首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Synthesis and antiviral activity of substituted quercetins   总被引:1,自引:0,他引:1  
Influenza viruses are important pathogens that cause respiratory infections in humans and animals. In addition to vaccination, antiviral drugs against influenza virus play a significant role in controlling viral infections by reducing disease progression and virus transmission. Plant derived polyphenols are associated with antioxidant activity, anti-carcinogenic, and cardio- and neuro-protective actions. Some polyphenols, such as resveratrol and epigallocatechin gallate (EGCG), showed significant anti-influenza activity in vitro and/or in vivo. Recently we showed that quercetin and isoquercetin (quercetin-3-β-d-glucoside), a glucoside form of quercetin, significantly reduced the replication of influenza viruses in vitro and in vivo (isoquercetin). The antiviral effects of isoquercetin were greater than that of quercetin with lower IC(50) values and higher in vitro therapeutic index. Thus, we investigated the synthesis and antiviral activities of various quercetin derivatives with substitution of C3, C3', and C5 hydroxyl functions with various phenolic ester, alkoxy, and aminoalkoxy moieties. Among newly synthesized compounds, quercetin-3-gallate which is structurally related to EGCG showed comparable antiviral activity against influenza virus (porcine H1N1 strain) to that of EGCG with improved in vitro therapeutic index.  相似文献   

2.
New nitrogen-containing derivatives of betulinic and betulonic acids, hydrazides and N'-benzalhydrazides, were synthesized. Their antiviral activities toward of influenza A virus, herpes simplex type I virus, enterovirus ECHO6, and HIV-1 were studied in vitro. Betulinic acid 3-oxime was found to have the highest activity against the influenza virus. Betulonic acid, betulinic acid 4-chlorobenzalhydrazide, betulonic acid 3-oxime benzalhydrazide, and betulinic acid hydrazide inhibited the replication of herpes simplex type I virus. Betulinic acid hydrazide also showed antiviral activity toward HIV-1. All the derivatives of betulinic acid under study displayed a low antiviral activity toward enterovirus ECHO6.  相似文献   

3.
A diverse collection of 40 derivatives of benzohydroxamic acid (BHAs) of various structural groups were synthesized and tested against hepatitis C virus (HCV) in full-genome replicon assay. Some of these compounds demonstrated an exceptional activity, suppressing viral replication at sub-micromolar concentrations. The compounds were inactive against key viral enzymes NS3, and NS5B in vitro assays, suggesting host cell inhibition target(s). The testing results were consistent with metal coordination by the BHAs hydroxamic group in complex with a target(s). Remarkably, this class of compounds did not suppress poliomyelitis virus (PV) propagation in RD cells indicating a specific antiviral activity of BHAs against HCV.  相似文献   

4.
We have previously described nanocomposites containing conjugates or complexes of native oligodeoxyribonucleotides with poly-L-lysine and TiO2 nanoparticles. We have shown that these nanocomposites efficiently suppressed influenza A virus reproduction in MDCK cells. Here, we have synthesized previously undescribed nanocomposites that consist of TiO2 nanoparticles and polylysine conjugates with oligonucleotides that contain phosphoryl guanidine or phosphorothioate internucleotide groups. These nanocomposites have been shown to exhibit antiviral activity in MDCK cells infected with H5N1 influenza A virus. The nanocomposites containing phosphorothioate oligonucleotides inhibited virus replication ~130-fold. More potent inhibition, i.e., ~5000-fold or ~4600-fold, has been demonstrated by nanocomposites that contain phosphoryl guanidine or phosphodiester oligonucleotides, respectively. Free oligonucleotides have been nearly inactive. The antiviral activity of oligonucleotides of all three types, when delivered by Lipofectamine, has been significantly lower compared to the oligonucleotides delivered in the nanocomposites. In the former case, the phosphoryl guanidine oligonucleotide has appeared to be the most efficient; it has inhibited the virus replication by a factor of 400. The results make it possible to consider phosphoryl guanidine oligonucleotides, along with other oligonucleotide derivatives, as potential antiviral agents against H5N1 avian flu virus.  相似文献   

