首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   22篇
  2021年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   5篇
  2015年   4篇
  2014年   2篇
  2013年   7篇
  2012年   7篇
  2011年   5篇
  2010年   4篇
  2009年   5篇
  2008年   4篇
  2007年   5篇
  2006年   8篇
  2005年   7篇
  2004年   9篇
  2003年   9篇
  2002年   10篇
  2001年   3篇
  2000年   6篇
  1999年   6篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1990年   2篇
  1989年   2篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   1篇
  1979年   3篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1972年   3篇
  1971年   2篇
  1970年   1篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
  1964年   2篇
排序方式: 共有151条查询结果,搜索用时 15 毫秒
1.
We have isolated an expressible full-length cDNA clone encoding murine ERp99, an abundant, conserved transmembrane glycoprotein of the endoplasmic reticulum membrane. ERp99 is synthesized as a 92,475-kDa precursor containing 802 amino acids. It possesses a signal peptide of 21 amino acids which is cleaved cotranslationally. Analysis of the amino acid sequence deduced from the nucleotide sequence of the cDNA clone led us to propose a model for the orientation of ERp99 in the endoplasmic reticulum membrane. In this model, ERp99 possesses one membrane-spanning, stop transfer segment in the N-terminal region. The protein chain passes through the membrane only once, and approximately 75% of the protein remains on the cytoplasmic side of the ER membrane. Comparison of the ERp99 sequence to the sequence of other proteins revealed that ERp99 has extensive homology with the 90-kDa heat shock protein of Saccharomyces cerevisiae (hsp90) and the 83-kDa heat shock protein of Drosophila melanogaster. In addition, the N terminus of mature ERp99 is identical to that of the 94-kDa glucose regulated protein (GRP94) of mammalian cells.  相似文献   
2.
Refinement of the structure of bovine seminal ribonuclease   总被引:4,自引:0,他引:4  
We report here the refinement at 2.5-Å resolution of the x-ray crystal structure of bovine seminal ribonuclease, a dimeric covalent enzyme. The protein, which crystallizes with one molecule in the asymmetric unit, consists of two subunits of identical chemical sequences, related by an almost exact binary axis. The tertiary structure of the subunits is similar to that of the pancreatic enzyme, which shows similar catalytic properties. The refinement was carried out using the restrained least-squares procedure both in the reciprocal and real spaces. The assemblage of the subunits in the dimer is described and discussed.  相似文献   
3.
4.
We report the identification and characterization of ERS-24 (Endoplasmic Reticulum SNARE of 24 kD), a new mammalian v-SNARE implicated in vesicular transport between the ER and the Golgi. ERS24 is incorporated into 20S docking and fusion particles and disassembles from this complex in an ATP-dependent manner. ERS-24 has significant sequence homology to Sec22p, a v-SNARE in Saccharomyces cerevisiae required for transport between the ER and the Golgi. ERS-24 is localized to the ER and to the Golgi, and it is enriched in transport vesicles associated with these organelles.Newly formed transport vesicles have to be selectively targeted to their correct destinations, implying the existence of a set of compartment-specific proteins acting as unique receptor–ligand pairs. Such proteins have now been identified (Söllner et al., 1993a ; Rothman, 1994): one partner efficiently packaged into vesicles, termed a v-SNARE,1 and the other mainly localized to the target compartment, a t-SNARE. Cognate pairs of v- and t-SNAREs, capable of binding each other specifically, have been identified for the ER–Golgi transport step (Lian and Ferro-Novick, 1993; Søgaard et al., 1994), the Golgi–plasma membrane transport step (Aalto et al., 1993; Protopopov et al., 1993; Brennwald et al., 1994) in Saccharomyces cerevisiae, and regulated exocytosis in neuronal synapses (Söllner et al., 1993a ; for reviews see Scheller, 1995; Südhof, 1995). Additional components, like p115, rab proteins, and sec1 proteins, appear to regulate vesicle docking by controlling the assembly of SNARE complexes (Søgaard et al., 1994; Lian et al., 1994; Sapperstein et al., 1996; Hata et al., 1993; Pevsner et al., 1994).In contrast with vesicle docking, which requires compartment-specific components, the fusion of the two lipid bilayers uses a more general machinery derived, at least in part, from the cytosol (Rothman, 1994), which includes an ATPase, the N-ethylmaleimide–sensitive fusion protein (NSF) (Block et al., 1988; Malhotra et al., 1988), and soluble NSF attachment proteins (SNAPs) (Clary et al., 1990; Clary and Rothman, 1990; Whiteheart et al., 1993). Only the assembled v–t-SNARE complex provides high affinity sites for the consecutive binding of three SNAPs (Söllner et al., 1993b ; Hayashi et al., 1995) and NSF. When NSF is inactivated in vivo, v–t-SNARE complexes accumulate, confirming that NSF is needed for fusion after stable docking (Søgaard et al., 1994).The complex of SNAREs, SNAPs, and NSF can be isolated from detergent extracts of cellular membranes in the presence of ATPγS, or in the presence of ATP but in the absence of Mg2+, and sediments at ∼20 Svedberg (20S particle) (Wilson et al., 1992). In the presence of MgATP, the ATPase of NSF disassembles the v–t-SNARE complex and also releases SNAPs. It seems likely that this step somehow initiates fusion.To better understand vesicle flow patterns within cells, it is clearly of interest to identify new SNARE proteins. Presently, the most complete inventory is in yeast, but immunolocalization is difficult in yeast compared with animal cells, and many steps in protein transport have been reconstituted in animal extracts (Rothman, 1992) that have not yet been developed in yeast. Therefore, it is important to create an inventory of SNARE proteins in animal cells. The most unambiguous and direct method for isolating new SNAREs is to exploit their ability to assemble together with SNAPs and NSF into 20S particles and to disassemble into subunits when NSF hydrolyzes ATP. Similar approaches have already been successfully used to isolate new SNAREs implicated in ER to Golgi (Søgaard et al., 1994) and intra-Golgi transport (Nagahama et al., 1996), in addition to the original discovery of SNAREs in the context of neurotransmission (Söllner et al., 1993a ).Using this method, we now report the isolation and detailed characterization of ERS-24 (Endoplasmic Reticulum SNARE of 24 kD), a new mammalian v-SNARE that is localized to the ER and Golgi. ERS-24 is found in transport vesicles associated with the transitional areas of the ER and with the rims of Golgi cisternae, suggesting a role for ERS-24 in vesicular transport between these two compartments.  相似文献   
5.
