首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) is a sub‐cosmopolitan species. Native to Asia, it has been released during the 20th century for classical and augmentative biological control of several herbivorous insects, mostly aphids and coccids. Despite its recognized positive impact on biological control, H. axyridis is now considered among the most dangerous invasive species in Europe and in most places where it has established. This is mostly due to its ability to reduce the populations of native predatory species of the same trophic guild. When exploring a new area, H. axyridis adults use semiochemical cues to acquire information about the habitat. Presumably, these cues are perceived by the sensilla located on the antennae. Surprisingly, in spite of the huge literature existing on H. axyridis, the antennal sensory organs have been poorly characterized. Here, we used scanning and transmission electron microscopy (SEM, TEM) techniques to study H. axyridis antennae, with focus on the various types of sensilla and their distribution in male and female individuals. The presence of various classes of antennal sensilla belonging to the main types described in insects (chemoreceptors, mechanoreceptors, and thermo‐hygroreceptors) was highlighted, as well as the widespread presence of antennal glands. The investigations showed some peculiar characteristics not known in Coccinellidae, such as the concentration of sensory structures at the level of the distal part of the apical antennomere and the discovery of antennal glands associated with it. No sexual dimorphism was revealed, neither for the general structure of the antenna (similar number of antennomeres and presence of modifications), nor for the total length and width of the antenna, the relative size of the antennomeres, the types of antennal sensilla, of their distribution and abundance. The potential relevance of these sensory structures and antennal glands, reported for the first time in Coccinellidae, is discussed in the context of intra‐ and interspecific communication.  相似文献   

2.
Two braconid parasitoids of cereal stemborers in eastern Africa, Cotesia sesamiae and Cotesia flavipes, have been shown to display a similar hierarchy of behavioural events during host recognition and acceptance. In order to understand the mechanisms underlying host recognition and acceptance, the morphology of antennal sensilla on the last antennomeres, on the ovipositor, and on the fifth tarsomere and pretarsus of the prothoracic legs tarsi were studied using scanning electron microscopy followed by selective silver nitrate staining. It appeared that female C. sesamiae and C. flavipes shared the same types and distribution of sensory receptors, which enable them to detect volatiles and contact chemical stimuli from their hosts. In both parasitoids, four types of sensilla were identified on the three terminal antennomeres: (i) non-porous sensilla trichodea likely to be involved in mechanoreception, (ii) uniporous sensilla chaetica with porous tips that have gustatory functions, (iii) multiporous sensilla placodea, which are likely to have olfactory function, and (iv) sensilla coeloconica known to have thermo-hygroreceptive function. The tarsi of both parasitoids possessed a few uniporous sensilla chaetica with porous tips, which may have gustatory functions. The distal end of the ovipositor bore numerous dome-shaped sensilla. However, there were no sensilla coeloconica or styloconica, known to have gustatory function in other parasitoid species, on the ovipositors of the two braconid wasps.  相似文献   

3.
《Journal of Asia》2019,22(1):296-307
Pseudoligosita yasumatsui Viggiani and Subba Rao 1978 (Hymenoptera: Trichogrammatidae) is a common egg parasitoid of rice insect pests. The surface morphology of the antenna and ovipositor on P. yasumatsui was examined using scanning electron microscopy. The antenna of P. yasumatsui is geniculate in shape, hinged at the scape-pedicel joint, approximately 190 μm in length and consists of seven antennomeres. In total, the male and female antennae have ten different types of sensilla: trichoid sensilla type 1, 2, 3, 4, 5, 6, campaniform sensilla, basiconic sensilla, and placoid sensilla type 1 and 2. The flagellum of the female antenna is covered with cuticular pores, which are absent on the male antennal flagellum. The distal extremity of its ovipositor stylet has campaniform sensilla and styloconic sensilla. Trichoid sensilla found on its apical abdomen part may play a role in the host detection and egg placement. The types and distribution of antennal and ovipositor sensilla on the parasitoid were discussed.  相似文献   

