首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Detailed information on sensory organs of Diplopoda especially on antennal sensilla are still sparse and fragmentary. The present study on the antennae of Oranmorpha guerinii (Polydesmida, Paradoxosomatidae) utilizing scanning electron microscopy revealed the presence of six sensillar types: (1) apical cones, (2) sensilla trichodea, (3) sensilla microtrichodea, (4) sensilla chaetica, (5) sensilla basiconica bacilliformia, and (6) sensilla basiconica spiniformia. External structure and distribution of cuticular antennal sensilla are compared with data from other diplopod species. We moreover discuss possible functions of antennal sensilla in millipedes.  相似文献   

2.
The morphology and ultrastructure of the olfactory sensilla on the antennae and maxillary palps were investigated through scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and their responses to five volatile compounds were measured using electroantenogram (EAG) and electropalpogram (EPG) techniques in the pumpkin fruit fly, Bactrocera depressa (Shiraki; Diptera: Tephritidae). Male and female B. depressa displayed distinct morphological types of olfactory sensilla in the antennae and maxillary palps, with predominant populations of trichoid, basiconic, and coeloconic sensilla. Basiconic sensilla, the most abundant type of olfactory sensilla in the antennae, could be further classified into two different types. In contrast, the maxillary palps exhibited predominant populations of a single type of curved basiconic sensilla. High‐resolution SEM observation revealed the presence of multiple nanoscale wall‐pores on the cuticular surface of trichoid and basiconic sensilla, indicating that their primary function is olfactory. In contrast, coeloconic sensilla displayed several longitudinal grooves around the sensillum peg. The TEM observation of individual antennal olfactory sensilla indicates that the basiconic sensilla are thin‐walled, while the trichoid sensilla are thick‐walled. The profile of EAG responses of male B. depressa was different from their EPG response profile, indicating that the olfactory function of maxillary palps is different from that of antennae in this species. The structural and functional variation in the olfactory sensilla between antennae and maxillary palps suggests that each plays an independent role in the perception of olfactory signals in B. depressa.  相似文献   

3.
Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) is a sub‐cosmopolitan species. Native to Asia, it has been released during the 20th century for classical and augmentative biological control of several herbivorous insects, mostly aphids and coccids. Despite its recognized positive impact on biological control, H. axyridis is now considered among the most dangerous invasive species in Europe and in most places where it has established. This is mostly due to its ability to reduce the populations of native predatory species of the same trophic guild. When exploring a new area, H. axyridis adults use semiochemical cues to acquire information about the habitat. Presumably, these cues are perceived by the sensilla located on the antennae. Surprisingly, in spite of the huge literature existing on H. axyridis, the antennal sensory organs have been poorly characterized. Here, we used scanning and transmission electron microscopy (SEM, TEM) techniques to study H. axyridis antennae, with focus on the various types of sensilla and their distribution in male and female individuals. The presence of various classes of antennal sensilla belonging to the main types described in insects (chemoreceptors, mechanoreceptors, and thermo‐hygroreceptors) was highlighted, as well as the widespread presence of antennal glands. The investigations showed some peculiar characteristics not known in Coccinellidae, such as the concentration of sensory structures at the level of the distal part of the apical antennomere and the discovery of antennal glands associated with it. No sexual dimorphism was revealed, neither for the general structure of the antenna (similar number of antennomeres and presence of modifications), nor for the total length and width of the antenna, the relative size of the antennomeres, the types of antennal sensilla, of their distribution and abundance. The potential relevance of these sensory structures and antennal glands, reported for the first time in Coccinellidae, is discussed in the context of intra‐ and interspecific communication.  相似文献   

4.
《Journal of Asia》2020,23(4):1165-1180
Drosophila suzukii is a serious horticultural and quarantine pest, damaging various berry crops. Although the active use of olfactory communication in D. suzukii is well-known, their olfactory sensory system has not been comprehensively reported. Therefore, the present study was carried out to understand the morphology, distribution and ultrastructure of olfactory sensilla present in the antennae and maxillary palps of D. suzukii, through scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The olfactory sensilla on the antennae of D. suzukii in both sexes could be classified into three major morphological types, basiconic, trichoid and coeloconic sensilla, according to their shapes. The antennal basiconic sensilla were further divided into three subtypes and the antennal trichoid sensilla into two subtypes, respectively, according to the size of individual sensillum. In contrast to the antennal olfactory sensilla showing diverse morphology, basiconic sensilla was the only type of olfactory sensilla in the maxillary palps of D. suzukii. The basiconic sensilla in the maxillary palps could be further classified into three subtypes, based on their size. Our SEM and TEM observations indicated that multiple nanoscale pores are present on the surface of all types of olfactory sensilla in the antennae and maxillary palps, except coeloconic sensilla. The difference in the morphological types and the distribution of olfactory sensilla suggests that their olfactory functions are different between antennae and maxillary palps in D. suzukii. The results of this study provide useful information for further studies to determine the function of olfactory sensilla in D. suzukii and to understand their chemical communication system.  相似文献   

