首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The symbiotic efficiency of each of 30 alfalfa (16 Medicago sativa and 14 M. varia) cultivars inoculated with 7 Rhizobium meliloti strains was studied in three field experiments. Two-factor analysis of variance of the obtained date demonstrated that the green mass yield and nitrogen accumulation depend on genotypes of both partners. The total contribution of plant and bacterial genotypes to the variation of green mass yield increased from 0–17% in the first year of alfalfa growth to 40–78% in the third year. The effect of the genotypic variability of the symbiotic partners was higher for N accumulation than for the green mass. There was a negative correlation between plant mass and N accumulation in the uninoculated plants with the relative (%) deviations of these parameters in the inoculated plants. In the experiments conducted in the Tashkent region the efficiency of the “alfalfa-R. meliloti” symbiosis was higher than in the experiment conducted in the Tumen region.  相似文献   

2.
Leaf inclination of three upper leaf pairs of a plant was used as a visual parameter for estimation of leaf (plant) water status inM. perennis. Negative correlation was found between leaf angle and leaf water saturation deficit (WSD). Large angles (between 130 and 80–90°) indicated WSD below approx. 12%, narrow angles expressed negative water balance of the plant and indicated usually strong or moderate water stress. The correlation may be expressed by two regression lines differing in slope. Some differences were observed between three leaf pairs investigated: At the same water deficits, leaves of the first pair (from apex) were inclined to a less degree than leaves of the other two leaf pairs. Leaves of the third pair wilted the most rapidly, therefore their WSD were highest at moderate and strong water stress of the plant. The approximation method tested is suitable for judgment of the plant water status inM. ptrennis and may be used in ecological investigations in forest ecosystems.  相似文献   

3.
This work investigated the variability in drought tolerance under arid conditions of Mediterranean alfalfa genotypes with the overall aim to assess the main criteria that are associated with the relative tolerance and to discover the most tolerant ecotypes. For this, 16 alfalfa genotypes originating from seven countries of the Mediterranean basin were tested in an experimental station in south of Tunisia. The trial was conducted under two irrigation treatments. The first was normally irrigated by providing an amount of water corresponding to the potential evapotranspiration of the crop, and in the second with water deficit which was applied by stopping the irrigation during 8 weeks in summer. A significant decrease was observed under water deficit for biomass production, leaf stem ratio and water use efficiency. The sensitive index, in stress treatment, varies between 13.8% and 46.2% for dry yield. Results showed that some genotypes exhibited high-forage yield potential even in the presence of stress, mainly Amerist, Sardi10 and Siriver. Proline accumulation in leaves was greater in water-stressed plants, while the K+ osmo-regulatory role was not definite. High biomass production, accumulation of proline and constancy of K+ in leaves are the most important criteria for tolerant alfalfa.  相似文献   

4.
Gene encoding sulphur amino acid-rich protein (HNP) and rol genes were transferred into Medicago sativa L (alfalfa) mediated by Agrobacterium tumafeciens. Regeneration of trans-genie plants was induced successfully from hairy root tissue of cotyledon in alfalfa. Cotyledon tissues were an ideally transformed recipient. There was a negative correlation between age of hairy roots and embryogenesis frequency in alfalfa. Production of co-transformed plants with greater yield and super quality was important for development of new alfalfa varieties.  相似文献   

5.
Gene encoding sulphur amino acid-rich protein (HNP) and rol genes were transferred into Medicago sativa L (alfalfa) mediated by Agrobacterium tumafeciens. Regeneration of transgenic plants was induced successfully from hairy root tissue of cotyledon in alfalfa. Cotyledon tissues were an ideally transformed recipient. There was a negative correlation between age of hairy roots and embryogenesis frequency in alfalfa. Production of co-transformed plants with greater yield and super quality was important for development of new alfalfa varieties.  相似文献   

6.
Waxes are components of the cuticle covering the aerial organs of plants. Accumulation of waxes has previously been associated with protection against water loss, therefore contributing to drought tolerance. However, not much information is known about the function of individual wax components during water deficit. We studied the role of wax ester synthesis during drought. The wax ester load on Arabidopsis leaves and stems was increased during water deficiency. Expression of three genes, WSD1, WSD6 and WSD7 of the wax ester synthase/diacylglycerol acyltransferase (WS/DGAT or WSD) family was induced during drought, salt stress and abscisic acid treatment. WSD1 has previously been identified as the major wax ester synthase of stems. wsd1 mutants have shown reduced wax ester coverage on leaves and stems during normal or drought condition, while wax ester loads of wsd6, wsd7 and of the wsd6wsd7 double mutant were unchanged. The growth and relative water content of wsd1 plants were compromised during drought, while leaf water loss of wsd1 was increased. Enzyme assays with recombinant proteins expressed in insect cells revealed that WSD6 and WSD7 contain wax ester synthase activity, albeit with different substrate specificity compared with WSD1. WSD6 and WSD7 localize to the endoplasmic reticulum (ER)/Golgi. These results demonstrated that WSD1 is involved in the accumulation of wax esters during drought, while WSD6 and WSD7 might play other specific roles in wax ester metabolism during stress.  相似文献   

