首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 572 毫秒
1.
The HeLa cell-vaccinia virus expression system was evaluated for the production of recombinant proteins (enhanced green fluorescent protein (EGFP) and HIV envelope coat protein, gp120) using microcarriers in 1.5 L perfused bioreactor cultures. Perfusion was achieved by use of an alternating tangential flow device (ATF), increasing the length of the exponential phase by 50 h compared to batch culture and increasing the maximum cell density from 1.5x10(6) to 4.4x10(6) cell/mL. A seed train expansion method using cells harvested from microcarrier culture and reseeding onto fresh carriers was developed. EGFP was first used as a model protein to study process parameters affecting protein yield, specifically dissolved oxygen (DO) and temperature during the production phase. The highest level of EGFP, 12+/-1.5 microg/10(6) infected cells, was obtained at 50% DO and 31 degrees C. These setpoints were then used to produce glycoprotein, gp120, which was purified and deglycosylated, revealing a significant amount of N-linked glycosylation. Also, biological activity was assayed, resulting in an ID50 of 3.1 microg/mL, which is comparable to previous reports.  相似文献   

2.
A short peptide motif from gp350/220 of Epstein-Barr virus, EDPGFFNVEI, which was known to bind to CD21, a surface protein on B-lymphocyte, was inserted into the baculovirus surface protein gp64. The recombinant virus carrying the hybrid gp64/gp350 gene, vAc-gp350EGFP, was obtained, and the expression of gp64/gp350 protein was confirmed with immunoblot using anti-gp350 antibody. When compared with a control virus with wild type gp64, vAc-gp350EGFP showed increased transduction efficiency in B cell lines Raji, HR1, B95-8, BJAB, and DG75, regardless of their being EBV-positive or EBV-negative. No such increase was seen in non-B cell lines HEK293 and HeLa. When Raji cells were transduced with increased amount of vAc-gp350EGFP, transduction became saturated when the multiplicity of infection was higher than 20pfu/cell. The transduction of Raji cells by vAc-gp350EGFP was dose-dependently inhibited by pre-treatment of cells with anti-CD21 antibody. These results showed that vAc-gp350EGFP entered B cells by interacting with CD21.  相似文献   

3.
Pseudorabies virus (PRV) glycoprotein gp50 is the homolog of herpes simplex virus (HSV) glycoprotein D. Several cell lines that constitutively synthesize gp50 were constructed. Vero cells, HeLa cells, and pig kidney (MVPK) cells that produce gp50 all gave reduced yields of PRV and HSV progeny viruses when compared with the parent cell line or the same cell line transfected to produce a different protein. The reduction in virus yield was greatest at low multiplicities of infection. The Vero and HeLa cells that produce gp50 showed an even greater reduction in HSV yield than in PRV yield. This phenomenon may be an example in a herpesvirus of the interference observed in retroviruses or cross-protection in plant virus systems.  相似文献   

4.
Li WG  Li QH  Tan Z 《Life sciences》2005,76(15):1735-1746
Telomeres are the tandem repetitive sequence at the end of chromosomes and its integrity is crucial for cell vitality. We studied the effect of (-)-epigallocatechin-3-gallate (EGCG), one of the major tea polyphenols, on telomeres in HeLa, 293 cells and MRC-5 fibroblasts. At concentrations of above 50 microM, EGCG was found to causes telomere fragmentation in HeLa cells as a result of single-strand breaks in a dose-dependent manner. Treatment of EGCG also caused telomere fragmentation in 293 cells but had little or only marginal effect on MRC-5 fibroblasts. The telomere fragments detected by electrophoresis showed a unique size distribution that seems to suggest that the strand breaks were not produced randomly, but with preference at some specific sites. We speculate that the differential effect of EGCG in inducing telomere fragmentation in HeLa and 293 verse MRC-5 cells might be relevant to the apoptosis-inducing effect of EGCG on cancerous cells but not on normal cells.  相似文献   

5.
The cell-destroying effect of cell free filtrates of 90 V. cholerae non-01 cultures was measured by titration method in 3 established cell lines: CHO, HeLa and Vero and in 3 human diploid cells cultures: MRC-5, WI-38 and PZ. The vibrio strains differed in the titre of toxic effect. Most sensitive was CHO cell line, least sensitive were human diploid cell cultures. It was found that bacterial strains produced different substances toxic for various cell lines. Among them NAG-ST toxin produced by 41% of examined strains was identified and hemolysins/cytolysins activity was evaluated. Both may play a role in the pathogenicity of those strains for humans.  相似文献   