The crystalloid endoplasmic reticulum (ER) houses large amounts of HMG CoA reductase, the rate-controlling enzyme in cholesterol synthesis. The crystalloid ER appears in UT-1 cells, a line of Chinese hamster ovary cells that has been chronically starved of cholesterol as a result of growth in the presence of compactin, an inhibitor of reductase. When cholesterol was provided to UT-1 cells in the form of low density lipoprotein (LDL), the reductase and crystalloid ER were destroyed. This destruction was preceded by an increase in the cholesterol content of crystalloid ER membranes, as judged by a 4- to 8-fold increase in their ability to form complexes with filipin, a cholesterol-binding compound that can be visualized in freeze-fracture electron micrographs. Filipin binding to other membranes was unchanged. Thus insertion of cholesterol into the crystalloid ER membrane may trigger the degradation of reductase and the membrane itself.  相似文献   
6.
We have used RFLPs of the apolipoprotein (apo) B gene and apo AI-CIII-AIV gene cluster to estimate the genetic contribution of variation at these loci to the variability of plasmid lipid, lipoprotein, and apolipoprotein levels in 209 children from Sezze in central Italy. The sample was randomly divided into group I (107 children) and group II (102 children). Four site polymorphisms (PvuII, XbaI, MspI, and EcoRI) of the apo B gene and five site polymorphisms (XmnI, PstI, SstI, PvuII-CIII, and PvuII-AIV) of the apo AI-CIII-AIV gene cluster were examined in group I children. After adjustment for gender, age, and body-mass index, polymorphisms at both gene loci (PvuII-B, PvuII-CIII, and PvuII-AIV) were associated with significant effects on the levels of plasma apo AI, apo B, or high-density lipoprotein-cholesterol. RFLPs that showed significant effects in group I were genotyped in group II. All three polymorphisms were associated with similar effects on apolipoprotein levels, though for all RFLPs the magnitude of the effects was smaller in the group II children and only statistically significant for the effect of the PvuII-B genotype on apo AI levels. In the total sample of 209 children 7.4% of the sample variance in apo AI levels was explained by variation associated with the apo B PvuII-B RFLP. In addition, the PvuII-B RFLP was associated with significant effects on plasma apo B levels and explained 5.7% of the sample variance. The PvuII-CIII and PvuII-AIV polymorphisms were both associated with differences in apo AI levels, explaining 3.7%-5.7% of the sample variance. Taken together, the three PvuII polymorphisms explained 17.7% of the phenotypic variance in apo AI levels. There was significant evidence for an effect of nonlinearity of the PvuII-CIII genotypes on apo AI levels, with the individuals heterozygous for the polymorphism having the highest apo AI levels. No evidence of interaction between genotype and gender, age, and body-mass index was shown by covariance analysis. The molecular explanation of this effect is unclear. Our data show that variation at both the apo AI-CIII-AIV and apo B loci are associated with lipoprotein and apolipoprotein levels in this sample of Italian children.  相似文献   
7.
8.
9.
10.
Proteins are complex structures whose overall stability critically depends on a delicate balance of numerous interactions of similar strength, which are markedly influenced by their environment. Here, we present an analysis of the effect of pH on a protein structure in the crystalline state using RNase A as a model system. By altering only one physico-chemical parameter in a controlled manner, we are able to quantify the structural changes induced in the protein. Atomic resolution X-ray diffraction data were collected for crystals at six pH* values ranging from 5.2 to 8.8, and the six independently refined structures reveal subtle, albeit well-defined variations directly related to the pH titration of the protein. The deprotonation of the catalytic His12 residue is clearly evident in the electron density maps, confirming the reaction mechanism proposed by earlier enzymatic and structural studies. The concerted structural changes observed in the regions remote from the active-site point to an adaptation of the protein structure to the changes in the physico-chemical environment. Analysis of the stereochemistry of the six structures provided accurate estimates of p Kavalues of most of the histidine residues. This study gives further evidence for the advantage of atomic resolution X-ray crystallographic analyses for revealing small but significant structural changes which provide clues to the function of a biological macromolecule.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号