首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Reduced dipeptides with the general formula RCO-Xaa- rXbb-N+HR′R′′ (rXbb, reduced analogue of residue Xbb: NH-Cα HR1 -Cr H2) are shown to adopt a folded conformation in solution and in the solid state. The protonated reduced amide bond is an active proton donor capable of interacting with a peptide carbonyl to give a strong hydrogen bond topologically equivalent to the i+2 or i+3? i interaction. The resulting conformation is similar to the γ- or β-turn structure found in peptides and proteins.  相似文献   

2.
The conformations of melanostatin have been studied experimentally using CD spectroscopy and via calculations. In aqueous solution and 2,2,2-trifluoroethanol (TFE) there is no evidence that monomers of the tripeptide exist in an ordered (β-bend) structure. In water and TFE solutions (3–6 × 10?4M) the neutral molecules aggregate very slowly, taking about 3 days to attain equilibrium at room temperature. At equivalent concentrations in TFE, although not in water, the cationic molecules also slowly aggregate, although to a lesser extent. Calculations using rotational isomeric state theory give the most probable unperturbed end-to-end distance of the molecule at 9.3 ± 0.1 Å and indicate that a vast majority of the molecules exist in some extended conformation, end-to-end distance ≥6 Å. Only 0.4% of the molecules are calculated to have O…?H separations compatible with a β-bend structure. An intramolecular hydrogen bond must have an energy at least 2 kcal/mol lower than that of an intermolecular hydrogen bond to solvent if a β-bend is to be experimentally observable.  相似文献   

3.
The molecular structures of four protected isovaline- (Iva-) containing peptides to the pentamer level have been determined by x-ray diffraction. The peptides are t-Boc-Ala-(S)-Iva-Ala-OMe (t-Boc : tert-butyloxycarbonyl; OMe : methoxy) and its (R)-Iva diastereomer, and t-Boc-[Ala-(R)-Iva]2-Ala-OH and its (S)-Iva diastereomeric methyl ester analogue. The two tripeptides are folded in an open type II β-bend conformation. The fully developed right-handed 310-helix formed by the (R)-Iva pentapeptide, which includes an unusual intramolecular (acid) O? H ?O?C(peptide) H bond, is partially unfolded (near the C-terminus) in the (S) -Iva pentapeptide. 1H-nmr and Fourier transform ir absorption studies suggest that in CDCl3 solution (a) the two tripeptides maintain a type II β-bend conformation of comparable stability and (b) both diastereomeric pentapeptide sequences adopt a fully developed 310-helix. A comparison with the preferred conformation of other extensively investigated Cα,α-disubstituted glycines is made and the implications for the use of the Iva residue in designing conformationally constrained analogues of bioactive peptides are briefly discussed.  相似文献   