5.
New nitrogen-containing derivatives of betulinic and betulonic acids, hydrazides and N"-benzalhydrazides, were synthesized. Their antiviral activities toward viruses of influenza A virus, herpes simplex type I virus, enterovirus ECHO6, and HIV-1 were studied in vitro. Betulinic acid 3-oxime was found to have the highest activity against the influenza virus. Betulonic acid, betulinic acid 4-chlorobenzalhydrazide, betulonic acid 3-oxime benzalhydrazide, and betulinic acid hydrazide inhibited the replication of herpes simplex type I virus. Betulinic acid hydrazide also showed antiviral activity toward HIV-1. All the derivatives of betulinic acid under study displayed a low antiviral activity toward enterovirus ECHO6.  相似文献   

6.
Caffeic acid phenethyl ester (CAPE) has been reported as a multifunctional compound. In this report, we tested the effect of CAPE and its derivatives on hepatitis C virus (HCV) replication in order to develop an effective anti-HCV compound. CAPE and CAPE derivatives exhibited anti-HCV activity against an HCV replicon cell line of genotype 1b with EC50 values in a range from 1.0 to 109.6 µM. Analyses of chemical structure and antiviral activity suggested that the length of the n-alkyl side chain and catechol moiety are responsible for the anti-HCV activity of these compounds. Caffeic acid n-octyl ester exhibited the highest anti-HCV activity among the tested derivatives with an EC50 value of 1.0 µM and an SI value of 63.1 by using the replicon cell line derived from genotype 1b strain Con1. Treatment with caffeic acid n-octyl ester inhibited HCV replication of genotype 2a at a similar level to that of genotype 1b irrespectively of interferon signaling. Caffeic acid n-octyl ester could synergistically enhance the anti-HCV activities of interferon-alpha 2b, daclatasvir, and VX-222, but neither telaprevir nor danoprevir. These results suggest that caffeic acid n-octyl ester is a potential candidate for novel anti-HCV chemotherapy drugs.  相似文献   

7.
The recent development of a cell culture model of hepatitis C virus (HCV) infection based on the JFH-1 molecular clone has enabled discovery of new antiviral agents. Using a cell-based colorimetric screening assay to interrogate a 1,200-compound chemical library for anti-HCV activity, we identified a family of 1,2-diamines derived from trans-stilbene oxide that prevent HCV infection at nontoxic, low micromolar concentrations in cell culture. Structure-activity relationship analysis of ~ 300 derivatives synthesized using click chemistry yielded compounds with greatly enhanced low nanomolar potency and a > 1,000:1 therapeutic ratio. Using surrogate models of HCV infection, we showed that the compounds selectively block the initiation of replication of incoming HCV RNA but have no impact on viral entry, primary translation, or ongoing HCV RNA replication, nor do they suppress persistent HCV infection. Selection of an escape variant revealed that NS5A is directly or indirectly targeted by this compound. In summary, we have identified a family of HCV inhibitors that target a critical step in the establishment of HCV infection in which NS5A translated de novo from an incoming genomic HCV RNA template is required to initiate the replication of this important human pathogen.  相似文献   

8.
Hepatitis C virus (HCV) infection is a major worldwide problem causes acute and chronic HCV infection. Current treatment of HCV includes pegylated interferon-α (PEG IFN- α) plus ribavirin (RBV) which has significant side effects depending upon the type of genotype. Currently, there is a need to develop antiviral agents, both from synthetic chemistry and Herbal sources. In the last decade, various novel HCV replication, helicase and entry inhibitors have been synthesized and some of which have been entered in different phases of clinical trials. Successful results have been acquired by executing combinational therapy of compounds with standard regime in different HCV replicons. Even though, diverse groups of compounds have been described as antiviral targets against HCV via Specifically Targeted Antiviral Therapy for hepatitis C (STAT-C) approach (in which compounds are designed to directly block HCV or host proteins concerned in HCV replication), still there is a need to improve the properties of existing antiviral compounds. In this review, we sum up potent antiviral compounds against entry, unwinding and replication of HCV and discussed their activity in combination with standard therapy. Conclusively, further innovative research on chemical compounds will lead to consistent standard therapy with fewer side effects.  相似文献   