7.
Members of the aldo–keto reductase family including aldose reductases are involved in antioxidant defense by metabolizing a wide range of lipid peroxidation-derived cytotoxic compounds. Therefore, we produced transgenic wheat genotypes over-expressing the cDNA of alfalfa aldose reductase gene. These plants consequently exhibit 1.5–4.3 times higher detoxification activity for the aldehyde substrate. Permanent drought stress was generated in the greenhouse by growing wheat plants in soil with 20 % water capacity. The control and stressed plants were monitored by a semi automatic phenotyping platform providing computer-controlled watering, digital and thermal imaging. Calculation of biomass values was based on the correlation (R 2 = 0.7556) between fresh weight and green pixel-based shoot surface area. The green biomass production by plants of the three transgenic lines was 12–26–41 % higher than the non-transgenic plants’ grown under water limitation. Thermal imaging of stressed non-transgenic plants indicated an elevation in the leaf temperature. The thermal status of transformants was similar at both normal and suboptimal water regime. In drought, the transgenic plants used more water during the growing season. The described phenotyping platform provided a comprehensive data set demonstrating the improved physiological condition of the drought stressed transgenic wheat plants in the vegetative growth phase. In soil with reduced water capacity two transgenic genotypes showed higher seed weight per plant than the control non-transgenic one. Limitation of greenhouse-based phenotyping in analysis of yield potential is discussed.  相似文献   

8.
Leaf cell water and enzyme activity   总被引:2,自引:1,他引:1       下载免费PDF全文
This work supports further the thesis that under conditions of water stress, cell water content may supersede hormonal regulation in effecting enzyme activity, thus becoming a regulatory factor in cellular metabolism. Addition of NaCl to the root medium of barley plants (Hordeum vulgare L.) markedly increased leaf RNase activity parallel to an increase of leaf water saturation deficit (WSD). Kinetin and abscisic acid, applied to the salinated plants, also modified RNase activity, as well as leaf-WSD. The familiar pattern of effects of these hormones on leaf RNase as well as leaf chlorophyll content was inverted, kinetin effected a relative increase in RNase activity and a decrease in leaf chlorophyll, whereas abscisic acid effected a relative decrease in RNase activity and maintained chlorophyll content. A close relationship between enzyme activity and leaf WSD became evident when leaf RNase and protease activities in the salinated plants were plotted against leaf WSD. This close relationship was maintained irrespective of the hormonal treatments, which in themselves markedly modified leaf WSD. As predicted, high relative humidity which relived the leaves from salt-induced water stress prevented the salt-induced rise in RNase activity.  相似文献   

9.
10.
Abstract: Thirty‐eight plants were taken from a University of California alfalfa selection nursery for developing resistance to silverleaf whitefly, Bemisia argentifolii Bellows & Perring. Seventeen of the plants had low whitefly infestation and were categorized as ‘potentially resistant’; 21 of the plants had high whitefly infestation and were categorized as ‘presumed susceptible’. Plants were propagated vegetatively so that replicated measurements of whitefly performance could be made on each genotype. Two colonies of silverleaf whiteflies were used: one reared on alfalfa (alfalfa‐experienced whiteflies), and the other on cotton (alfalfa‐naive whiteflies). The effect of variation among alfalfa genotypes on whitefly performance was similar for both whitefly sources, although on all genotypes, the alfalfa‐experienced whiteflies generally performed better than their alfalfa‐naive counterparts. In greenhouse tests, fecundity of newly eclosed adults (over a 5‐day period) on the 17 potentially resistant genotypes was relatively consistent in being lower than fecundity on the presumed susceptible genotypes. However, in nymphal survival tests, the response on the 17 potentially resistant genotypes was not consistent. Nymphal survival (egg to adult) on some of these was very low, as expected, while nymphal survival on others was as high as on the presumed susceptible genotypes. Fecundity and nymphal survival data were not correlated for alfalfa‐naive whiteflies, and were only weakly correlated (r2 = 0.13, d.f. = 32, P = 0.04) for alfalfa‐experienced whiteflies. Thirteen genotypes then were examined in the greenhouse in stage‐specific survival tests, where four genotypes demonstrated high resistance (<10% nymphal survival) and three demonstrated moderate resistance (11–34% survival) compared with the three presumed susceptible genotypes that were tested (51–73% survival). Most of the mortality on the resistant genotypes occurred in the first instar, while mortality was more evenly distributed across the life stages on the susceptible genotypes. Interestingly, if nymphs survived to second instar on the resistant genotypes, then their subsequent survival to adult eclosion was similar to survival of second instar to adult on susceptible genotypes. Six of the genotypes used in the greenhouse stage‐specific survival test also were evaluated in the field for nymphal survival, and these results were consistent with the greenhouse tests.  相似文献   