4.
CD and nmr studies have been carried out on aqueous trifluoroethanol (TFE) solutions of bradykinin (BK) and a bradykinin antagonist. The CD results exhibit a striking effect of TFE on the spectra of BK, with sequence Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg, and the BK antagonist, with sequence D -Arg-Arg-Pro-Hyp-Gly-Thi-D -Ser-D -Cpg-Cpg-Arg [where Hyp is 4-hydroxy-L -proline; Thi refers to β-(2-thienyl)-L -alanine and Cpg refers to α-cyclopentylglycine]. The effect of increasing concentration of TFE in water on the difference ellipticity at 222 nm was examined and showed that BK may be a mixture of at least two different conformers, one of which largely forms when the TFE concentration is increased beyond 80%. The linear extrapolation of 100% of the difference ellipticity of BK at low TFE concentrations yields a value in agreement with that shown by the BK antagonist, indicating that the conformation of BK at the lower TFE concentrations is similar to that of the BK antagonist. The conformational analysis was carried out using both one-dimensional and two-dimensional 1H-nmr techniques. The total correlation spectroscopy (TOCSY) spectrum of BK in a 60/40% (v/v) TFE/H2O solution at 10°C and a nuclear Overhauser effect spectroscopy (NOESY) spectrum that shows only sequential Hα(i) – NH(i + 1) or the Hα(i) – Hδδ′(i + 1) NOEs indicate that the majority of the molecules adopt an all-trans extended conformation. The TOCSY for BK in the 95/5% (v/v) TFE/H2O solution shows that there are two major conformations in the solution with about equal population. The NOESY experiment shows two new important cross peaks for one conformation, namely Pro2(α)-Pro3 (α) and the Pro2(α)-Gly4(NH), indicating a cis Pro2-Pro3 bond and a type VI β-turn between residues Arg1 and Gly4 involving cis proline at position 3, respectively. The low temperature coefficient of Gly4 for this conformation suggests the presence of an intramolecular hydrogen bond, therefore a type VIa β-turn is present. The other conformation is all trans and extended. The BK antafonist shows difference CD spectra in TFE solutions referred to H2O that are superficially indicative of a β-bend. However, nmr speaks against this possibility, as only one set of peaks were observed in the TOCSY and NOESY experiments, indicating an all-trans extended confirmation over the range of TFE concentrations. The BK-antagonist CD data suggest that solvent perturbation of the CD of an extended confirmation perturbation of the optical activity of the thienyl moiety of the peptide since the CD spectrum of N-acetyl-β-thienyl-L -alanine N-methylamide is strongly perturbed by TFE. The present results again demonstrate the complementary relationship between CD and nmr. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
P A Raj  P Balaram 《Biopolymers》1985,24(7):1131-1146
The aggregation behavior of the chemotactic peptide analogs, Formyl-Met-Leu-Phe-OMe ( 1 ) and Formyl-Met-Aib-Phe-OMe ( 2 ), has been studied in chloroform and dimethylsulfoxide over the concentration range of 0.2–110 mM by 1H-nmr spectroscopy. Both peptides associate in CDCl3 at concentrations ≥ 2 mM, while there is no evidence for aggregation in (CD3)2SO. Analog 1 adopts an extended conformation in both solvents favoring association to form β-sheet structures. A folded, γ-turn conformation involving a 3 → 1 hydrogen bond between Met CO and Phe NH is supported by 1H-, 13C-nmr, and ir studies of analog 2 . The influence of backbone conformation on the ease of peptide aggregation is demonstrated by ir studies in CHCl3 and CD studies in dioxane.  相似文献   

6.
In the present paper we describe the synthesis, purification, single crystal x-ray analysis, and nmr solution characterization, combined with restrained molecular dynamic simulations, of the cyclic hexapeptide cyclo-(L -Pro-L -Phe-β-Ala)2. The peptide was synthesized by classical solution methods and the cyclization of the free hexapeptide was accomplished in good yields in diluted methylene chloride solution using N,N-dicyclohexyl-carbodiimide. The compound crystallizes in the monoclinic space group P21 from methanol-dichloro-methane solution. The two identical halves of the molecule adopt in the solid state two different conformations. One β-Ala-L -Pro peptide bond is trans, while the second is cis. The molecule is present in dimethylsulfoxide d6 solutions as a mixture of conformational families. One of these corresponds to a C2 symmetrical molecule with both β-Ala-Pro cis peptide bonds, while the second major conformation is very similar to that observed in the solid state. All Pro-Phe segments, both in the solid state and the symmetrical and unsym-metrical solution conformations, display ?,ψ angles close to that of position i + 1 and i + 2 of type II β-turns. In addition, the segments preceeded by a trans β-Ala-Pro peptide bond are characterized by a typical ii + 3 hydrogen bond, which is absent in the conformer containing a cis β-Ala-Pro peptide bond. The latter conformation corresponds to a new structural domain we define as the “pseudo type II β-turn.” © 1994 John Wiley & Sons, Inc.  相似文献   