4.
The antennal sensilla of the brown spruce longhorn beetle, Tetropium fuscum (Fabr.) (Coleoptera: Cerambycidae) were examined with particular focus on the sensilla present on the apical flagellomere. T. fuscum antennae are composed of 11 segments, namely the scape, pedicel, and nine flagellomeres. Nine types of sensilla were observed: three types of sensilla chaetica, sensilla trichodea, two types of sensilla basiconica, grooved peg sensilla, thick-walled sensilla, and Böhm bristles. Seven of these types were present on the apical flagellomere, the exceptions were sensilla chaetica type 3 and Böhm bristles. There were no significant differences in the distribution or density of sensilla present on the ninth flagellomere of males and females, except that males had significantly more sensilla chaetica type 1, which are put forward as the putative contact chemoreceptors for T. fuscum.  相似文献   

5.
6.
7.
Archoxyelyda mirabilis gen.n . and sp.n ., is described from the Yixian Formation of Liaoning Province, China. It is placed in the family Praesiricidae based on the loss of forewing Sc. The fossil is placed in Archoxyelydinae subfam.n . based on a modified antennal flagellum (consisting of two distinct multisegmented parts: a thick and tightly connected basal part, and a thin and more loosely articulated distal one). The incompletely preserved genus Xyelydontes Rasnitsyn, 1983 is tentatively transferred to Archoxyelydinae. The new material demonstrates a unique feature in the antennal anatomy: the composite third antennomere can be seen to consist of tightly connected primary antennomeres. Antennal evolution in the lower Hymenoptera is reviewed and three hypothetical pathways in their transformation are discussed. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:635EFD90-CA14-402C-BCBF-C77C194F2368 .  相似文献   

8.
Comparative studies on antennal sensillar equipment in insects are largely lacking, despite their potential to provide insights into both ecological and phylogenetic relationships. Here we present the first comparative study on antennal morphology and sensillar equipment in female Cynipoidea (Hymenoptera), a large and diverse group of wasps, with special reference to the so-called gall-wasps (Cynipidae). A SEM analysis was conducted on 51 species from all extant cynipoid families and all cynipid tribes, and spanning all known life-histories in the superfamily (gall-inducers, gall-inquilines, and non-gall associated parasitoids). The generally filiform, rarely clavate, antennal flagellum of Cynipoidea harbours overall 12 types of sensilla: s. placoidea (SP), two types of s. coeloconica (SCo-A, SCo-B), s. campaniformia (SCa), s. basiconica (SB), five types of s. trichoidea (ST-A, B, C, D, E), large disc sensilla (LDS) and large volcano sensilla (LVS). We found a great variability in sensillar equipment both among and within lineages. However, few traits seem to be unique to specific cynipid tribes. Paraulacini are, for example, distinctive in having apical LVS; Pediaspidini are unique in having ≥3 rows of SP, each including 6–8 sensilla per flagellomere, and up to 7 SCo-A in a single flagellomere; Eschatocerini have by far the largest SCo-A. Overall, our data preliminarily suggest a tendency to decreased numbers of SP rows per flagellomere and increased relative size of SCo-A during cynipoid evolution. Furthermore, SCo-A size seems to be higher in species inducing galls in trees than in those inducing galls in herbs. On the other hand, ST seem to be more abundant on the antennae of herb-gallers than wood-gallers. The antennal morphology and sensillar equipment in Cynipoidea are the complex results of different interacting pressures that need further investigations to be clarified.  相似文献   

9.
The typology and placement of antennal sensilla of the carrion beetles Oxelytrum erythrurum (Blanchard) and Oxelytrum apicalis (Brullé) (Coleoptera: Silphidae) were studied using scanning electron microscopy. Two types of sensilla chaetica, two types of sensilla trichodea, four types of sensilla basiconica, one type of sensilla coeloconica, and an unidentified type of sensillum were found in both species. Sensilla chaetica type 1 are found on the antennomeres proximal to antennal club (A1?CA8); chaetica type 2 are found on the club (A9?CA11). Sensilla trichodea are found on A9?CA11; one type (T1) is found on the proximal portion of the club, the other type (T2) on the apical portion. Basiconica type 1 are found on the dorsal surface of A9?CA11; they are much denser on the apical portion of the antennal club than on the proximal. In O. erythrurum, a nocturnal species of the Chaco-Pampean plain, T2 two are found on A10 and A11. In Oxelytrum apicale, a mountain species, probably diurnal, only A11 bears T2, but they are denser than in the other species. It is suggested that O. apicale depends more on contact chemoreception than O. erythrurum. The ventral surface of the antennal clubs shows no remarkable difference between species.  相似文献   