6.
7.
J Schaack  X Guo  W Y Ho  M Karlok  C Chen    D Ornelles 《Journal of virology》1995,69(7):4079-4085
HeLa and 293 cell lines that express biologically active adenovirus type 5 precursor terminal protein (pTP) have been made. The amount of pTP synthesized in these cell lines ranges from barely detectable to greater than that observed in cells infected with the wild-type virus. The pTP-expressing cell lines permit the growth of a temperature-sensitive terminal protein mutant virus sub100r at the nonpermissive temperature. A higher percentage of the stably transfected 293 cell lines expressed terminal protein, and generally at considerably higher levels, than did the HeLa cell lines. While 293 cells appeared to tolerate pTP better than did HeLa cells, high-level pTP expression in 293 cells led to a significantly reduced growth rate. The 293-pTP cell lines produce infectious virus after transfection with purified viral DNA and form plaques when overlaid with Noble agar after infection at low multiplicity. These cell lines offer promise for the production of adenoviruses lacking pTP expression and therefore completely defective for replication.  相似文献   

8.
Adaptation of the vaccinia virus expression system to HeLa S3 suspension bioreactor culture for the production of recombinant protein was conducted. Evaluation of hollow fiber perfusion of suspension culture demonstrated its potential for increased cell density prior to infection. The hollow fiber was also used for medium manipulations prior to infection. Two process parameters, multiplicity of infection (MOI) and temperature during the protein production phase, were evaluated to determine their effect on expression of the reporter protein, enhanced green fluorescent protein (EGFP). An MOI of 1.0 was sufficient for infection and led to the highest level of intracellular EGFP expression. Reducing the temperature to 34 degrees C during the protein production phase increased production of the protein two-fold compared to 37 degrees C in spinner flask culture. Scaling up the process to a 1.5-liter bioreactor with hollow fiber perfusion led to an overall production level of 9.9 microg EGFP/10(6) infected cells, or 27 mg EGFP per liter.  相似文献   

9.
10.
Results and conclusions concerning the ability of HIV glycoprotein (gp) 120 to stimulate monokine secretion have been equivocal, based on observations using natural gp120 derived from infected human cells and a Chinese hamster ovary (CHO) cell-derived recombinant fusion protein. Current studies were designed to determine whether differences in recombinant gp120 proteins could result in failure to trigger monokine production. We found that natural gp120 could stimulate monocytes to release TNF-alpha, IL-1 beta, IL-6, and granulocyte-macrophage-CSF, and this effect could be blocked with soluble CD4. Full-length rgp120 either expressed from an adenovirus vector and purified from infected human cells, or derived from CHO cells, could function similarly. In contrast, full-length recombinant envelope protein expressed in a baculovirus system and a CHO cell-derived recombinant fusion protein tested previously, consistently failed to stimulate monokine production. The stimulatory capacity of both natural and full-length CHO cell-derived gp120 was eliminated by heating at 100 degrees C, and could be blocked with excess CHO cell-derived gp120 fusion protein. Inasmuch as the baculovirus-expressed gp120 and the CHO cell-derived recombinant fusion protein can bind to CD4, these results suggest that HIV gp120 binding to CD4 on the monocyte surface may of itself be insufficient for stimulation of monokine secretion. Therefore, primary protein structure, as well as posttranslational protein modifications, may determine this activity.  相似文献   

11.
Parameters that affect production of the recombinant reporter protein, EGFP, in the T7 promoter based VOTE vaccinia virus-HeLa cell expression system were examined. Length of infection phase, inducer concentration, and timing of its addition relative to infection were evaluated in 6-well plate monolayer cultures. One hour infection with 1.0 mM IPTG added at the time of infection provided a robust process. For larger scale experiments, anchorage-dependent HeLa cells were grown on 5 g/L Cytodex 3 microcarriers. The change to this dynamic culture environment, with cell-covered microcarriers suspended in culture medium in spinner flasks, suggested a re-examination of the multiplicity of infection (MOI) for this culture type that indicated a need for an increase in the number of virus particles per cell to 5.0, higher than that needed for complete infection in monolayer tissue flask culture. Additionally, dissolved oxygen level and temperature during the protein production phase were evaluated for their effect on EGFP expression in microcarrier spinner flask culture. Both increased dissolved oxygen, based on surface area to volume (SA/V) adjustments, and decreased temperature from 37 to 31 degrees C showed increases in EGFP production over the course of the production phase. The level of production achieved with this system reached approximately 17 microg EGFP/10(6) infected cells.  相似文献   