7.
P Manavalan  F A Momany 《Biopolymers》1980,19(11):1943-1973
Empirical conformational energy calculations have been carried out for N-methyl derivatives of alanine and phenylalanine dipeptide models and N-methyl-substituted active analogs of three biologically active peptides, namely thyrotropin-releasing hormone (TRH), enkephalin (ENK), and luteinizing hormone-releasing hormone (LHRH). The isoenergetic contour maps and the local dipeptide minima obtained, when the peptide bond (ω) preceding the N-methylated residue is in the trans configuration show that (1) N-methylation constricts the conformational freedom of both the ith and (i + 1)th residues; (2), the lowest energy position for both residues occurs around ? = ?135° ± 5° and ψ = 75° ± 5°, and (3) the αL conformational state is the second lowest energy state for the (i + 1)th residue, whereas for the ith residue the C5 (extended) conformation is second lowest in energy. When the peptide bond (ωi) is in the cis configuration the ith residue is energetically forbidden in the range ? = 0° to 180° and ψ = ?180° to +180°. Conformations of low energy for ωi = 0° are found to be similar to those obtained for the trans peptide bond. In all the model systems (irrespective of cis or trans), the αR conformational state is energetically very high. Significant deviations from planarity are found for the peptide bond when the amide hydrogen is replaced by a methyl group. Two low-energy conformers are found for [(N-Me)His2]TRH. These conformers differ only in the ? and ψ values at the (N-Me)His2 residue. Among the different low-energy conformers found for each of the ENK analogs [D -Ala2,(N-Me)Phe4, Met5]ENK amide and [D -Ala2,(N-Me)Met5]ENK amide, one low-energy conformer was found to be common for both analogs with respect to the side-chain orientations. The stability of the low-energy structures is discussed in the light of the activity of other analogs. Two low-energy conformers were found for [(N-Me)Leu7]LHRH. These conformations differ in the types of bend around the positions 6 and 7 of LHRH. One bend type is eliminated when the active analog [D -Ala6,(M-Me)Leu7]LHRH is considered.  相似文献   

8.
Summary In order to obtain further information on the role played by phenyl ring position in the Cα-methylated α-amino acid side chain on peptide preferred conformation, the crystal-state structural preferences of Cα-methyl, Cα-phenylglycine peptides have been determined by X-ray diffraction. This study shows that either the fully extended conformation or the β-bend/310-helical structures are adopted by peptides characterized by this Cα-methylated, β-branched, aromatic α-amino acid.  相似文献   

9.
The nonbonded interaction energy of disaccharides, mannobiose and galactobiose and polysaccharides mannan and galactan have been computed as a function of dihedral angles (?,ψ). The conformation (40°, ?20°) has been preferred for the mannan chain from nonbonded interaction energy considerations. The O5…O3′ type of intramolecular hydrogen bond has been found to be possible in the above conformation. Comparison of the allowed region of mannan with those of cellulose and xylan indicates that the monomer unit, in mannan chain has slightly higher freedom of rotation than that of cellulose and less than that of xylan. As in cellulose and mannan, the freedom of rotation of the monomer units in β-1,4′ galactan is highly restricted. Unlike mannan (which prefers an extended conformation) the β-1,4′ galactan prefers a helical conformation similar to amylose. Just as in amylose the O2…O3′ type hydrogen bond between contiguous residues is also possible in β-1,4′ galactan.  相似文献   