10.
[目的] 明确六斑月瓢虫雌雄成虫触角感觉器种类、分布及形态特征。[方法] 利用扫描电子显微镜对六斑月瓢虫雌、雄成虫触角形态及触角感受器超微结构进行观察。[结果] 六斑月瓢虫成虫触角由柄节、梗节和鞭节组成,柄节长度与宽度显著大于梗节长度与宽度;鞭节分为9个亚节,末端3节横向膨大呈锤状。雌雄成虫触角上共有8种感觉器:刺形感觉器(SC)、毛形感觉器(ST)、锥形感觉器(SB)、腔形感觉器(CaS)、钟形感觉器(CS)、哑铃形感觉器(DS)、香肠形感觉器(SS)及B?hm氏鬃毛感觉器(BB)。以毛形感觉器和刺形感觉器分布最广,遍布触角;B?hm氏鬃毛仅存在于触角柄节与梗节;触角鞭节第9亚节顶端密布7种触角感觉器。六斑月瓢虫雌雄成虫触角长度、触角感觉器类型及分布无显著差异。[结论] 六斑月瓢虫成虫触角上共有8种感觉器,其触角可能具有感知机械刺激、识别化学信息素及感受温湿度变化的作用。本研究为进一步了解六斑月瓢虫触角与其行为间的关系提供基础资料。  相似文献   

11.
The mating behavior of the eucalyptus longhorned borer Phoracantha semipunctata was studied to understand its mate recognition system. Bioassays were conducted to determine the existence of a cuticular chemical on its body surface and how individuals perceived it. Males walked oriented to and attempted copulation with live conspecifics only upon antennal contact with their bodies. They showed similar responses to intact dead females and males, but failed to respond to washed bodies. Dummies carrying male extracts were more likely to elicit copulation attempts than control dummies. This constitutes behavioral evidence that unidentified chemical(s) on the body surface play a major role in mate recognition, and can only be perceived after antennal contact. Sensilla trichodea on the antennal flagellum are candidates for this contact chemoreception. They are distributed throughout the entire flagellum, especially along its margins and at the tip of the distal flagellomere, and share structural features with contact chemosensory sensilla of other insects.  相似文献   

12.
【目的】明确中华按蚊Anopheles sinensis雌成虫与幼虫触角感器的类型、形态和分布。【方法】利用光学显微镜观察中华按蚊成虫与幼虫触角的形态结构,利用扫描电镜观察触角上的感器类型、形态和分布。【结果】中华按蚊雌成虫触角由柄节、梗节和鞭节组成,鞭节有13个亚节。触角上共发现4种类型的感器,分别为毛形感器(锐型和钝型)、刺形感器(大型和小型)、锥形感器(Ⅰ型和Ⅱ型)和腔锥形感器(大型和小型)。雌成虫触角各类感器总计约1 135.67±86.75个,其中毛形感器数量最多(662.00±6.22个),随后是刺形感器(294.67±33.35个)和锥形感器(146.00±42.39个),腔锥形感器数量最少(36.50±5.90个)。毛形感器、刺形感器和锥形感器在鞭节的每个亚节均有分布,而大型腔锥形感器在第9-11亚节没有分布,小型腔锥形感器仅分布于第13节的顶端。幼虫触角的鞭节不分亚节,呈管状,触角末端有一个感觉锥,鞭节上分布有与成虫锥形感器相似的锥形凸起,初步定名为类锥形感器,其数量和大小随幼虫龄期的增长而显著增加,锥体表面的凹槽越来越明显,其功能还需要通过超微结构和电生理等研究进一步确定。【结论】本研究对中华按蚊幼虫和雌成虫触角感器的形态特征、类型、数量及其分布进行了观察和分析,结果为进一步研究中华按蚊感器的生理功能奠定了基础。  相似文献   