9.
A highly reproducible and robust cell-based high-throughput screening (HTS) assay was adapted for screening of small molecules for antiviral activity against influenza virus strain A/Vietnam/1203/2004 (H5N1). The NIH Molecular Libraries Small Molecule Repository (MLSMR) Molecular Libraries Screening Centers Network (MLSCN) 100,000-compound library was screened at 50 μM. The "hit" rate (>25% inhibition of the viral cytopathic effect) from the single-dose screen was 0.32%. The hits were evaluated for their antiviral activity, cell toxicity, and selectivity in dose-response experiments. The screen yielded 5 active compounds (SI value >3). One compound showed an SI(50) value of greater than 3, 3 compounds had SI values ranging from greater than 14 to 34, and the most active compound displayed an SI value of 94. The active compounds represent 2 different classes of molecules, benzoquinazolinones and thiazoloimidazoles, which have not been previously identified as having antiviral/anti-influenza activity. These molecules were also effective against influenza A/California/04/2009 virus (H1N1) and other H1N1 and H5N1 virus strains in vitro but not H3N2 strains. Real-time qRT-PCR results reveal that these chemotypes significantly reduced M1 RNA levels as compared to the no-drug influenza-infected Madin Darby canine kidney cells.  相似文献   

10.
In vitro antiviral activity of Melaleuca alternifolia essential oil   总被引:1,自引:0,他引:1  
Aims:  To investigate the in vitro antiviral activity of Melaleuca alternifolia essential oil (TTO) and its main components, terpinen-4-ol, α-terpinene, γ-terpinene, p -cymene, terpinolene and α-terpineol.
Methods and Results:  The antiviral activity of tested compounds was evaluated against polio type 1, ECHO 9, Coxsackie B1, adeno type 2, herpes simplex (HSV) type 1 and 2 viruses by 50% plaque reduction assay. The anti-influenza virus assay was based on the inhibition of the virus-induced cytopathogenicity. Results obtained from our screening demonstrated that the TTO and some of its components (the terpinen-4-ol, the terpinolene, the α-terpineol) have an inhibitory effect on influenza A/PR/8 virus subtype H1N1 replication at doses below the cytotoxic dose. The ID50 value of the TTO was found to be 0·0006% (v/v) and was much lower than its CD50 (0·025% v/v). All the compounds were ineffective against polio 1, adeno 2, ECHO 9, Coxsackie B1, HSV-1 and HSV-2. None of the tested compounds showed virucidal activity. Only a slight virucidal effect was observed for TTO (0·125% v/v) against HSV-1 and HSV-2.
Conclusions:  These data show that TTO has an antiviral activity against influenza A/PR/8 virus subtype H1N1 and that antiviral activity has been principally attributed to terpinen-4-ol, the main active component.
Significance and Impact of the Study:  TTO should be a promising drug in the treatment of influenza virus infection.  相似文献   

11.
Novel 4?′α-trifluoromethyl-2?′β-methyl carbocyclic nucleoside analogs have been prepared and evaluated for inhibition of hepatitis C virus (HCV) RNA replication in cell cultures. Construction of cyclopentene intermediate 10a was achieved via sequential Johnson–Claisen orthoester rearrangement and ring-closing metathesis starting from the α-trifluoromethyl-α,β-unsaturated ester 5. Stereoselective dihydroxylation and desilylation yielded the target carbodine analogs. The synthesized nucleoside analogs mentioned above (18 and 19) were assayed for their ability to inhibit HCV RNA replication in a subgenomic replicon Huh7 cell line (LucNeo#2). However, the synthesized nucleosides showed neither significant antiviral activity nor toxicity up to 50 μM.  相似文献   

12.
The new 2-alkyl-2-aminoadamantanes and analogues 4-10 were designed and synthesized by simplification of the structure of the potent anti-influenza virus A spiranic aminoadamantane heterocycles 2 and 3. The aim of the present work was to examine the effects of bulky and extended lipophilic moieties attached to amantadine 1 on binding to the M2 channel and the resulting antiviral potency. The binding affinities of the compounds to the M2 protein of influenza virus A/chicken/Germany/27 (Weybridge strain; H7N7) were measured for the first time using an assay based on quenching of Trp-41 fluorescence by His-37 protonation, and their antiviral potencies were evaluated against the replication of influenza virus A H2N2 and H3N2 subtypes and influenza virus B in MDCK cells. Of the various 2-alkyl-2-aminoadamantanes, and analogues, spiro[piperidine-2,2'-adamantane] 3 had the strongest M2 binding and antiviral potency, which were similar those of amantadine 1. The relative binding affinities suggested that the rigid carbon framework provided by the pyrrolidine or piperidine rings results in a more favorable orientation inside the M2 channel pore as compared to large, freely rotating alkyl groups. The aminoadamantane derivatives exhibited similar NMDA antagonistic activity to amantadine 1. A striking finding was the antiviral activity of the adamantanols 4, and 6, which lack any NMDA antagonist activity.  相似文献   