10.
The molecular structure of three protected AzaPro-containing peptides have been determined by x-ray diffraction: Z-AzaPro-NHiPr ( 1 ; Z: benzyloxycarbonyl), Z-AzaPro-L -Ala-NHiPr ( 2 ), and Boc-L -Ala-AzaPro-NHiPr ( 3 ; Boc: tert-butyloxycarbonyl). Starting from the key synthon benzyl-azaprolinate, compounds 1 , 2 , and 3 have been prepared by combined use of liquid phase peptide synthesis method and adequate isocyanates. In all peptides, the following geometric characteristics are retained: (a) pyramidal character of the two nitrogen atoms of the pyrazolidine ring; (b) pseudo cis conformation of the urethane ( 1 , 2 ) or tertiary amide ( 3 ) function preceding the AzaPro residue; (c) identical absolute values of the Azaproline residue torsion angles “?, ψ” respectively 111° and 23°. In compound 2 , the two nitrogen atoms of the pyrazolidine ring are R, R but the opposite S, S absolute configurations are observed in compound 3 . In the crystal, compound 3 adopts a folded structure similar to a type VI β-turn with a weak intramolecular i + 3 → i hydrogen bond, while an extended structure is observed in compound 2 . In the light of our findings, in a peptide chain and contrary to the Pro residue, an AzaPro residue should prevent the formation of any type of any type of β-turn with the residue following it but could accommodate a folded structure with a pseudo type VI βturn with the preceding residue. If confirmed, this would be of tremendous importance in the design of biologically active peptides and drugs. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
The conformational equilibrium of aminosuccinyl peptides between extended conformations and an intramolecularly hydrogen bonded type II′ β-turn conformation has been studied on the peptide Boc-L -Asu-Gly-L -Ala-OMe (Asu = aminosuccinyl residue) by means of temperature dependence of circular dichroism spectra. Owing to the peculiar chiroptical and conformational properties of the Asu residue, this technique proved to be very useful for deriving thermodynamic data for the above folding process. The value of ΔH0 (?6.6 kJ mol?1), obtained for the peptide studied in a chloroformacetonitrile mixture, shows that the lower energy of the folded conformer is primarily due to the characteristic intramolecular hydrogen bond of the β turns. © 1995 Wiley-Liss, Inc.  相似文献   

12.
A high-performance liquid chromatographic (HPLC) assay for a urinary hydroxyproline-containing peptide (hydroxyproline peptide, HypP) is described. This peptide represents about 50% of urinary hydroxyproline-containing peptides. Its concentration and total 4-hydroxyproline (Hyp) concentration evaluated in 325 urine samples have been shown to be closely correlated (r = 0.972; y = 0.499x − 1.5), which may indicate that the two markers provide the same information. The HypP assay, similar to Hyp assay, is carried out without hydrolysis of urine samples. After the blocking of primary amino acids by o-phthaldialdehyde (OPA) and derivatization of secondary amino acids by 9-fluorenylmethyl chloroformate (FMOC-Cl), the FMOC derivatives of HypP and 3,4-dehydroproline (internal standard) were separated on a strong anion-exchange column and detected fluorimetrically. HypP concentration was calculated by measurement of peak-area ratios of HypP and the hydroxyproline standard. The HypP/creatinine (mmol/mol) ratio in fasting urine samples from healthy adults was found to be 8.2 (S.D. = 1.6, n = 33) in 27–44-year-old premenopausal women and 6.9 (S.D. = 1.7, n = 21) in 28–49-year-old men.  相似文献   

13.
A tetrapetide containing an Aib residue, Boc-Asn-Aib-Thr-Aib-OMe, was synthesized as a peptide model for the N-glycosylation site in N-glycoproteins. Backbone conformation of the peptide and possible intramolecular interaction between the Asn and Thr side chains were elucidated by means of n.m.r. spectroscopy. Temperature dependence of NH proton chemical shift and NOE experiments showed that Boc-Asn-Aib-Thr-Aib-OMe has a tendency to form a β-turn structure with a hydrogen bond involving Thr and Aib4 NH groups. Incorporation of Aib residues in the peptide model promotes folding of the peptide backbone. With folded backbone conformation, carboxyamide protons of the Asn residue are not involved in hydrogen bond network, while the OH group of the Thr residue is a candidate for a hydrogen bond in DMSO-d6 solution.  相似文献   

