首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Our previous data indicated that hypoxic preconditioning (HPC) ameliorates transient global cerebral ischemia (tGCI)-induced neuronal death in hippocampal CA1 subregion of adult rats. However, the possible molecular mechanisms for neuroprotection of this kind are largely unknown. This study was performed to investigate the role of the mitogen-activated protein kinase/extra-cellular signal-regulated kinase kinase (MEK)/extra-cellular signal-regulated kinase (ERK) pathway in HPC-induced neuroprotection. tGCI was induced by applying the four-vessel occlusion method. Pretreatment with 30 min of hypoxia applied 1 day before 10 min tGCI significantly decreased the level of MEK1/2 and ERK1/2 phosphorylation in ischemic hippocampal CA1 subregion. Also, HPC decreased the expression of phosphorylated ERK1/2 in degenerating neurons and astrocytes. However, the administration of U0126, a MEK kinase inhibitor, partly blocked MEK1/2 and ERK1/2 phosphorylation induced by tGCI. Meanwhile, neuronal survival was improved, and glial cell activation was significantly reduced. Collectively, these data indicated that the MEK/ERK signaling pathway might be involved in HPC-induced neuroprotection following tGCI. Also, HPC resulted in a reduction of glial activation.  相似文献   

2.
Mitophagy alleviates neuronal damage after cerebral ischemia by selectively removing dysfunctional mitochondria. Phosphatase and tensin homolog (PTEN) induced putative kinase 1 (PINK1)/Parkin-mediated mitophagy is the most well-known type of mitophagy. However, little is known about the role of PINK1/Parkin-mediated mitophagy in ischemic tolerance induced by hypoxic postconditioning (HPC) with 8% O2 against transient global cerebral ischemia (tGCI). Hence, we aimed to test the hypothesis that HPC-mediated PINK1/Parkin-induced mitochondrial ubiquitination and promotes mitophagy, thus exerting neuroprotection in the hippocampal CA1 subregion against tGCI. We found that mitochondrial clearance was disturbed at the late phase of reperfusion after tGCI, which was reversed by HPC, as evidenced by the reduction of the translocase of outer mitochondrial membrane 20 homologs (TOMM20), translocase of inner mitochondrial membrane 23 (TIMM23) and heat shock protein 60 (HSP60) in CA1 after HPC. In addition, HPC further increased the ratio of LC3II/I in mitochondrial fraction and promoted the formation of mitophagosomes in CA1 neurons after tGCI. The administration of lysosome inhibitor chloroquine (CQ) intraperitoneally or mitophagy inhibitor (Mdivi-1) intracerebroventricularly abrogated HPC-induced mitochondrial turnover and neuroprotection in CA1 after tGCI. We also found that HPC activated PINK1/Parkin pathway after tGCI, as shown by the augment of mitochondrial PINK1 and Parkin and the promotion of mitochondrial ubiquitination in CA1. In addition, PINK1 or Parkin knockdown with small-interfering RNA (siRNA) suppressed the activation of PINK1/Parkin pathway and hampered mitochondrial clearance and attenuated neuroprotection induced by HPC, whereas PINK1 overexpression promoted PINK1/Parkin-mediated mitophagy and ameliorated neuronal damage in CA1 after tGCI. Taken together, the new finding in this study is that HPC-induced neuroprotection against tGCI through promoting mitophagy mediated by PINK1/Parkin-dependent pathway.Subject terms: Cell death in the nervous system, Stroke  相似文献   

3.
We demonstrated previously that 30 min of hypoxic preconditioning (HPC) applied 1 day before 10 min of transient global cerebral ischemia (tGCI) reduced neuronal loss in the hippocampal CA1 subregion in adult rats. The aim of the present study was to investigate the role of Na+/K+-ATPase and protein kinase Mζ (PKMζ) in the protective effect of HPC against tGCI in adult rats. We found that the activity of Na+/K+-ATPase decreased in the hippocampal CA1 subregion after 10 min of tGCI. This effect was not seen after 30 min of HPC in adult rats. Corresponding to the changes in Na+/K+-ATPase activity, the surface expression of Na+/K+-ATPase α1 subunit increased after HPC. Furthermore, HPC dramatically reduced the number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive cells in the hippocampal CA1 subregion after tGCI. However, neither PKMζ nor phosphorylation of PKMζ was changed after tGCI or HPC. The results of the present study are consistent with the hypothesis that both enhanced recovery of Na+/K+-ATPase activity due to preserved the protein levels of Na+/K+-ATPase α1 subunit and reduced DNA fragmentation after tGCI contribute to the protection afforded by HPC. However, PKMζ activation does not appear to play a role in this neuroprotection.  相似文献   