5.
The antennal morphology and chaetotaxy were studied in 52 species of the endogean carabid genus Typhlocharis, using scanning electron microscopy and light microscopy. The antennae are composed of 11 antennomeres (scape, pedicel, and nine flagellomeres). We found considerable variation between species in the third antennomere, with short‐stem and long‐stem forms, and flagellomere morphology, distinguishing two morphs: rounded (subovoid, subspheric and subquadrate, morph 1) and reniform shapes (morph 2). Antennal sensilla are grouped in six types of sensilla trichodea, three types of sensilla basiconica, one type of sensilla coeloconica, and one type of sensilla campaniformia. The distribution of sensilla along the antennomeres is described. The “rings” of trichoid sensilla in the antennomere body are affected by its shape and there is interspecific variation in the pattern of sensilla coeloconica in antennomere 11°, a novelty for the genus. The types of sensilla found in Typhlocharis are compared to those described in other Carabidae and the potential functionality and taxonomic interest of those variable antennal features are discussed. A correlation between the flagellomere morphology and the presence/absence of a stridulatory organ is suggested. The study also allowed comparing the observation of antennal features by SEM and light microscopy. J. Morphol., 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
Honeybees learn and discriminate excellently between different surface structures and different forms of objects, which they scan with their antennae. The sensory plate on the antennal tip plays a key role in the perception of mechanosensory and gustatory information. It is densely covered with small tactile hairs and carries a few large taste hairs. Both types of sensilla contain a mechanoreceptor, which is involved in the antennal scanning of an object. Our experiments test the roles of the mechanoreceptors on the antennal tip in tactile antennal learning and discrimination. Joints between head capsule and scapus and between scapus and pedicellus enable the bee to perform three-dimensional movements when they scan an object. The role of these joints in tactile antennal learning and discrimination is studied in separate experiments. The mechanoreceptors on the antennal tip were decisive for surface discrimination, but not for tactile acquisition or discrimination of shapes. When the scapus–pedicellus joint or the headcapsule–scapus joint was fixed on both antennae, tactile learning was still apparent but surface discrimination was abolished. Fixing both scapi to the head capsule reduced tactile acquisition.  相似文献   

7.
The ultrastructure and distribution of sensilla on the antennae of the cabbage stem flea beetle, Psylliodes chrysocephala, were investigated using scanning and transmission electron microscopy techniques. Eight different sensillar types were distinguished. These were; hair plate sensilla, sensilla chaetica, three types of sensilla trichodea, sensilla basiconica, grooved peg sensilla and styloconic sensilla. The sensilla chaetica are known to be gustatory receptors. Ultrastructure indicates that the hair plate sensilla and sensilla trichodea type one are probably mechanoreceptors, whilst the sensilla styloconica are probably thermo-hygro receptors. These thermo-hygroreceptors are unusual in that they are innervated by two sensory cells (one hygroreceptor and one thermoreceptor) rather than the more usual triad. The remaining four sensillar types all have a porous hair shaft, indicating an olfactory role. One of these (the grooved peg sensillum) may also have a thermoreceptive function. No sexual dimorphism was found in the structure, number or distribution of the antennal sensilla.  相似文献   

8.
李宗波  杨培  彭艳琼  杨大荣 《昆虫学报》2012,55(11):1272-1281
为探索木瓜榕传粉榕小蜂Ceratosolen emarginatus寄主定位机制, 应用扫描电镜和透射电镜观察了其雌蜂触角感器的类型、 分布和超微形态。结果显示: 木瓜榕传粉榕小蜂雌蜂触角呈膝状, 由柄节、 梗节和11个鞭小节组成的鞭节组成, 第3鞭小节着生一坚固的脊骨突。触角上共发现7类11种感器, 分别为毛形感器、 刺形感器、 锥形感器(包括单孔形和多孔形)、 多孔板形感器(包括长形和圆形)、 腔锥形感器(分为3种类型)、 栓锥形乳突状感器、 角锥形感器。结合表面特征和内部结构, 锥形感器、 多孔板形感器、 栓锥形乳突状感器和腔锥形感器类型1为有孔型, 为化学感器; 无孔型的毛形感器和刺形感器是机械感器, 但腔锥形感器类型2和3为本体感器或湿热压力感器; 最为特异的为角锥形感器, 其厚壁无孔, 逆向触角主轴, 为该科昆虫所特有, 推测可防止传粉榕小蜂进入榕果时滑脱。这些结果将有助于理解木瓜榕传粉榕小蜂特异性行为, 并为下一步开展电生理研究, 揭示其信息化学物质利用和分配模式奠定基础。  相似文献   