14.
A series of 14 residue amphipathic α-helical peptides, in which the sidechains of glutamic acid and lysine have been covalently joined, was synthesized in order to determine the effect of spacing, position and orientation of these lactam bridges. It was found that although an (i, i+3) spacing would position the lactam bridge on the same face of the helix, these lactams with 18-member rings were actually helix-destabilizing regardless of position or location. On the other hand, (i, i+4) lactams with 21-member rings were helix-stabilizing but this was dependent on orientation. Glutamic acid-lysine lactams increased the helical content of the peptide when compared with their linear homologue in benign conditions (50 mM KH2PO4, 100 mM KCl, pH 7). Two Glu-Lys (i, i+4) lactams located at the N- and C-termini gave rise to a peptide with greater than 99% helical content in benign conditions. Peptides with Lys-Glu oriented lactams were random structures in benign conditions but in the presence of 50% TFE could be induced into a helical conformation. The stability of the single-stranded α-helices, as measured by thermal denaturations in 25% TFE indicated that Glu-Lys oriented lactam bridges stabilized the helical conformation relative to the linear unbridged peptide. One Glu-Lys lactam in the middle of the peptide was more effective at stabilizing helical structure than two Glu-Lys lactams positioned one at each end of the molecule. The lactams with the Lys-Glu orientation were destabilizing relative to the unbridged peptide. This study demonstrates that correct orientation and position of a lactam bridge is critical in order to design peptides with high helical content in aqueous media.  相似文献   

15.
Some general rules governing hydrogen bonding at the ring oxygens of furanosides, pyranosides, and bridge oxygens of glycosides have been formulated from existing data on crystal structures of carbohydrates. Ring oxygens of the majority of the glycopyranosides in the hemiacetal or acetal form are involved in hydrogen bonding such that the hydrogen bond direction is usually equatorial to the ring plane and not axial. In contrast, there are no known examples of ring oxygens of glycofuranosides and methyl-glycopyranosides displaying hydrogen bonding in the crystal. Also, the bridge oxygens of glycosides are not involved in hydrogen bonding. The observed shortening in the exocyclic and endocyclic anomeric C(1)? O bonds and the geminal C? O bonds indicate that compounds with two oxygen atoms attached to the same saturated carbon atom may participate in double-bond-no-bond resonance interaction in the same manner as difluoromethane. It is also possible that under these circumstances the carbon atom exhibits greater than tetracovalency. The “anomeric effect” may also be related to (a) the differences in the “double bonding” or bond shortening in the anomeric C? O bonds of the anomeric glycopyranosides, (b) the shorter intramolecular O(1)…?O(5) non-bonded interaction, and (c) the smaller O(1)C(1)O(5) valence angle in the equatorial anomer compared to the axial anomer. An analysis has been made of the energetically preferred conformations about the glycosyl and glycosidic bonds of 1,4- and 1,3-polysuc-charides. In the 1a, 4e-glycopyranosides the projected angle ?1 [O(5)C(1)OR, where R = C or H] is positive, while it is negative in the 1e, 4e-glycopyranosides. Angle ?2 [C(1)OC(4′)C(3′)] is positive in both the 1,4-anomeric polyglycosides. 1e, 4e- and 1a, 4e -polysaccharides are stabilized by intramolecular O(5)…?H? O(3′) and O(2′)…?O(3′) hydrogen bonding, respectively, and generate linear and helical (cyclic) structures, respectively. 1e, 3e- and 1a, 3e-polysaccharides may be stablized by one of two possible intramolecular hydrogen-bonding schemes such that the 1a, 3e -polysaccharides generate helical structures while the 1a, 3e-polysaccharides generate nonhelical structures. The conformation about the C(5)? C(6) bond in the pyranosides falls into two groups where the angle ?00 [O(5)C(5)C(6)O(6)] is either positive, ~+60 ± 30°, or negative, ~–60 ± 30°, the former conformation being found more frequently. In the furanosides the latter conformation is preferred.  相似文献   