4.
Endothelial cells (ECs) are directly exposed to hypoxia and contribute to injury during myocardial ischemia/reperfusion. Hypoxic preconditioning (HPC) protects ECs against hypoxia injury. This study aimed to explore whether HPC attenuates hypoxia/reoxygenation (H/R) injury by suppressing excessive endoplasmic reticulum stress (ERS) in cultured microvascular ECs (MVECs) from rat heart. MVECs injury was measured by lactate dehydrogenase (LDH) leakage, cytoskeleton destruction, and apoptosis. Expression of glucose regulating protein 78 (GRP78) and C/EBP homologous protein (CHOP), activation of caspase-12 (pro-apoptosis factors) and phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) were detected by western blot analysis. HPC attenuated H/R-induced LDH leakage, cytoskeleton destruction, and cell apoptosis, as shown by flow cytometry, Bax/Bcl-2 ratio, caspase-3 activation and terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end labeling. HPC suppressed H/R-induced ERS, as shown by a decrease in expression of GRP78 and CHOP, and caspase-12 activation. HPC enhanced p38 MAPK phosphorylation but decreased that of protein kinase R-like ER kinase (PERK, upstream regulator of CHOP). SB202190 (an inhibitor of p38 MAPK) abolished HPC-induced cytoprotection, downregulation of GRP78 and CHOP, and activation of caspase-12, as well as PERK phosphorylation. HPC may protect MVECs against H/R injury by suppressing CHOP-dependent apoptosis through p38 MAPK mediated downregulation of PERK activation.  相似文献   

5.
Numerous studies have demonstrated the neuroprotective effects of estrogen in experimental cerebral ischemia. To investigate molecular mechanisms of estrogen neuroprotection in global ischemia, immunoblotting, immunohistochemistry and Nissel-staining analysis were used. Our results showed that chronic pretreatment with beta-estradiol 3-benzoate (E2) enhanced Akt1 activation and reduced the activation of mixed-lineage kinase 3 (MLK3), mitogen-activated protein kinase kinase 4/7 (MKK4/7), and c-Jun N-terminal kinase 1/2 (JNK1/2) in the hippocampal CA1 subfield during reperfusion after 15 min of global ischemia. In addition, E2 reduced downstream JNK nuclear and non-nuclear components, c-Jun and Bcl-2 phosphorylation and Fas ligand protein expression induced by ischemia/reperfusion. Administration of phosphoinositide 3-kinase (PI3K) inhibitor LY 294,002 prevented both activation of Akt1 and inhibition of MLK3, MKK4/7 and JNK1/2. The interaction between ERalpha and the p85 subunit of PI3K was also examined. E2 and antiestrogen ICI 182,780 promoted and prevented this interaction, respectively. Furthermore, ICI 182,780 blocked both the activation of Akt1 and the inhibition of MLK3, MKK4/7 and JNK1/2. Photomicrographs of cresyl violet-stained brain sections showed that E2 reduced CA1 neuron loss after 5 days of reperfusion, which was abolished by ICI 182,780 and LY 294,002. Our data indicate that in response to estrogen, ERalpha interacts with PI3K to activate Akt1, which may inhibit the MLK3-MKK4/7-JNK1/2 pathway to protect hippocampal CA1 neurons against global cerebral ischemia in male rats.  相似文献   