9.
伪鞘榕小蜂Sycoscapter trifemmensis是一种寄生于鸡嗉子榕间花期榕果的专性寄生蜂,雌雄两性繁殖策略分化明显,为更好理解和诠释雌蜂寄主定位和雄蜂配偶识别机制,有必要对两性的触角感器进行观察。运用环境扫描电镜观察,对比和探讨了伪鞘榕小蜂雌雄成虫的触角和触角感器类型、分布、数量及其生态适应性。结果表明:雌蜂触角鞭节由11鞭小节组成,总长817.82±33.23μm,分布有毛形感器、刺形感器(类型1)、锥形感器(类型1)、多孔板形感器(类型1)、栓锥形乳突状感器5类5种;雄蜂触角鞭节仅由6鞭小节组成,全长为雌蜂的1/3,且各节有明显的缩短和增粗特征,着生感器包括毛形感器、刺形感器(类型2和类型3)、锥形感器(类型1和类型2)、多孔板形感器(类型2)、腔锥形感器5类7种。雌蜂触角感器的数量与分布显著高于雄蜂,且同类型感器在雌蜂上具有明显的延伸、增粗、分支的特征,以板形感器和锥形感器最为突出。伪鞘榕小蜂雌雄成虫的触角及其感器有明显的性二型,特别是与化学信息识别相关的感器,反映了雌雄蜂在不同生态环境和繁殖压力下的形态分化、行为策略和生态适应。  相似文献   

10.
Ivanov VP 《Parazitologiia》2007,41(5):372-380
Sensory organs on the antennae of the horseflies Hybomitra bimaculata Macq. and Tabanus bovinus Loew are represented by the same morphological types of sensilla. Never differences in the topographical distribution of the sensilla on antennae have been also found, which can be explained by the similarity of ecological and behavioural adaptations of these insects. First and second antennal segments are found to be supplied with tactile hairs and proprioceptors. Other antennal segments bear sensory organs of several morphological types. Short thin olfactory hairs are most numerous among them. They are present on all segments of the antennal flagellum and belong to two morphological types different by the hair length. In the upper parts of the antennal segments from third to seventh several sensilla trichoidea are present, which probably serve as tactile and taste receptors.  相似文献   

11.
[目的] 明确六斑月瓢虫雌雄成虫触角感觉器种类、分布及形态特征。[方法] 利用扫描电子显微镜对六斑月瓢虫雌、雄成虫触角形态及触角感受器超微结构进行观察。[结果] 六斑月瓢虫成虫触角由柄节、梗节和鞭节组成,柄节长度与宽度显著大于梗节长度与宽度;鞭节分为9个亚节,末端3节横向膨大呈锤状。雌雄成虫触角上共有8种感觉器:刺形感觉器(SC)、毛形感觉器(ST)、锥形感觉器(SB)、腔形感觉器(CaS)、钟形感觉器(CS)、哑铃形感觉器(DS)、香肠形感觉器(SS)及B?hm氏鬃毛感觉器(BB)。以毛形感觉器和刺形感觉器分布最广,遍布触角;B?hm氏鬃毛仅存在于触角柄节与梗节;触角鞭节第9亚节顶端密布7种触角感觉器。六斑月瓢虫雌雄成虫触角长度、触角感觉器类型及分布无显著差异。[结论] 六斑月瓢虫成虫触角上共有8种感觉器,其触角可能具有感知机械刺激、识别化学信息素及感受温湿度变化的作用。本研究为进一步了解六斑月瓢虫触角与其行为间的关系提供基础资料。  相似文献   