16.
The observation that short, linear alanine-based polypeptides form stable α-helices in aqueous solution has allowed the development of well-defined experimental systems with which to study the influence of amino acid sequence upon the stability of secondary structure. We have performed detailed conformational searches upon six alanine-based peptides in order to rationalize the observed variation in the α-helical stability in terms of side-chain-backbone and side-chain-side-chain interactions. Although a simple, gas-phase, potential model was used to obtain the conformational energies for these peptides, good agreement was obtained with experiment regarding their relative α-helical stabilities. Our calculations clearly indicate that valine, isoleucine, and phenylalanine residues should destabilize the α-helical conformation when included within alanine-based peptides because of energetically unfavorable side-chain-backbone interactions, which tend to result in the formation of regions of 310-helix. In the case of valine, the destabilization most probably arises from entropic effects as the isopropyl side chain can assume more orientations in the 310-helical form of the peptide. A detailed examination of very short-range interactions in these peptides has also indicated that an interaction, involving fewer than five consecutive residues, whose stabilizing effect reinforces that of the (i, i + 4) hydrogen bond may be the basis of the requirement for increased nucleation (σ) and propagation parameters (s) required by Zimm–Bragg theory to predict the α-helical content for compounds in this class of short peptides. Our calculations complement recent work using modified Zimm–Bragg and Lifson–Roig theories of the helix–coil transition, and are consistent with molecular dynamics simulations upon linear peptides in aqueous solution. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
Our previous studies of the potential utility of the CαDα stretch frequency, ν(CD), as a tool for determining conformation in peptide systems (Mirkin and Krimm, J Phys Chem A 2004, 108, 10923–10924; 2007, 111, 5300–5303) dealt with the spectroscopic characteristics of isolated alanine peptides with αR, β, and polyproline II structures. We have now extended these ab initio calculations to include various explicit‐water environments interacting with such conformers. We find that the structure‐discriminating feature of this technique is in fact enhanced as a result of the conformation‐specific interactions of the bonding waters, in part due to our finding (Mirkin and Krimm, J Phys Chem B 2008, 112, 15268) that Cα? Dα…O(water) hydrogen bonds can be present in addition to those expected between water and the CO and NH of the peptide groups. In fact, ν(CD) is hardly affected by the latter bonding but can be shifted by up to 70 cm?1 by the former hydrogen bonds. We also discuss the factors that will have to be considered in developing the molecular dynamics (MD) treatment needed to satisfactorily take account of the influence of outer water layers on the structure of the first‐layer water molecules that hydrogen bond to the peptide backbone. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 791–800, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

18.
A conformational analysis of protected glutamate homo-oligopeptides Z-[Glu(OEt)]n-OEt (n = 2–7) was carried out in chloroform solution using high-resolution 1H-nmr spectroscopy. At dilute peptide concentrations, the backbone NH and α-CH resonances are well resolved and can be assigned by combining extensive homonuclear decoupling experiments with data for co-oligopeptide derivatives. The structure of these peptides in solution was then assessed using information from chemical shifts, coupling constants, temperature coefficients, and titration of each oligomer with trifluoroacetic acid (TFA). The di- and tripeptides are found to be in disordered forms in deuterochloroform (CDCl3) and CDCl3/TFA mixtures. The tetrapeptide exhibits a folded structure with intramolecular hydrogen bonding at Glu2 in CDCl3 and undergoes a transition to increasingly disordered forms as TFA is added. The pentamer to heptamer show a folded structure with a strong intramolecular hydrogen bond at Glu2 and a weaker hydrogen bond at Glu3, which are disrupted as these peptides go to random coils at high TFA/CDCl3 ratios. In addition, the N-terminal portions of these glutamate peptides appear to be involved in side chain–main chain interactions. The results support the hypothesis that protected linear homo-oligopeptides may possess two or more segments of conformation with intramolecular folding preferred near the N-terminal portion.  相似文献   

19.
Conantokins are ∼20-amino acid peptides present in predatory marine snail venoms that function as allosteric antagonists of ion channels of the N-methyl-d-aspartate receptor (NMDAR). These peptides possess a high percentage of post-/co-translationally modified amino acids, particularly γ-carboxyglutamate (Gla). Appropriately spaced Gla residues allow binding of functional divalent cations, which induces end-to-end α-helices in many conantokins. A smaller number of these peptides additionally contain 4-hydroxyproline (Hyp). Hyp should prevent adoption of the metal ion-induced full α-helix, with unknown functional consequences. To address this disparity, as well as the role of Hyp in conantokins, we have solved the high resolution three-dimensional solution structure of a Gla/Hyp-containing 18-residue conantokin, conRl-B, by high field NMR spectroscopy. We show that Hyp10 disrupts only a small region of the α-helix of the Mn2+·peptide complex, which displays cation-induced α-helices on each terminus of the peptide. The function of conRl-B was examined by measuring its inhibition of NMDA/Gly-mediated current through NMDAR ion channels in mouse cortical neurons. The conRl-B displays high inhibitory selectivity for subclasses of NMDARs that contain the functionally important GluN2B subunit. Replacement of Hyp10 with N8Q results in a Mg2+-complexed end-to-end α-helix, accompanied by attenuation of NMDAR inhibitory activity. However, replacement of Hyp10 with Pro10 allowed the resulting peptide to retain its inhibitory property but diminished its GluN2B specificity. Thus, these modified amino acids, in specific peptide backbones, play critical roles in their subunit-selective inhibition of NMDAR ion channels, a finding that can be employed to design NMDAR antagonists that function at ion channels of distinct NMDAR subclasses.  相似文献   