6.
Liu X  Xu F  Fu Y  Liu F  Sun S  Wu X 《Proteomics》2006,6(13):3792-3800
Hypoxic preconditioning (HPC) attenuates tissue injury caused by ischemia/reperfusion. The protective mechanisms of HPC involve up-regulation of the protective proteins and mitigation of cellular calcium overload. Calreticulin (CRT), a Ca(2+)-binding chaperone, plays an important role in regulating calcium homeostasis and folding of proteins. The role of CRT in cardioprotection of HPC and the pathways determining CRT expression during HPC are not clear. In this work, 2-DE and MALDI-MS were employed to analyze CRT differential expression in cardiomyocytes subjected to transient hypoxia. Western blotting analysis was used to detect the CRT expression and activities of p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun NH(2)-terminal kinase (JNK) in myocardium subjected to ischemia with and without HPC and sham operation. The hearts from HPC group were more resistant to sustained ischemia and had much stronger phosphorylation of p38 MAPK, with a reduced phosphorylation of JNK, than controls. The CRT expression was positively correlated with the phosphorylation of p38 MAPK and negatively correlated with the level of JNK phosphorylation. Furthermore, inhibition of the p38 MAPK with SB202190 abolished, while inhibition of the JNK with SP600125 enhanced the CRT up-regulation in cardiomyocytes induced by HPC. The results indicate that HPC up-regulates CRT expression through the MAPK signaling pathways.  相似文献   

7.
It is demonstrated that the c-Jun N-terminal kinase (JNK) signaling pathway plays a critical role in ischemic brain injury. Our previous studies have suggested that K252a can obviously inhibit JNK activation induced by ischemia/reperfusion in the vulnerable hippocampal CA1 subregion. Here, we further discussed the potential mechanism of ischemic brain injury induced by the activation of JNK after 15?min of transient global cerebral ischemia. As a result, through inhibiting phosphorylation of Bcl-2 (a cytosolic target of JNK) and 14-3-3 protein (a cytoplasmic anchor of Bax) induced by the activation of JNK, K252a decreased the release of Bax from Bcl-2/Bax and 14-3-3/Bax dimers, further attenuating the translocation of Bax from cytosol to mitochondria and the release of cytochrome c induced by ischemia/reperfusion, which related to mitochondria-mediated apoptosis. Importantly, pre-infusion of K2525a 20?min before ischemia showed neuroprotective effect against neuronal cells apoptosis. These findings imply that K252a induced neuroprotection against ischemia/reperfusion in rat hippocampal CA1 subregion via inhibiting the mitochondrial apoptosis pathway induced by JNK activation.  相似文献   

8.
Leptin is an adipose hormone with well characterized roles in regulating food intake and energy balance. A novel neuroprotective role for leptin has recently been discovered; however, the underlying mechanisms are not clearly defined. The purpose of this study was to determine whether leptin protects against delayed neuronal cell death in hippocampal CA1 following transient global cerebral ischemia in rats and to study the signaling mechanism responsible for the neuroprotective effects of leptin. Leptin receptor antagonist, protein kinase inhibitors and western blots were used to assess the molecular signaling events that were altered by leptin after ischemia. The results revealed that intracerebral ventricle infusion of leptin markedly increased the numbers of survival CA1 neurons in a dose-dependent manner. Infusion of a specific leptin antagonist 10 min prior to transient global ischemia abolished the pro-survival effects of leptin, indicating the essential role of leptin receptors in mediating this neuroprotection. Both the Akt and extracellular signal-related kinase 1/2 (ERK1/2) signaling pathways appear to play a critical role in leptin neuroprotection, as leptin infusion increased the phosphorylation of Akt and ERK1/2 in CA1. Furthermore, pharmacological inhibition of either pathway compromised the neuroprotective effects of leptin. Taken together, the results suggest that leptin protects against delayed ischemic neuronal death in the hippocampal CA1 by maintaining the pro-survival states of Akt and ERK1/2 MAPK signaling pathways.  相似文献   

