首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 415 毫秒
1.
2.
Renal hypertrophy and extracellular matrix accumulation are early features of diabetic nephropathy. We investigated the role of the NAD(P)H oxidase Nox4 in generation of reactive oxygen species (ROS), hypertrophy, and fibronectin expression in a rat model of type 1 diabetes induced by streptozotocin. Phosphorothioated antisense (AS) or sense oligonucleotides for Nox4 were administered for 2 weeks with an osmotic minipump 72 h after streptozotocin treatment. Nox4 protein expression was increased in diabetic kidney cortex compared with non-diabetic controls and was down-regulated in AS-treated animals. AS oligonucleotides inhibited NADPH-dependent ROS generation in renal cortical and glomerular homogenates. ROS generation by intact isolated glomeruli from diabetic animals was increased compared with glomeruli isolated from AS-treated animals. AS treatment reduced whole kidney and glomerular hypertrophy. Moreover, the increased expression of fibronectin protein was markedly reduced in renal cortex including glomeruli of AS-treated diabetic rats. Akt/protein kinase B and ERK1/2, two protein kinases critical for cell growth and hypertrophy, were activated in diabetes, and AS treatment almost abolished their activation. In cultured mesangial cells, high glucose increased NADPH oxidase activity and fibronectin expression, effects that were prevented in cells transfected with AS oligonucleotides. These data establish a role for Nox4 as the major source of ROS in the kidneys during early stages of diabetes and establish that Nox4-derived ROS mediate renal hypertrophy and increased fibronectin expression.  相似文献   

3.
The sorbitol pathway catalyzes the conversion of glucose to fructose via the intermediate sorbitol. It consists of aldose reductase (AR) and sorbitol dehydrogenase (SDH). In adult (44 day) kidney zones, AR was highest in the outer medulla. In substructures AR was highest in distal convoluted tubule. The AR was greatest in newborn and 8-day zones of developing rat kidney. Acute alloxan diabetes was associated with decreased AR in small arteries, but not glomeruli. The SDH was lowest in outer medulla. It was most active in glomeruli and distal convoluted tubules. The diabetic state leads to no change of SDH in arteries but an increase in glomeruli. SDH increased with development. This study demonstrates AR and SDH in substructures of the kidney. The pathway is present in developing kidney. In diabetes the enzymatic changes would tend to decrease accumulation of sorbitol.  相似文献   

4.
Recent evidence has suggested a role for the polyol pathway in pathogenesis of cell damage in diabetes Glucose may be phosphorylated to glucose-6-phosphate via hexokinase and enter glycolysis or reduced to sorbitol via aldose reductase to enter the polyol pathway. The poorly diffusible sorbitol is converted via sorbitol dehydrogenase to fructose. Hexokinase, aldose reductase and sorbitol dehydrogenase activities were measured in glomeruli (G) and small arteries (SA) taken from normal and diabetic human kidneys, Hexokinase in diabetic G was 1688, which was significantly decreased from normal, 3147 mmoles/kg-1/h-1. Alodse reductase was significantly elevated in diabetic G,56-6, compared to normal G,10-8 mmoles/kg-1/h-1. In contrast, sorbitol dehydrogenase was significantly depressed in diabetic G, 3-7 VERSUs 10-9 mmoles/kg-1/h-1. The enzymatic changes observed in diabetic G would facilitate accumulation of sorbitol and therefore could contribute to the progression of glomerulosclerosis. The activity of hexokinase was also significantly reduced in SA, whereas aldose reductase and sorbitol dehydrogenase were unchanged.  相似文献   

5.
Increased oxidative stress and activation of protein kinase C (PKC) under hyperglycemia have been implicated in the development of diabetic nephropathy. Because reactive oxygen species derived from nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, NOX1 accelerate the translocation of PKC isoforms, NOX1 is postulated to play a causative role in the development of diabetic nephropathy. Hyperglycemia was induced in wild-type and Nox1-deficient mice (KO) by two doses of streptozotocin injection. At 3 weeks after the induction of hyperglycemia, glomeruli and cortical tubules were isolated from kidneys. The mRNA level of Nox1 was significantly upregulated in the renal cortex at 3 weeks of hyperglycemia. Urinary albumin and expression of inflammatory or fibrotic mediators were similarly elevated in diabetic wild-type and KO; however, increases in glomerular volume and mesangial matrix area were attenuated in diabetic KO. Nox1 deficiency significantly reduced the levels of renal thiobarbituric acid-reacting substances and 8-hydroxydeoxyguanosine, membranous translocation of PKCα/β, activity of PKC, and phosphorylation of p38 mitogen-activated protein kinase in the diabetic kidney. Furthermore, increased staining of senescence-associated β-galactosidase in glomeruli and cortical tubules of diabetic mice was significantly suppressed in KO. Whereas the levels of cyclin-dependent kinase inhibitors, p16INK4A and p21Cip1, were equivalent between the genotypes, increased levels of p27Kip1 and γ-H2AX, a biomarker for DNA double-strand breaks, were significantly attenuated in isolated glomeruli and cortical tubules of diabetic KO. Taken together, NOX1 modulates the p38/p27Kip1 signaling pathway by activating PKC and promotes premature senescence in early stage diabetic nephropathy.  相似文献   