13.
Novel 4′(α)-ethyl-2′(β)-methyl carbocyclic nucleoside analogues have been prepared and evaluated for inhibition of hepatitis C virus (HCV) RNA replication in cell culture. The construction of cyclopentene intermediate 12β was successfully made via sequential Johnson-Claisen orthoester rearrangement and ring-closing metathesis (RCM) starting from Weinreb amide 5. Selective dihydroxylation and desilylation gave the target carbodine analogues. The synthesized nucleoside analogues mentioned above 18 and 19 were assayed for their ability to inhibit HCV RNA replication in a subgenomic replicon Huh7 cell line (LucNeo#2). However, the synthesized nucleosides neither showed any significant antiviral activity nor toxicity up to 50 μM.  相似文献   

14.
中药女贞子(Ligustrum lucidum,LL)具有肝保护和抗炎症作用.本研究分析女贞子提取物对丙型肝炎病毒(hepatitis C virus, HCV)复制的影响及其活性成分. 薄层层析法分离女贞子水提取物,获得5个分离组分. Real-time RT-PCR 和Western印迹发现,分离组分1和2 抑制HCV JFH1细胞感染模型中的JFH1病毒复制. 分离组分的高效液相色谱(high-performance liquid chromatography,HPLC)分析表明,熊果酸和齐墩果酸可能是组分1 和 2的抗病毒活性成分. 熊果酸和齐墩果酸抗病毒实验发现,熊果酸和齐墩果酸抑制HCV JFH1的复制,它们的选择指数 (SI) 分别为 6.7 和30.8. 这些研究结果表明,女贞子及其化学成分熊果酸和齐墩果酸具有潜在的丙型肝炎治疗价值.  相似文献   

15.
Hepatitis C virus (HCV) is considered one of the most dangerous pathogens since about 3% of the world population is HCV-infected and the virus is a major cause of hepatitis, cirrhosis, and liver carcinoma. A need for a more efficient therapy prompted us to investigate new class of compounds, such as tropolone derivatives that possess antiviral, antibacterial, and antifungal activities. To synthesize bromo- and morpholinomethyl-analogues of tropolone, the previously reported methods were modified. The influence of new derivatives on the activity of the helicase and NTP-ase of HCV was investigated. The most potent inhibitory effect in the fluorometric helicase assay was exerted by 3,7-dibromo-5-morpholinomethyltropolone, for which the IC50 value was at low micromolar range. All the morpholino-derivatives had inhibitory activities higher than those of the non-modified analogues. Low toxicity in a yeast-based toxicity assay indicates that these compounds could be further modified to develop potent inhibitors of the HCV helicase and of viral replication.  相似文献   

16.
A polyphenolic compound from the curry spice turmeric, curcumin, is known to show anti-viral activity against the influenza virus, adenovirus, coxsackievirus, and the human immunodeficiency virus. However, it remains to be determined whether curcumin can inhibit the replication of hepatitis C virus (HCV). In this study, we showed that curcumin decreases HCV gene expression via suppression of the Akt-SREBP-1 activation, not by NF-κB pathway. The combination of curcumin and IFNα exerted profound inhibitory effects on HCV replication. Collectively, our results indicate that curcumin can suppress HCV replication in vitro and may be potentially useful as novel anti-HCV reagents.  相似文献   