9.
Extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) are major signaling molecules activated in human neutrophils stimulated by cytokines. Both molecules were cleaved at the N-terminal portion in neutrophils undergoing apoptosis induced by in vitro culture alone or treatment with TNF and/or cycloheximide. The cleavage of both molecules was inhibited by G-CSF and benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone, a caspase inhibitor, both of which can inhibit neutrophil apoptosis. In a cell-free system, ERK and p38 MAPK were not cleaved by recombinant caspase-3 or caspase-8 while gelsolin was cleaved by caspase-3 under the same condition. The cleavage of both molecules appears to be specific to mature neutrophils, since it was not detected in immature cells (HL-60 and Jurkat) undergoing apoptosis, indicating that proteases responsible for the cleavage of both molecules may develop during differentiation into mature neutrophils. Concomitant with the cleavage of ERK and p38 MAPK, GM-CSF- and TNF-induced superoxide release, adherence, and phosphorylation of ERK and p38 MAPK were decreased in neutrophils undergoing apoptosis. In addition, GM-CSF- and TNF-induced superoxide release and adherence were inhibited by PD98059 MAPK/ERK kinase inhibitor) as well as SB203580 (p38 MAPK inhibitor), suggesting possible involvement of ERK and p38 MAPK in superoxide release and adherence induced by these cytokines. These findings indicate that ERK and p38 MAPK are cleaved and degraded in neutrophils undergoing apoptosis in a caspase-dependent manner and the cleavage of both molecules may be partly responsible for decreased functional responsiveness to inflammatory cytokines.  相似文献   

10.
Heavy metals are important regulators of cell apoptosis. Manganese (Mn(2+)) is a potent inducer of apoptosis in different cell types, but the precise mechanisms that mediate such effects are not well defined. We previously reported that Mn(2+) was a potent apoptotic agent in human B cells, including lymphoma B cell lines. We show here that Mn(2+)-induced cell death in human B cells is associated with caspase-8-dependent mitochondrial activation leading to caspase-3 activity and apoptosis. We used specific caspase-8 interfering shRNAs to reduce caspase-8 expression, and this also reduced Mn(2+)-induced caspase-3 activation and apoptosis. Mn(2+)-triggered caspase-8 activation is associated with a specific pathway, which is independent of Fas-associated death domain protein, and dependent on the sequential activation of p38-mitogen-activated protein kinase (p38 MAPK) and mitogen- and stress-response kinase 1 (MSK1). Inhibition of p38 activity using either pharmacological inhibitors or dominant-negative mutant forms of p38 blocked Mn(2+)-mediated phosphorylation of MSK1 and blocked subsequent caspase-8 activation. However, specific inhibitors and the expression of a dominant-interfering mutant of MSK1 only inhibited caspase-8 activation, but not p38 activity. These findings suggest a novel model for the regulation of caspase-8 during Mn(2+)-induced apoptosis based on the sequential activation of p38 MAPK, MSK1, caspase-8 and mitochondria, respectively.  相似文献   

11.
Ischemia-induced brain damage leads to apoptosis like delayed neuronal death in selectively vulnerable regions, which could further result in irreversible damages. Previous studies have demonstrated that neurons in the CA1 area of hippocampus are particularly sensitive to ischemic damage. Atorvastatin (ATV) has been reported to attenuate cognitive deficits after stroke, but precise mechanism for neuroprotection remains unknown. Therefore, the aims of this study were to investigate the neuroprotective mechanisms of ATV against ischemic brain injury induced by cerebral ischemia reperfusion. In this study, four-vessel occlusion model was established in rats with cerebral ischemia. Rats were divided into five groups: sham group, I/R group, I/R+ATV group, I/R+ATV+LY, and I/R+SP600125 group. Cresyl violet staining was carried out to examine the neuronal death of hippocampal CA1 region. Immunoblotting was used to detect the expression of the related proteins. Results showed that ATV significantly protected hippocampal CA1 pyramidal neurons against cerebral I/R. ATV could increase the phosphorylation of protein kinase B (Akt1) and nNOS, diminished the phosphorylation of JNK3 and c-Jun, and further inhibited the activation of caspase-3. Whereas, all of the aforementioned effects of ATV were reversed by LY294002 (an inhibitor of Akt1). Furthermore, pretreatment with SP600125 (an inhibitor of JNK) diminished the phosphorylation of JNK3 and c-Jun, and further inhibited the activation of caspase-3 after cerebral I/R. Taken together, our results implied that Akt-mediated phosphorylation of nNOS is involved in the neuroprotection of ATV against ischemic brain injury via suppressing JNK3 signaling pathway that provide a new experimental foundation for stroke therapy.  相似文献   