12.
The antennae are a critically important component of the ant’s highly elaborated chemical communication systems. However, our understanding of the organization of the sensory systems on the antennae of ants, from peripheral receptors to central and output systems, is poorly understood. Consequently, we have used scanning electron and confocal laser microscopy to create virtually complete maps of the structure, numbers of sensory neurons, and distribution patterns of all types of external sensilla on the antennal flagellum of all types of colony members of the carpenter ant Camponotus japonicus. Based on the outer cuticular structures, the sensilla have been classified into seven types: coelocapitular, coeloconic, ampullaceal, basiconic, trichoid-I, trichoid-II, and chaetic sensilla. Retrograde staining of antennal nerves has enabled us to count the number of sensory neurons housed in the different types of sensilla: three in a coelocapitular sensillum, three in a coeloconic sensillum, one in an ampullaceal sensillum, over 130 in a basiconic sensillum, 50–60 in a trichoid-I sensillum, and 8–9 in a trichoid-II sensillum. The basiconic sensilla, which are cuticular hydrocarbon-receptive in the ant, are present in workers and unmated queens but absent in males. Coelocapitular sensilla (putatively hygro- and thermoreceptive) have been newly identified in this study. Coelocapitular, coeloconic, and ampullaceal sensilla form clusters and show biased distributions on flagellar segments of antennae in all colony members. The total numbers of sensilla per flagellum are about 9000 in unmated queens, 7500 in workers, and 6000 in males. This is the first report presenting comprehensive sensillar maps of antennae in ants.  相似文献   

13.
中红侧沟茧蜂触角感受器的扫描电镜观察   总被引:6,自引:0,他引:6  
董文霞  张钟宁 《昆虫学报》2006,49(6):1054-1059
利用扫描电镜对中红侧沟茧蜂Microplitis mediator的触角感受器进行了观察,发现了6个类型的感器,分别为毛形感器、板形感器、刺形感器、钟形感器、锥形感器、腔锥形感器。其中,毛形感器具有2种形态,锥形感器具有4种形态。钟形感器仅分布于雌蜂的触角上,锥形感器Ⅲ和Ⅳ仅分布于雄蜂的触角上。结合感受器的形态、分布和已报道的触角电位反应数据,对各感受器的功能进行了推测。  相似文献   

14.
The external morphology of sensilla on the antennae of males and females of Phyllophaga ravida Blanchard is described using scanning electron microscopy. Sexual dimorphism in body and antennal dimensions and in antennal receptor types was found. The female's body is slightly larger than the male's, although male antennal lamellae are longer than in females. Sixteen types of sensilla were identified on the proximal and distal surfaces of lamellae from both sexes, most of them in males: three types of placodea sensilla, four types of auricilica sensilla, five types of basiconica sensilla, and four types of coeloconica sensilla. Also, two types of mechanoreceptor sensilla were present on the lamellae periphery. Furthermore, males had larger placodea, auricilica and some types of basiconica sensilla.  相似文献   

15.
The antennae of adult Damalinia ovis, the sheep louse, were studied using light and scanning electron microscopy. Sensory structures are located on all three antennal segments with the predominant sensilla type being tactile. Nine different types of sensilla are described on the basis of external appearance. One of the sensilla, designated a "pit organ" because of its unusual shape, has not been described previously. A pair of these sensilla are present on each antenna, and their function is unknown. A group of 11 sensilla on the tip of each antenna contains olfactory and chemosensory pegs, and a possible thermohygroreceptor. The antennae are sexually dimorphic, the male having more tactile sensilla, two well-developed terminal hooks, and a different cuticular architecture on the posterior surface of antennal segment 1.  相似文献   

16.
Olfactory responses of Dasineura tetensi (Rubs) (Diptera; Cecidomyiidae) to leaf volatiles of blackcurrant (Ribes nigrum) were tested in a 4-way olfactometer. Newly emerged virgin females showed no response to the leaf volatiles emitted from a blackcurrant shoot. Newly emerged males (which are known to respond to a pheromone released by the female) also showed no response to the leaf volatiles. Two hours after mating females responded positively, indicating that leaf volatiles may play a role in host plant finding. Scanning (SEM) and transmission (TEM) electron microscopy of the antennae of D. tetensi showed that males and females share five sensillum types; sensilla chaetica (mechanoreceptors), sensilla trichodea, sensilla basiconica, uniporous peg sensilla and circumfila (chemoreceptors). The sensilla chaetica and sensilla trichodea resemble those found on other insects. Sensilla basiconica were found on all antennal subsegments except the tip. These are multiporous receptors with five unbranched dendrites filling the lumen. Small peg sensilla located on the tips of both male and female antennae may function as contact-chemoreceptors. The circumfila, which are a unique type of sensilla found only on cecidomyiid antennae, form loops around each of the antennal subsegments, being attached to the surface by a series of stalks. TEM revealed that each stalk consisted of one sensillum containing a single highly branched dendrite. The distal regions of the walls of each sensillum are fused together to form the circumfila. Circumfila have multiporous walls and a lumen filled with multiple branches of dendrites. Their structure suggests that they are important olfactory receptors in both the male and female.  相似文献   