12.
目的构建含有HIV-1C亚型gp120基因重组腺病毒载体,并在293细胞中表达gp120蛋白。方法PCR扩增,获得HIV-1C亚型gp120片段,定向克隆人腺病毒转移载体pTrack-CMV,线性化后转化至含有腺病毒骨架载体pAd-easy-1的大肠埃希菌BJ5183,获得重组子prAd—gp120,PacI酶切纯化后转染293细胞,包装成复制缺陷型重组腺病毒vAd—gp120。结果经PCR、酶切及DNA测序,插入片段大小、方向正确,获得了具有感染力的vAd—gp120重组腺病毒;通过Western印迹检测,重组腺病毒在293细胞中表达出分子量为120kD的蛋白。结论成功构建了含有HIV-1C亚型gp120基因重组腺病毒载体,并获得该基因的表达。  相似文献   

13.
Williams DK  Galvin TA  Ma H  Khan AS 《Biologicals》2011,39(6):378-383
Xenotropic murine leukemia virus-related virus (XMRV) was discovered in human prostate tumors and later in some chronic fatigue syndrome (CFS) patients. However, subsequent studies have identified various sources of potential contamination with XMRV and other murine leukemia virus (MLV)-related sequences in test samples. Biological and nucleotide sequence analysis indicates that XMRV is distinct from known xenotropic MLVs and has a broad host range and cell tropism including human cells. Therefore, it is prudent to minimize the risk of human exposure to infection by evaluating XMRV contamination in cell lines handled in laboratory research and particularly those used in the manufacture of biological products. Nested DNA PCR assays were optimized for investigating XMRV gag and env sequences in various cell lines, which included MRC-5, Vero, HEK-293, MDCK, HeLa, and A549, that may be used in the development of some vaccines and other cell lines broadly used in research. The sensitivity of the DNA PCR assays was <10 copies in approximately 1.8 x 105 cells equivalent of human DNA. The results indicated the absence of XMRV in the cell lines tested; although in some cases DNA fragments identified as cellular sequences were seen following the first round of PCR amplification with the env primer pair.  相似文献   

14.

Background

The RV144 clinical trial showed for the first time that vaccination could provide modest but significant protection from HIV-1 infection. To understand the protective response, and to improve upon the vaccine''s efficacy, it is important to define the structure of the immunogens used in the prime/boost regimen. Here we examined the heterogeneity in net charge, attributable to glycoform variation, of the gp120 immunogens contained in the AIDSVAX B/E vaccine.

Methodology/Principal Findings

Isoelectric focusing and glycosidase digestion were used to assess variation in net charge of the gp120s contained in the AIDSVAX B/E vaccine used in the RV144 trial. We observed 16 variants of MN-rgp120 and 24 variants of A244-rgp120. Glycoform variation in gp120 produced in Chinese hamster ovary cells was compared to glycoform variation in gp120 produced in the 293F human embryonic kidney cell line, often used for neutralization assays. We found that gp120 variants produced in CHO cells were distinctly more acidic than gp120 variants produced in 293 cells. The effect of glycoform heterogeneity on antigenicity was assessed using monoclonal antibodies. The broadly neutralizing PG9 MAb bound to A244-rgp120, but not to MN-rgp120, whether produced in CHO or in 293. However, PG9 was able to bind with high affinity to MN-rgp120 and A244-rgp120 produced in 293 cells deficient in N-acetylglucosaminyltransferase I.