12.
Lacosamide is a new antiepileptic drug which is widely used to treat partial-onset seizures. In this study, we examined the neuroprotective effect of lacosamide against transient ischemic damage and expressions of antioxidant enzymes such as Zn-superoxide dismutase (SOD1), Mn-superoxide dismutase (SOD2), catalase (CAT) and glutathione peroxidase (GPX) in the hippocampal cornu ammonis 1 (CA1) region following 5 min of transient global cerebral ischemia in gerbils. We found that pre-treatment with 25 mg/kg lacosamide protected CA1 pyramidal neurons from transient global cerebral ischemic insult using hematoxylin–eosin staining and neuronal nuclear antigen immunohistochemistry. Transient ischemia dramatically changed expressions of SOD1, SOD2 and GPX, not CAT, in the CA1 pyramidal neurons. Lacosamide pre-treatment increased expressions of CAT and GPX, not SOD1 and 2, in the CA1 pyramidal neurons compared with controls, and their expressions induced by lacosamide pre-treatment were maintained after transient cerebral ischemia. In brief, pre-treatment with lacosamide protected hippocampal CA1 pyramidal neurons from ischemic damage induced by transient global cerebral ischemia, and the lacosamide-mediated neuroprotection may be closely related to increases of CAT and GPX expressions by lacosamide pre-treatment.  相似文献   

13.
Fasudil hydrochloride (FH), a Rho kinase (ROCK) inhibitor, has been reported to prevent cerebral ischemia in vivo from increasing cerebral blood flow and inhibiting inflammatory responses. However, it is uncertain by what mechanism a ROCK inhibitor can directly protect neurons against ischemic damage. The present study was designed to evaluate whether FH decreased the increased phosphorylation of glutamate receptor 6 (GluR6) and its downstream in GluR6–MLK3–JNKs signal transduction pathway following global transient cerebral ischemia, as a result of protecting against neuronal apoptosis and death. Transient cerebral ischemia was induced by the Pulsinelli–Brierley four-vessel occlusion method. FH (15 mg/kg) was administered to rats by intraperitoneal injection 30 min before ischemia. The phosphorylation and protein expression of GluR6 at 6 h during reperfusion were detected using immunoprecipitation and immunoblotting analysis. The phosphorylation and protein expression of Mixed lineage kinase 3 (MLK3) at ischemia/reperfusion (I/R) 6 h and c-Jun N-terminal kinase (JNK) at I/R 3 d were detected using immunoblotting analysis, respectively. The same method was used to detect the expression of caspase-3 at I/R 6 h. Furthermore, we also use TUNEL staining and Cresyl violet staining to examine the survival neurons in rat hippocampal CA1 regions after 3 and 5 d reperfusion, respectively. Our study indicated that FH could inhibit the increased phosphorylation of GluR6 and MLK3 and the expression of caspase-3 at peaked 6 h of reperfusion and the phosphorylation of JNK (3 d) (p < 0.5). The results of TUNEL staining and Cresyl violet showed that the number of surviving pyramidal neurons in rats hippocampal CA1 subfield increased markedly in FH-treated rats compared with ischemic groups after 3 or 5 d of reperfusion following ischemia (p < 0.5). These results suggested that FH, as a ROCK inhibitor, may be partly responsible for its protective effects against such damage by taking part in GluR6-MLK3-JNKs signaling pathway which modulates ischemic damage. Taken together, this is the first study investigating Rho and ROCK as the upstream of GluR6 taking part in GluR6–MLK3–JNKs signal transduction pathway following cerebral ischemia.  相似文献   

