. Formaldehyde also left residues; these influenced soil metabolism and sometimes depressed the growth of plants given fertilizer nitrogen.  相似文献   

18.
pH Changes Associated with Iron-Stress Response   总被引:3,自引:0,他引:3  
When Fe-inefficient T3238fer and Fe-efficient T3238FER tomatoes were supplied iron, and nitrogen as nitrate, they increased the pH of the nutrient culture. When they were supplied nitrogen as ammonium, they decreased the pH. When Fe supply was limited, Fe-stress response developed in T3238FER that opposed the usual nitrate response and decreased, rather than increased, the pH. A “reductant” which reduced Fe3+ to Fe2+ was released from the roots of these plants and lowered the pH; and there was a tremendous increase in the uptake of Fe. T3238fer did not produce “reductant” in response to Fe-stress; the pH increased, and the plants developed Fe-deficiency when nitrogen was supplied as nitrate. Nitrogen nutrition and iron-stress response are important factors associated with iron chlorosis in plants. Release of hydrogen ions from roots of Fe-stressed plants is caused by more than response to imbalanced uptake of cations and anions.  相似文献   

19.
Zhu  Y-G  He  Y-Q  Smith  S E  Smith  F A 《Plant and Soil》2002,239(1):1-8
Two experiments were carried out in a growth chamber to investigate the phosphorus (P)-uptake efficiency of Fagopyrum esculentum Moench (buckwheat) and Triticum aestivum (spring wheat) from a Ca-bound form. The first experiment was based on a sand-culture system with either rock phosphate (RP) or CaHPO4 (CaHP) as the P source and nitrate or ammonium nitrate as nitrogen source. A highly calcareous soil was used in the second experiment. Buckwheat was shown to be highly efficient in taking up Ca-bound P compared to spring wheat. When plants were supplied with nitrate, the total P uptake by buckwheat from RP was nearly 10-fold higher than that of spring wheat (20.1 compared with 2.1 mg P pot–1). Changing nitrogen source from nitrate only to ammonium nitrate increased P uptake by spring wheat substantially, but not buckwheat. High P-uptake efficiency of buckwheat was also demonstrated using the field soil, but to a lesser extent, which may be related to the difference in Zn supply between sand culture and field soil. It is suggested that buckwheat may be included in intercropping or crop rotation systems to activate P sources in calcareous soils. The principal mechanism of P uptake efficiency of buckwheat may be its ability to acidify the rhizosphere; however, further study is needed to unravel the regulation of root excretion of H+ and its molecular basis in order to exploit buckwheat's genetic capability to utilise sparingly soluble P from soil.  相似文献   

20.
Apple seedlings, Pyrus malus L., were grown in complete nutrient solutions containing nitrate, ammonium, or ammonium plus nitrate as the nitrogen source. Uptake of nitrogen was calculated from depletion measurements of the nutrient solutions and by using 15N labelled nitrate and ammonium salts. If the plants received nitrogen as ammonium only or as nitrate only, the amounts of nitrogen taken up were similar. However, if the seedlings were supplied with ammonium nitrate, the amount of nitrate-nitrogen assimilated was only half that of ammonium. Nevertheless, if ammonium and nitrate were supplied to a plant with a split-root system, with each root half receiving a different ion, the uptakes were similar. The possibility of independent inhibition by ammonium of both nitrate uptake and reduction in the roots is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号