11.
The long-term interaction between elevated CO2 and soil water deficit was analysed in N2-fixing alfalfa plants in order to assess the possible drought tolerance effect of CO2. Elevated CO2 could delay the onset of drought stress by decreasing transpiration rates, but this effect was avoided by subjecting plants to the same soil water content. Nodulated alfalfa plants subjected to ambient (400 μmol mol?1) or elevated (700 μmol mol?1) CO2 were either well watered or partially watered by restricting water to obtain 30% of the water content at field capacity (ampproximately 0.55 g water cm?3). The negative effects of soil water deficit on plant growth were counterbalanced by elevated CO2. In droughted plants, elevated CO2 stimulated carbon fixation and, as a result, biomass production was even greater than in well-watered plants grown in ambient CO2. Below-ground production was preferentially stimulated by elevated CO2 in droughted plants, increasing nodule biomass production and the availability of photosynthates to the nodules. As a result, total nitrogen content in droughted plants was higher than in well-watered plants grown in ambient CO2. The beneficial effect of elevated CO2 was not correlated with a better plant water status. It is concluded that elevated CO2 enhances growth of droughted plants by stimulating carbon fixation, preferentially increasing the availability of photosynthates to below-ground production (roots and nodules) without improving water status. This means that elevated CO2 enhances the ability to produce more biomass in N2-fixing alfalfa under given soil water stress, improving drought tolerance.  相似文献   

12.
13.
14.
Alfalfa (Medicago sativa L.) genotypes at varying densities were investigated for allelopathic impact using annual ryegrass (Lolium rigidum) as the target species in a laboratory bioassay. Three densities (15, 30, and 50 seedlings/beaker) and 40 alfalfa genotypes were evaluated by the equal compartment agar method (ECAM). Alfalfa genotypes displayed a range of allelopathic interference in ryegrass seedlings, reducing root length from 5 to 65%. The growth of ryegrass decreased in response to increasing density of alfalfa seedlings. At the lowest density, Q75 and Titan9 were the least allelopathic genotypes. An overall inhibition index was calculated to rank each alfalfa genotype. Reduction in seed germination of annual ryegrass occurred in the presence of several alfalfa genotypes including Force 10, Haymaster7 and SARDI Five. A comprehensive metabolomic analysis using Quadruple Time of Flight (Q-TOF), was conducted to compare six alfalfa genotypes. Variation in chemical compounds was found between alfalfa root extracts and exudates and also between genotypes. Further individual compound assessments and quantitative study at greater chemical concentrations are needed to clarify the allelopathic activity. Considerable genetic variation exists among alfalfa genotypes for allelopathic activity creating the opportunity for its use in weed suppression through selection.  相似文献   

15.
Fifteen wheat genotypes were grown under water deficit to ascertain the role of osmotic adjustment (OA) and the concentration of benzoxazinones in sustaining grain yield. A positive correlation between osmotic adjustment capacity and yield was observed in wheat genotypes cultivated under field conditions. The weight gain of plants exposed to drought was in agreement with the OA values (R(2) = 0.93). However, when wheat plants were infested by cereal aphids, this correlation was not found. The benzoxazinones 2,4-dihydroxy-1,4-benzoxa-zin-3-one (DIBOA) and 2,4-dihydroxy-7-methoxy-1,4 benzoxazin-3-one (DIMBOA) are defensive secondary metabolites present in wheat and others cereals. The content of these compounds varied in wheat genotypes and increased with drought and aphid infestation. A positive correlation between weight gain of irrigated-infested plants and drought-infested plants and the contents of benzoxazinones was observed. These results suggest that plants with better OA capacity and high benzoxazinone content should have better field yields.  相似文献   

16.
Growth behaviour, proline changes and water saturation deficit (WSD) changes were studied in two maize cultivars, Agati-76, a drought resistant oultivar, and cv. Vijay, a susceptible one after stress conditions were removed. Plants of both the cultivars showed a tendency to recover during rehydration. Phenotypically the plants appeared just normal on 7th day of rehydration, although recovery was never complete. Significant positive correlation existed between free proline content and concomitant change in water saturation deficit. Significantly higher proline content in cv. Agati-76 was reoorded in cv. Vijay, immediately after the stress was released, thereafter continuous decline was observed up to 7th day of rehydration in both the cultivars. Proline changes in relation to recovery of plants from stress conditions are discussed.  相似文献   