14.
Interleukin-33 (IL-33) plays a protective role in myocardial ischemia and reperfusion (I/R) injury, but the underlying mechanism was not fully elucidated. The present study was designed to investigate whether IL-33 protects against myocardial I/R injury by regulating both P38 mitogen-activated-protein kinase (P38 MAPK), which is involved in one of the downstream signaling pathways of IL-33, and high mobility group box protein 1 (HMGB1), a late pro-inflammatory cytokine. Myocardial I/R injury increased the level of IL-33 and its induced receptor (sST) in myocardial tissue. Compared with the I/R group, the IL-33 group had significantly lower cardiac injury (lower serum creatine kinase (CK), lactate dehydrogenase (LDH), and cTnI levels and myocardial infarct size), a suppressed inflammatory response in myocardial tissue (lower expression of HMGB1, IL-6, TNF-α and INF-γ) and less myocardial apoptosis (much higher Bcl-2/Bax ratio and lower cleaved caspase-3 expression). Moreover, IL-33 activated the P38 MAPK signaling pathway (up-regulating P-P38 expression) in myocardial tissue, and SB230580 partially attenuated the anti-inflammatory and anti-apoptosis effects of IL-33. These findings indicated that IL-33 protects against myocardial I/R injury by inhibiting inflammatory responses and myocardial apoptosis, which may be associated with the HMGB1 and P38 MAPK signaling pathways.  相似文献   

15.
Aims The present study was undertaken to evaluate possible neuroprotective effect of bradykinin against delayed neuronal death in hippocampal CA1 neurons if applied two days after transient forebrain ischemia in the rat. Methods Transient forebrain ischemia was induced in male Wistar rats by four-vessel occlusion for 8 min. To assess efficacy of bradykinin as a new stressor for delayed postconditioning we used two experimental groups of animals: ischemia 8 min and 3 days of survival, and ischemia 8 min and 3 days of survival with i.p. injection of bradykinin (150 μg/kg) applied 48 h after ischemia. Results We found extensive neuronal degeneration in the CA1 region at day 3 after ischemia/reperfusion. The postischemic neurodegeneration was preceded by increased activity of mitochondrial enzyme MnSOD in cytoplasm, indicating release of MnSOD from mitochondria in the process of delayed neuronal death. Increased cytosolic cytochrome c and subsequently caspase-3 activation are additional signs of neuronal death via the mitochondrial pathway. Bradykinin administration significantly attenuated ischemia-induced neuronal death, and also suppressed the release of MnSOD, and cytochrome c, and prevented caspase-3 activation. Conclusions Bradykinin can be used as an effective stressor able to prevent mitochondrial failure leading to apoptosis-like delayed neuronal death in postischemic rat hippocampus.  相似文献   

16.
Transient global cerebral ischemia leads to delayed neuronal cell death in the hippocampal CA1, caudate putamen and neocortex. If preischemic hyperglycemia exists, the same duration of ischemia recruits additional brain structures, such as dentate gyrus to become damaged. The objective of the present study is to determine whether activation of mitogen-activated protein kinases (MAPKs) plays a role in hyperglycemia-mediated ischemic neuronal damage. Using phopho-specific antibodies against c-jun NH2-terminal kinase (JNK) and p38 MAPK, we studied activation of these two MAPKs in ischemia-vulnerable neocortex and ischemia-resistant dentate gyrus in rats subjected to 15 min of forebrain ischemia and followed by 0.5, 1 and 3 hr of recirculation under normo- and hyperglycemic conditions. The results showed that levels of phosphorylated JNK increased in both normo- and hyperglycemic brains following blood reperfusion for 0.5 hr and persisted up to 3 hr in the neocortex but not in the dentate gyrus, implying JNK may play a role in mediating neuronal cell death after ischemia. However, since hyperglycemia did not further increase phospho-JNK, JNK may not contribute to the detrimental effect of hyperglycemia on neuronal cell death. The amount of phospho-p38 was not altered by ischemia under both normo- and hyperglycemic conditions, suggesting that p38 MAPK may not play a major role in mediating neuronal damage in these two structures.  相似文献   