Conclusions/Significance

MN- and A244-rgp120 used in the RV144 trial exhibited extensive heterogeneity in net charge due to variation in sialic acid-containing glycoforms. These differences were cell line-dependent, affected the antigenicity of recombinant envelope proteins, and may affect assays used to measure neutralization. These studies, together with recent reports documenting broadly neutralizing antibodies directed against carbohydrate epitopes of gp120, suggest that glycoform variation is a key variable to be considered in the production and evaluation of subunit vaccines designed to prevent HIV infection.  相似文献   

15.
When selected ratios of different glycosidases and phosphatases from primary monkey kidney cells or from monkey kidney cell lines are presented graphically, characteristic patterns do evolve. Three different subtypes of Vero cells show similar glycosidase patterns. The Vero subtypes tested show glycosidase patterns that are closely similar to those of primary cells of Cercopithecus aethiops. Glycosidase patterns of BS-C-1 and CV-1 cells are less similar to those of primary Cercopithecus cells than are those of Vero cells. Primary kidney cells from Macaca cynomolgus show significantly different glycosidase patterns compared with those of different Cercopithecus cells. The distinct glycosidase patterns can be used to classify the tested cell lines in relation to each other.  相似文献   

16.
Lee HC  Yen YT  Chen WY  Wu-Hsieh BA  Wu SC 《PloS one》2011,6(10):e25800
Most live-attenuated tetravalent dengue virus vaccines in current clinical trials are produced from Vero cells. In a previous study we demonstrated that an infectious cDNA clone-derived dengue type 4 (DEN-4) virus retains higher genetic stability in MRC-5 cells than in Vero cells. For this study we investigated two DEN-4 viruses: the infectious cDNA clone-derived DEN-4 2A and its derived 3' NCR 30-nucleotide deletion mutant DEN-4 2AΔ30, a vaccine candidate. Mutations in the C-prM-E, NS2B-NS3, and NS4B-NS5 regions of the DEN genome were sequenced and compared following cell passages in Vero and MRC-5 cells. Our results indicate stronger genetic stability in both viruses following MRC-5 cell passages, leading to significantly lower RNA polymerase error rates when the DEN-4 virus is used for genome replication. Although no significant increases in virus titers were observed following cell passages, DEN-4 2A and DEN-4 2AΔ30 virus titers following Vero cell passages were 17-fold to 25-fold higher than titers following MRC-5 cell passages. Neurovirulence for DEN-4 2A and DEN-4 2AΔ30 viruses increased significantly following passages in Vero cells compared to passages in MRC-5 cells. In addition, more severe DEN-induced hemorrhaging in mice was noted following DEN-4 2A and DEN-4 2AΔ30 passages in Vero cells compared to passages in MRC-5 cells. Target mutagenesis performed on the DEN-4 2A infectious clone indicated that single point mutation of E-Q(438)H, E-V(463)L, NS2B-Q(78)H, and NS2B-A(113)T imperatively increased mouse hemorrhaging severity. The relationship between amino acid mutations acquired during Vero cell passage and enhanced DEN-induced hemorrhages in mice may be important for understanding DHF pathogenesis, as well as for the development of live-attenuated dengue vaccines. Taken together, the genetic stability, virus yield, and DEN-induced hemorrhaging all require further investigation in the context of live-attenuated DEN vaccine development.  相似文献   

17.
The gp17 factor is a secretory product of human seminal vesicle cells which binds to CD4 and acts as a potent inhibitor of T lymphocyte apoptosis induced by CD4 crosslinking and subsequent T-cell receptor (TCR) activation. The protein is identical to gross cystic disease fluid protein-15 (GCDFP-15), a breast tumor secretory marker PIP (prolactin inducible protein), a prolactin-controlled and androgen-controlled protein; secretory actin binding protein (SABP), a seminal plasma actin binding protein and extra-parotid glycoprotein (EP-GP), a secretory protein from the salivary gland. The structure of this protein has not yet been elucidated and no biological function has been clearly attributed to date. Expression of recombinant gp17/GCDFP-15 cDNA in bacteria and insect cells leads to the production of a misfolded insoluble protein. In this study, we describe the production of gp17/GCDFP-15 in two different eukaryotic systems, namely HeLa cells and the Pichia pastoris yeast. Using constructs in which gp17/GCDFP-15 was tagged with enhanced green fluorescent protein (EGFP) in various combinations, we observed expression only when the fusion protein was directed to the secretory compartment by the correct signal peptide. The resulting fluorescent protein was inefficiently secreted, thus suggesting that gp17/GCDFP-15 is not appropriately post-translationally processed and/or transported in HeLa cells. The use of the P. pastoris secretory pathway allowed instead the accumulation in the culture medium of a GCDFP-15/gp17 species which retained the ability to bind to CD4 and also most of the biochemical and immunological properties of the native protein. The production of an active recombinant molecule opens the way to correlate the structural properties of this peculiar factor to its ability to bind several proteins, including CD4, and to block CD4-mediated T cell programmed death.  相似文献   