17.
In the Pacific Northwest, alfalfa (Medicago sativa) is host to two species of root-knot nematodes, including race 2 of the Columbia root-knot nematode (Meloidogyne chitwoodi) and the northern root-knot nematode (Meloidogyne hapla). In addition to the damage caused to alfalfa itself by M. hapla, alfalfa’s host status to both species leaves large numbers of nematodes available to damage rotation crops, of which potato is the most important. A nematode-resistant alfalfa germplasm release, W12SR2W1, was challenged with both nematode species, to determine the correlation, if any, of resistance to nematode reproduction. Thirty genotypes were screened in replicated tests with M. chitwoodi race 2 or M. hapla, and the reproductive factor (RF) was calculated. The distribution of natural log-transformed RF values was skewed for both nematode species, but more particularly for M. chitwoodi race 2, where more than half the genotypes screened were non-hosts. Approximately 30 percent of genotypes were non-hosts or very poor hosts of M. hapla, but RF values for M. hapla on susceptible genotypes were generally much higher than RF values for genotypes susceptible to M. chitwoodi race 2. The Spearman rank correlation was positive (0.52) and significant (p-value = 0.003), indicating there is some relationship between resistance to these two species of root-knot nematode in alfalfa. However the relationship is not strong enough to suggest genetic loci for resistance are identical, or closely linked. Breeding for resistance or immunity will require screening with each species separately, or with different DNA markers if marker-assisted breeding is pursued. A number of genotypes were identified which are non-hosts to both species. These plants will be intercrossed to develop a non-host germplasm.  相似文献   

18.
Camelina (Camelina sativa L.) is famous for its oil quality and unique fatty acid pattern. Growth and yield of crops reduced under water deficit conditions. Environmental threat such as drought or water deficit condition is the emerging problem which creates the negative impact on the growth of plants. Based upon the current situation a pot study was performed in rain out-shelter to explore the effect of different plant densities (15, 10 and 5 plants per pot) on growth and seed yield of two camelina genotypes under normal (100% WHC) and water deficit (60% WHC) conditions by using completely randomized design with factorial arrangement having three replicates. Results indicated that individual effects of plant densities and water deficit stress levels considerably influenced the growth and seed yield of camelina but interaction effects did not indicate any significant variation. Maximum values of leaf area index (LAI) and crop growth rate (CGR) were recorded in P3 treatment (15 plants per pot). However, maximum values of leaf area duration (LAD), net assimilation rate (NAR), yield and yield components were observed in the treatment P1 (5 plants per pot). Water deficit condition (60% WHC) significantly minimized the growth, seed yield (0.82 g/m2 ) and yield components of camelina genotypes. Both camelina genotypes (611 and 618) did not differ significantly under water deficit conditions.  相似文献   

19.
A reduction of stomatal aperture in light was found in leaves of maize after they had been treated with 10“3-5 m phenylmercuric acetate (PMA). Complete closure of the stomata in darkness was prevented, whilst there was total closure in the controls. Higher PMA concentrations had bigger effects. The relative water content (RWC) of barley tissues was slightly reduced 12 hours after treatment with PMA. The transpiration rate observed on PMA-treated barley plants was lower in light and higher in darkness than in untreated plants. Water saturation deficit (WSD) was higher by about 5%, and water holding capacity (WHC) lower (25%) than in untreated plants. The results suggest that the concentration of PMA normally applied as an antitranspirant is unfavourable for healthy growth of maize and barley.  相似文献   

20.
Eight proprietary genotypes of glandular-haired alfalfa, Medicago sativa L., supplied by two different companies, were compared for the degree and types of resistance to the potato leafhopper, Ernpoasca fabae (Harris), and hopperburn. A tube cage no-choice bioassay was developed to test leafhopper mortality, feeding, settling preferences, severity of hopperburn symptoms (in this case, defined as both yellowing and stem growth reduction), and trichome density and type on feeding sites. Leafhopper mortality was both strongly and significantly associated with feeding and leaf trichome density; decreased hopperburn symptom severity was weakly, although significantly, associated with increased mortality. To quantify hopperburn in terms of both yellowing and stem growth reduction, we developed a ranking system that reduces overall hopperburn expression to a single number that considers the varying responses to both types of symptoms. Great variability in leafhopper settling, leafhopper mortality, and stem glandular trichome density was detected among alfalfa genotypes, suggesting that genotypic differences may be based on the concentration and/or chemical constituency of the trichome exudates. We postulate that, among variably resistant genotypes of glandular-haired alfalfa, differences among leafhopper responses and hopperburn severity are linked to forced movement from the stems to the leaves as refuge feeding sites. Principal component analysis was performed to reduce the 10 variables down to five biologically significant factors. Scores for these factors were then used to develop resistance indices for potato leafhopper resistance, hopperburn resistance, and an overall glandular-haired alfalfa resistance index.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号