17.
18.
Growing evidence suggests that activation of mitogen-activated protein kinase (MAPK) signal transduction mediates changes in muscle gene expression in response to exercise. Nevertheless, little is known about upstream or downstream regulation of MAPK in response to muscle contraction. Here we show that ex vivo muscle contraction stimulates extracellular signal-regulated kinase 1 and 2 (ERK1/2), and p38(MAPK) phosphorylation. Phosphorylation of ERK1/2 or p38(MAPK) was unaffected by protein kinase C inhibition (GF109203X), suggesting that protein kinase C is not involved in mediating contraction-induced MAPK signaling. Contraction-stimulated phosphorylation of ERK1/2 and p38(MAPK) was completely inhibited by pretreatment with PD98059 (MAPK kinase inhibitor) and SB203580 (p38(MAPK) inhibitor), respectively. Muscle contraction also activated MAPK downstream targets p90 ribosomal S6 kinase (p90(Rsk)), MAPK-activated protein kinase 2 (MAPKAP-K2), and mitogen- and stress-activated protein kinase 1 (MSK1). Use of PD98059 or SB203580 revealed that stimulation of p90(Rsk) and MAPKAP-K2 most closely reflects ERK and p38(MAPK) stimulation, respectively. Stimulation of MSK1 in contracting skeletal muscle required the activation of both ERK and p38(MAPK). These data demonstrate that muscle contraction, separate from systemic influence, activates MAPK signaling. Furthermore, we are the first to show that contractile activity stimulates MAPKAP-K2 and MSK1.  相似文献   

19.
Activation of p38 mitogen-activated protein kinase (p38 MAPK) has been implicated as a mechanism of ischemia/hypoxia-induced cerebral injury. The current study was designed to explore the involvement of p38 MAPK in the development of cerebral hypoxic preconditioning (HPC) by observing the changes in dual phosphorylation (p-p38 MAPK) at threonine180 and tyrosine182 sites, protein expression, and cellular distribution of p-p38 MAPK in the brain of HPC mice. We found that the p-p38 MAPK levels, not protein expression, increased significantly (p < 0.05) in the regions of frontal cortex, hippocampus, and hypothalamus of mice in response to repetitive hypoxic exposure (H1–H6, n = 6 for each group) when compared to values of the control normoxic group (H0, n = 6) using Western blot analysis. Similar results were also confirmed by an immunostaining study of the p-p38 MAPK location in the frontal cortex, hippocampus, and hypothalamus of mice from HPC groups. To further define the cell type of p-p38 MAPK positive cells, we used a double-labeled immunofluorescent staining method to co-localize p-p38 MAPK with neurofilaments heavy chain (NF-H, neuron-specific marker), S100 (astrocyte-specific marker), and CD11b (microglia-specific maker), respectively. We found that the increased p-p38 MAPK occurred in microglia of cortex and hippocampus, as well as in neurons of hypothalamus of HPC mice. These results suggest that the cell type-specific activation of p38 MAPK in the specific brain regions might contribute to the development of cerebral HPC mechanism in mice.  相似文献   

20.
Focal cerebral ischemia can impair the induction of activity-dependent long-term potentiation (LTP) in the hippocampus. This impairment of hippocampal synaptic plasticity can be caused by excitotoxicity and subsequent perturbation of hippocampal LTP-relevant transmitter systems, which include NR2B and PSD-95. It has been suggested that hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels may play an important role in the control of membrane excitability and rhythmic neuronal activity. Our previous study has indicated that the selective HCN channel blocker ZD7288 can produce a dose-dependent inhibition of the induction of LTP at the Schaffer collateral-CA1 synapse of hippocampus by reducing the amount of glutamate released. It has also been demonstrated that ZD7288 can protect against neuronal injury caused by oxygen glucose deprivation. In the present study, we investigated the effect of ZD7288 on the induction of activity-dependent LTP and the expression of NR2B and PSD-95 after focal cerebral ischemia/reperfusion injury. The results showed that the induction of LTP was significantly impaired and the levels of NR2B and PSD-95 mRNA and protein were markedly decreased in the CA1 region of hippocampus following focal cerebral ischemia/reperfusion injury. Administration of low dose ZD7288 (0.25 μg) at 30 min and 3 h after the onset of ischemia attenuated the impairment of LTP induction and alleviated the NR2B and PSD-95 mRNA and protein down-regulation commonly induced by cerebral ischemia/reperfusion injury. These results suggest that low dose ZD7288 can ameliorate the ischemia/reperfusion-induced impairment of synaptic plasticity in the hippocampal CA1 region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号