13.
Antennae of the wheat stink bug Eurygaster maura L. (Hemiptera: Scutelleridae) were investigated to elucidate structure and distribution of antennal chemosensilla in females. Five type of sensilla were identified and characterized using a scanning electron microscope (SEM) and a transmission electron microscope (TEM). Type 1 sensilla are mechanical and contact chemoreceptors with a single apical pore. Types 2 and 3 sensilla are multiporous chemoreceptors both with typical features of olfactory sensilla. Type 4 are multiporous peg-like sensilla, short and with a grooved surface. Type 5 are sensilla coeloconica with a smooth and aporous peg completely inserted in a sub-cuticular chamber. All types are distributed on the two flagellar segments, but we considered only the apical flagellomere in which the largest number of sensilla are located. The most abundant sensilla are type 3, while the less numerous are type 5. All types, except type 2, decreased in number from the tip to the base of the segment. The lower density of sensilla was recorded on the dorsal-internal part of the apical antennomere, while the higher density was recorded on the opposite side (external-ventral).  相似文献   

14.
李宗波  杨培  彭艳琼  杨大荣 《昆虫学报》2012,55(11):1272-1281
为探索木瓜榕传粉榕小蜂Ceratosolen emarginatus寄主定位机制, 应用扫描电镜和透射电镜观察了其雌蜂触角感器的类型、 分布和超微形态。结果显示: 木瓜榕传粉榕小蜂雌蜂触角呈膝状, 由柄节、 梗节和11个鞭小节组成的鞭节组成, 第3鞭小节着生一坚固的脊骨突。触角上共发现7类11种感器, 分别为毛形感器、 刺形感器、 锥形感器(包括单孔形和多孔形)、 多孔板形感器(包括长形和圆形)、 腔锥形感器(分为3种类型)、 栓锥形乳突状感器、 角锥形感器。结合表面特征和内部结构, 锥形感器、 多孔板形感器、 栓锥形乳突状感器和腔锥形感器类型1为有孔型, 为化学感器; 无孔型的毛形感器和刺形感器是机械感器, 但腔锥形感器类型2和3为本体感器或湿热压力感器; 最为特异的为角锥形感器, 其厚壁无孔, 逆向触角主轴, 为该科昆虫所特有, 推测可防止传粉榕小蜂进入榕果时滑脱。这些结果将有助于理解木瓜榕传粉榕小蜂特异性行为, 并为下一步开展电生理研究, 揭示其信息化学物质利用和分配模式奠定基础。  相似文献   

15.
Antennal sensilla were compared in females and males of two sympatric mymarid Hymenoptera, Anaphes victus and A. listronoti which are, respectively, solitary and gregarious parasitoids of eggs of the carrot weevil Listronotus oregonensis (Coleoptera, Curculionidae). Both species are morphologically very similar in the area where they are sympatric. The external morphology of the sensilla was studied using scanning electron microscopy. Female antennae have seven different types of sensilla, morphologically similar in the two species: trichoid sensilla, which are putative mechanosensilla, sensilla chaetica types 1, 3 and 4, which are presumably contact chemosensilla, and sensilla chaetica type 2 and basiconic and placoid sensilla, which are presumed to be olfactory sensilla. The major difference between the two species is the number of sensilla chaetica type 4, of which 6–9 are found on the antennal club in A. victus, while 10–12 are present in A. listronoti. The antennae of the males of both species are similar in morphology and in the number and distribution of their four types of sensilla, i.e. trichoid sensilla, sensilla chaetica type 1 and basiconic and placoid sensilla. Accepted: 23 November 1998  相似文献   