17.
During antiviral drug discovery, it is critical to distinguish molecules that selectively interrupt viral replication from those that reduce virus replication by adversely affecting host cell viability. In this report we investigate the selectivity of inhibitors of the host chaperone proteins cyclophilin A (CypA) and heat-shock protein 90 (HSP90) which have each been reported to inhibit replication of hepatitis C virus (HCV). By comparing the toxicity of the HSP90 inhibitor, 17-(Allylamino)-17-demethoxygeldanamycin (17-AAG) to two known cytostatic compounds, colchicine and gemcitabine, we provide evidence that 17-AAG exerts its antiviral effects indirectly through slowing cell growth. In contrast, a cyclophilin inhibitor, cyclosporin A (CsA), exhibited selective antiviral activity without slowing cell proliferation. Furthermore, we observed that 17-AAG had little antiviral effect in a non-dividing cell-culture model of HCV replication, while CsA reduced HCV titer by more than two orders of magnitude in the same model. The assays we describe here are useful for discriminating selective antivirals from compounds that indirectly affect virus replication by reducing host cell viability or slowing cell growth.  相似文献   

18.
The latent ribonuclease RNase L and the interferon-inducible 2′,5′-oligoadenylate synthetase (OAS) have been implicated in the antiviral response against hepatitis C virus (HCV). However, the specific roles of these enzymes against HCV have not been fully elucidated. In this study, a scarce endogenous expression and RNA degrading activity of RNase L in human hepatoma Huh7 cells enabled us to demonstrate the antiviral activity of RNase L against HCV replication through the transient expression of the enzyme. The antiviral potential of specific members of the OAS family was further examined through overexpression and RNA interference approaches. Our data suggested that among the members of the OAS family, OAS1 p46 and OAS3 p100 mediate the RNase l-dependent antiviral activity against HCV.  相似文献   

19.
反义寡核苷酸体外抗流感病毒活性   总被引:2,自引:0,他引:2  
为了获得具有抗流感病毒活性的反义寡核苷酸,针对A型流感病毒基因组3′和5′端保守序列,设计并合成了多条硫代寡核苷酸(ODN):3′端反义ODN(IV3#)与3′端正义ODN(IV3S);5′端反义ODN(IV4#)与5′端正义ODN(IV4S)以及由5′和3′端正义/反义保守序列组成的复合序列ODN(IV6#和IV7#)。测定了PSODN的体外细胞毒性和在MDCK细胞中对流感病毒复制的影响。结果表明:(1)PSODN浓度高达50μmol/L时对MDCK细胞末表现有毒性作用;(2)与流感病毒基因组5′端互补的ODN IV4#以及由5′和3′端保守序列构成的IV6#ODN和IV7#ODN均具有较高的抗病毒活性;如IV4#ODN浓度为1μmol/L时对流感病毒A/京防/861(H1N1)抑制率近50%,浓度为10μmol/L或更高时抑制率超过70%,且IV4#抑制病毒活性呈现明显的序列和剂量依赖性;(3)IV4#ODN不仅对A型流感病毒H1N1亚型有抑制作用,对H3N2亚型也表现较高的抑制活性;(4)病毒感染复数(MOI)对IV4#ODN抗病毒活性有一定影响,当MOI较低时,IV4#ODN表现的剂量效应关系更加明显。抗流感病毒反义寡核苷核IV4#ODN的发现为进一步研究流感新型药物奠定了实验基础。〖HTH〗关键词〖HTSS〗:流感病毒, 反义寡核苷酸, 体外细胞毒性, 抗病毒活性, 感染复数  相似文献   

20.
(+/-)-1-Deazaaristeromycin (4) has been reported to be an inactivator of S-adenosylhomocysteine (AdoHcy) hydrolase and, as a consequence, to affect S-adenosylmethionine (AdoMet) mediated macromolecular biomethylations. To extend this to our program focused on 5'-noraristeromycin derivatives as inhibitors of the same hydrolase enzyme as potential antiviral agents, both enantiomers of 1-deaza-5'-noraristeromycin (5 and 20) have been prepared. Compounds 5 and 20 were evaluated against the following viruses: vaccinia, cowpox, monkeypox, Ebola, herpes simplex type 1 and 2, human cytomegalovirus, Epstein Barr, varicella zoster, hepatitis B, hepatitis C, HIV-1 and HIV-2, adenovirus type 1, measles, Pichinde, parainfluenza type 3, influenza A (H1N1 and H3N2), influenza B, Venezuelan equine encephalitis, rhinovirus type 2, respiratory syncytial, yellow fever, and West Nile. No activity was found nor was there any cytotoxicity to the viral host cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号