17.
Single-cell electrophysiological recordings were obtained from olfactory receptor neurons housed in sensilla trichodea along the adult antennae arising from transplantation of the antennal imaginal discs between larval male Helicoverpa zea and Heliothis virescens. The olfactory receptor neurons from the majority of type C sensilla sampled on transplanted antennae displayed response characteristics consistent with those of the species that donated the antennae. However, some of the sensilla type C sampled in either transplant type contained olfactory receptor neurons that responded in a manner typical of the recipient species or other neurons that have not previously been found in the type C sensilla of either species. The single-cell data help to explain behavioral results showing that some transplant males do fly upwind to both species' pheromone blends, an outcome not expected based on known antennal sensory phenotypes. Our results suggest that host tissue can influence antennal olfactory receptor neuron development, and further that because of a common phylogenetic ancestry the donor tissue has the genetic capability to produce a variety of sensillar and receptor types.  相似文献   

18.
In the species‐specific and obligate mutualism between the fig (Moraceae: Ficus spp.) and its pollinator (Hymenoptera: Agaonidae), the continuity of lifecycle of both partners completely depends on the female pollinator's ability to detect receptive figs. To better understand the chemical location mechanism, we examined the antennae and their sensilla of the female fig pollinator Eupristina sp. using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The antennae of female Eupristina sp. are geniculated, and in total, there were seven types of sensilla found on the antennae: two types of multiporous placoid sensilla (type 1 is sausage‐like and type 2 is rounded), sensilla trichodea (ST), basiconic sensilla (BS), chaetica sensilla (ChS), coeloconic sensilla (CoS), and one specialized sensillum classified as sensillum obscurum (SO). We described external morphology, abundance, distribution, ultrastructure and discussed putative functions. We inferred from their ultrastructures as chemoreceptors that two types of multiporous placoid sensilla, BS and CoS, were innervated by sensory neurons. The aporous type ST, ChS, and SO were not innervated by dendrites which may function as mechanoreceptor/proprioceptor. These results were also discussed in relation to the interaction between Eupristina sp. and its host fig.  相似文献   

19.
Considering that sensilla constitute important functional elements of sensory systems in insects, the aim of this study was to determine the type and distribution of sensilla in the antennae of Hylamorpha elegans Burmeister examined by scanning electron microscopy. Hylamorpha elegans antennae are lamellate and consist of the scape, pedicel, and flagellum. The antennal club of this beetle consists of three terminal plates: proximal, middle, and distal lamellae. Four types of sensilla were observed in the lamellae from both sexes: sensilla trichoidea, chaetica, coeloconica, and placodea. Antennal length was larger in males than in females, and significant sexual variation in the number of sensilla placodea and sensilla coeloconica was observed.  相似文献   

20.
袁轲  朱慧  曲业宽  任炳忠  尤杨 《昆虫学报》2020,63(4):439-449
【目的】本研究旨在明确访花昆虫红腹毛蚊Bibio rufiventris触角感器的类型和分布。【方法】通过扫描电镜(scanning electron microscope, SEM)观察红腹毛蚊雌、雄成虫触角感器的种类、数量和形态,比较雌雄个体间的差异。【结果】红腹毛蚊雌、雄成虫触角均包含3部分,分别为柄节、梗节和鞭节,其中鞭节由8个亚节组成。雌成虫触角平均总长度为862.556±78.662μm,雄成虫触角平均总长度为880.361±83.253μm,雌、雄成虫触角各亚节的长度几乎相似,只有鞭节第8亚节长度有显著差异。红腹毛蚊的触角感器共有4大类,即刺形感器、锥形感器、毛形感器和B?hm氏鬃毛。其中,雌性红腹毛蚊触角感器共有6种亚型,即刺形感器、毛形感器2型、锥形感器(1, 2和4型)和B?hm氏鬃毛;雄性红腹毛蚊触角感器共有5种亚型,即刺形感器、毛形感器1型、锥形感器(2和3型)和B?hm氏鬃毛。【结论】红腹毛蚊雌、雄成虫触角感器在种类、数量以及形态特征方面存在一定差异。本研究为进一步探究红腹毛蚊触角感器的生理功能及其行为活动的分子机制提供了形态学基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号