20.
The molecular structures, relative stability order, and dipole moments of a complete family of 21 planar hypoxanthine (Hyp) prototropic molecular–zwitterionic tautomers including ylidic forms were computationally investigated at the MP2/6–311++G(2df,pd)//B3LYP/6–311++G(d,p) level of theory in vacuum and in three different surrounding environments: continuum with a low dielectric constant (??=?4) corresponding to a hydrophobic interface of protein–nucleic acid interactions, dimethylsulfoxide (DMSO), and water. The keto-N1HN7H tautomer was established to be the global minimum in vacuum and in continuum with ??=?4, while Hyp molecule exists as a mixture of the keto-N1HN9H and keto-N1HN7H tautomers in approximately equal amounts in DMSO and in water at T?=?298.15?K. We found out that neither intramolecular tautomerization by single proton transfer in the Hyp base, nor intermolecular tautomerization by double proton transfer in the most energetically favorable Hyp·Hyp homodimer (symmetry C 2h ), stabilized by two equivalent N1H…O6 H-bonds, induces the formation of the enol tautomer (marked with an asterisk) of Hyp with cis-oriented O6H hydroxyl group relative to neighboring N1C6 bond. We first discovered a new scenario of the keto–enol tautomerization of Hyp?·?Hyp homodimer (C 2h ) via zwitterionic near-orthogonal transition state (TS), stabilized by N1+H…N1? and O6+H…N1? H-bonds, to heterodimer Hyp??·?Hyp (C s ), stabilized by O6H…O6 and N1H…N1 H-bonds. We first showed that Hyp??·?Thy mispair (C s ), stabilized by O6H…O4, N3H…N1, and C2H…O2 H-bonds, mimicking Watson–Crick base pairing, converts to the wobble Hyp?·?Thy base pair (C s ), stabilized by N3H…O6 and N1H…O2 H-bonds, via high- and low-energy TSs and intermediate Hyp?·?Thy?, stabilized by O4H…O6, N1H…N3, and C2H…O2 H-bonds. The most energetically favorable TS is the zwitterionic pair Hyp+?·?Thy? (C s ), stabilized by O6+H…O4?, O6+H…N3?, N1+H…N3?, and N1+H…O2? H-bonds. The authors expressed and substantiated the hypothesis, that the keto tautomer of Hyp is a mutagenic compound, while enol tautomer Hyp? does not possess mutagenic properties. The lifetime of the nonmutagenic tautomer Hyp? exceeds by many orders the time needed to complete a round of DNA replication in the cell. For the first time purine–purine planar H-bonded mispairs containing Hyp in the anti-orientation with respect to the sugar moiety – Hyp?·?Ade syn , Hyp?·?Gua? syn , and Hyp?·?Gua syn , that closely resembles the geometry of the Watson–Crick base pairs, have been suggested as the source of transversions. An influence of the surrounding environment (??=?4) on the stability of studied complexes and corresponding TSs was estimated by means of the conductor-like polarizable continuum model. Electron-topological, structural, vibrational, and energetic characterictics of all conventional and nonconventional H-bonds in the investigated structures are presented. Presented data are key to understanding elementary molecular mechanisms of mutagenic action of Hyp as a product of the adenine deamination in DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号