16.
External morphology of antennal sensilla on female and male Trichogramma australicum (Hymenoptera : Trichogrammatidae) was examined using scanning electron microscopy. Antennae show strong sexual dimorphism in structure and types of sensilla. The female antenna displays 14 types of sensilla: basiconic capitate peg sensilla (types 1 and 2), campaniform sensilla, chaetica sensilla (types 1–3), coeloconic sensilla, falcate sensilla, placoid sensilla (types 1 and 2), styloconic sensilla and trichoid sensilla (types 1–3). The male antenna displays 12 types of sensilla: basiconic capitate peg sensilla (type 2), campaniform sensilla, chaetica sensilla (types 1–5), coeloconic sensilla, placoid sensilla (type 1), and trichoid sensilla (types 3–5). Falcate and styloconic sensilla occur only on the female antenna. Both sensilla probably are associated with host examination, host discrimination and oviposition behaviour. Male antennal trichoid sensilla types 4 and 5 are probably associated with courtship behaviour, because these types occur only on the male. We propose the term “falcate sensilla” for a unique female antennal sensilla; the number of falcate sensilla may be used for identification of Trichogramma spp. In addition, we report the presence of placoid sensilla type 2 and difference in structure of coeloconic sensilla in T. australicum. Variation in structure and position of antennal sensilla are discussed.  相似文献   

17.
The investigation of the antennae of Scutigera coleoptrata (Linnaeus, 1758) by scanning electron microscopy (SEM) revealed the presence of five types of sensilla: sensilla trichodea, beak‐like sensilla, cone‐shaped sensilla brachyconica on the terminal article, sensory cones at the antennal nodes, and the shaft organ. Alongside the presence and absence of antennal sensillar types, three unique characters were found in the Scutigeromorpha: the presence of long antennae with nodes bearing sensory cones, the presence of a bipartite shaft including the shaft organ, and the presence of beak‐like sensilla. Neuroanatomical data showed that the animals' brains are equipped with well‐developed primary olfactory and mechanosensory centers, suggesting that the antennae must be equipped with specialized sensilla to perceive chemosensory and mechanosensory cues. With the evidence provided in this article for the Scutigeromorpha, SEM data are available at last on the antennal sensilla for all five chilopod taxa, allowing a comparative discussion of antennal morphology in Chilopoda. J. Morphol., 2011. © 2011Wiley‐Liss, Inc.  相似文献   

18.
Insects use antennal sensilla to not only detect chemical and mechanical cues but also to sense changes in temperature, humidity and CO2 levels. Very little is known about the variation in numbers, size and structure of sensilla in ants. Here we describe in detail the array of sensilla on the apical segment of the antennae of the nocturnal Australian bull ant Myrmecia pyriformis. Using scanning electron microscopy techniques we identified eight types of sensilla: trichodea curvata, basiconica, trichodea, coelocapitular, chaetica, trichoid II, ampullacea and coeloconica. Mapping the spatial location of each sensillum revealed distinct distribution patterns for different types of sensilla which were consistent across different individuals. We found, in most cases, the number of sensilla increases with the size of the apical antennomere, which in turn increases with body size. Conversely, the size of sensilla did not appreciably increase with the size of the apical antennomere. We discuss the size, numbers and distribution of sensilla of M. pyriformis compared to other ant species. Lastly, given the inconsistent use of sensillum nomenclature and difficulties associated in reliable identification we have attempted to consolidate the ant sensilla literature to make possible interspecific comparisons.  相似文献   

19.
Mitat Aydogdu 《Biologia》2008,63(2):245-248
A new species of the genus Chelonus Panzer, 1806, C. beyarslani sp. n., is described and illustrated from Western Anatolia (Turkey). It is morphologically similar to Chelonus oculator (F., 1775), from which it differs mainly in the characteristics of antennomeres, first flagellomere, propodeum, propodeal tubercle and mesosoma.  相似文献   

20.
The morphology of the antennal sensilla of both male and female Habrobracon hebetor (Say) (Hymenoptera: Braconidae) is described using Scanning Electron Microscopy complemented with Transmission Electron Microscopy. Five types of innervated sensilla as well as uninnervated microtrichia were found. These types are: sensilla trichodea; s. chaetica; s. basiconica; s. coeloconica; and s. placodea. No differences in shape, basic structure, and types of antennal sensilla were found between males and females. The types of sensilla of both sexes of H. hebetor were compared with what has been described in other parasitic Hymenoptera, and their putative functions are discussed with reference to their morphology, distribution and ultrastructure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号