18.
Liu CC  Lee SC  Butler M  Wu SC 《PloS one》2008,3(3):e1810
This work investigated the replication kinetics of the four dengue virus serotypes (DEN-1 to DEN-4), including dengue virus type 4 (DEN-4) recovered from an infectious cDNA clone, in Vero cells and in MRC-5 cells grown on Cytodex 1 microcarriers. DEN-1 strain Hawaii, DEN-2 strain NGC, DEN-3 strain H-87, and DEN-4 strain H-241 , and DEN-4 strain 814669 derived from cloned DNA, were used to infect Vero cells and MRC-5 cells grown in serum-free or serum-containing microcarrier cultures. Serum-free and serum-containing cultures were found to yield comparable titers of these viruses. The cloned DNA-derived DEN-4 started genetically more homogeneous was used to investigate the genetic stability of the virus propagated in Vero cells and MRC-5 cells. Sequence analysis revealed that the DEN-4 propagated in MRC-5 cells maintained a high genetic stability, compared to the virus propagated in Vero cells. Amino acid substitutions of Gly(104)Cys and Phe(108)Ile were detected at 70%, 60%, respectively, in the envelope (E) protein of DEN-4 propagated in Vero cells, whereas a single mutation of Glu(345)Lys was detected at 50% in E of the virus propagated in MRC-5 cells. Sequencing of multiple clones of three separate DNA fragments spanning 40% of the genome also indicated that DEN-4 propagated in Vero cells contained a higher number of mutations than the virus growing in MRC-5 cells. Although Vero cells yielded a peak virus titer approximately 1 to 17 folds higher than MRC-5 cells, cloned DEN-4 from MRC-5 cells maintained a greater stability than the virus from Vero cells. Serum-free microcarrier cultures of MRC-5 cells offer a potentially valuable system for the large-scale production of live-attenuated DEN vaccines.  相似文献   

19.
A recombinant vaccinia virus was engineered to express enhanced green fluorescent protein (EGFP) under control of the T7 promoter using the VOTE expression system in HeLa cells. Infection of HeLa cells with this virus and induction with IPTG demonstrated the utility of this construct for easily measuring protein expression. This construct was used to evaluate several production parameters, specifically, multiplicity of infection (MOI), volume during infection, and serum concentration during the infection phase. In static culture, increasing multiplicity of infection was found to increase expression of EGFP up to a plateau around MOI of 1.0. Expression was also shown to increase with decreasing volume during the infection phase. Serum concentration during the infection phase was only marginally significant from 0 to 7.5%. Cytodex 3 microcarriers were found to have the best characteristics for HeLa cell growth. These cells were grown and infected in microcarrier spinner flask culture, and the maximum expression was 2.2 microg EGFP/(million cells at the time of infection), demonstrating the ability of this system to successfully express recombinant proteins at larger scale.  相似文献   

20.
When human immunodeficiency virus type 1 envelope glycoproteins were expressed in 293 cells by using a recombinant adenovirus expression vector, the envelope precursor (gp160) was initially glycosylated by cotranslational addition of N-linked high-mannose oligosaccharide units to the protein backbone and then cleaved to gp120 and gp41. The subunits gp120 and gp41 were then further modified by the addition of fucose, galactose, and sialic acid, resulting in glycoproteins containing a mixture of hybrid and complex oligosaccharide side chains. A fraction of glycosylated gp160 that escaped cleavage was further modified by the terminal addition of fucose and galactose, but the addition of sialic acid did not occur, consistent with the notion that it is compartmentalized separately from the gp120 envelope protein. Processing and transport of gp160 were blocked by the monovalent ionophore monensin, which at high concentrations (25 microM and above) was a potent inhibitor of the endoproteolytic cleavage of gp160; at lower concentrations (1 to 10 microM), it selectively blocked the secondary glycosylation steps so that smaller products were produced. Monensin (1 microM) treatment also resulted in a reduction in syncytium formation, which was observed when recombinant infected cells were cocultivated with CD4-bearing HeLa cells. The infectivity of human immunodeficiency virus type 1 was also reduced by monensin treatment, a decrease that may be due to incompletely glycosylated forms of gp120 that have a lower affinity for the CD4 receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号