6.
We examined the effects of an aldose-reductase inhibitor, statil, which blocks the conversion of glucose to sorbitol, in rats rendered diabetic with streptozotocin in order to determine whether the anticipated changes in sorbitol content was associated with beneficial lack of changes in renal morphology and function. Groups of diabetic, insulin-treated and untreated rats were fed statil daily for a period of five months; each group was paired with a non-drug-treatment control group. At the conclusion of the study period, statil was not found to affect renal sorbitol concentrations nor did it effect functional or structural changes seen in the kidney. We conclude that further study, using other doses of statil and longer duration over which data is collected, must be undertaken in order to implicate the polyol pathway in the renal complications of diabetes mellitus.  相似文献   

7.
8.
Ganglioside GM3 is particularly abundant in the kidney tissue and is thought to play an important role in the maintenance of the charge-selective filtration barrier of glomeruli. Altered expression of ganglioside GM3 was pathologically related with glomerular hypertrophy occurring in diabetic human and rat kidneys. Considering the role of GM3 ganglioside in kidney function, the aim of this study was to determine the difference in expression of GM3 ganglioside in glomeruli and tubules using immunofluorescence microscopy both in rat models of types 1 and 2 diabetes mellitus. Diabetes was induced with streptozotocin (55 mg/kg for type 1 diabetes and 35 mg/kg for type 2 diabetes) injection to male Sprague–Dawley rats which were fed with normal pellet diet (type 1 diabetes) or high-fat diet (type 2 diabetes). Rats were sacrificed 2 weeks after diabetes induction, frozen renal sections were stained with primary antibody GM3(Neu5Ac) and visualized by secondary antibody coupled with Texas red. In addition, renal gangliosides GM3 were analyzed by high-performance thin-layer chromatography followed by GM3 immunostaining. Immunofluorescent microscopy detected 1.7-fold higher GM3 expression in tubules and 1.25-fold higher GM3 in glomeruli of type 1 diabetes mellitus compared with control group. Type 2 diabetes mellitus rats showed slight GM3 increase in whole kidney, unchanged GM3 in glomeruli, but significant higher GM3 expression in tubules, compared with control animals. Taking into consideration increased tubular GM3 content in both types of diabetes, we could hypothesize the role of GM3 in early pathogenesis of diabetic nephropathy.  相似文献   

9.
Nitric oxide (NO) plays a significant role in the development of diabetic nephropathy. We investigated the effects of an antioxidant, carnosine, on streptozotocin (STZ)-induced renal injury in diabetic rats. We used four groups of eight rats: group 1, control; group 2, carnosine treated; group 3, untreated diabetic; group 4, carnosine treated diabetic. Kidneys were removed and processed, and sections were stained with periodic acid-Schiff (PAS) and subjected to eNOS immunohistochemistry. Examination by light microscopy revealed degenerated glomeruli, thickened basement membrane and glycogen accumulation in the tubules of diabetic kidneys. Carnosine treatment prevented the renal morphological damage caused by diabetes. Moreover, administration of carnosine decreased somewhat the oxidative damage of diabetic nephropathy. Appropriate doses of carnosine might be a useful therapeutic option to reduce oxidative stress and associated renal injury in diabetes mellitus.  相似文献   

10.
The Vif protein of human immunodeficiency virus-1 (HIV-1) interacts with members of the APOBEC family of cytidine deaminases. In this study, we isolated RNA from renal cortex as well as from isolated glomeruli and tubulointerstitial fractions from two pigtailed macaques that were exsanguinated and perfused with saline. RT-PCR results indicate that APOBEC3G was detected in the tubule fractions but not in the glomerular fractions. Immunoblot analysis using lysates prepared from these same fractions and a monoclonal antibody to APOBEC3G confirmed the RT-PCR findings. To determine which cell types express APOBEC3G, immunohistochemical studies were performed using this monoclonal antibody on renal cortical sections. Our results clearly show that the glomeruli do not express APOBEC3G but that select tubules within the cortex express APOBEC3G at high levels. To further differentiate the distribution of APOBEC3G expression, serial sections were stained with the lectins Dolichos biflorus agglutinin (DBA) and Phaseolus vulgaris erythroagglutinin (PHA-E), which differentially bind to epithelial cells of the tubules and glomeruli. Our results indicate that APOBEC3G expression was restricted to PHA-E-staining tubules and not DBA-staining tubules, suggesting that APOBEC3G expression was restricted to proximal convoluted tubules. These findings suggest that infection of epithelial cells of proximal renal tubules could suppress Vif-defective HIV-1 replication, whereas infection of cells of the glomeruli, a major target of HIV-associated nephropathy, could act as a reservoir for the replication of Vif-defective HIV-1.  相似文献   

11.
To determine the localization of T4 5'-monodeiodinase activity in rabbit and rat nephron segments, the formation of tri-iodothyronine (T3) from thyroxine (T4) was measured in kidney homogenate and in isolated nephron segments obtained by the microdissection method. In order of decreasing activity, homogenates of rabbit renal cortex, outer medulla and inner medulla were capable of converting T4 to T3. In the isolated nephron segments of the rabbit cortex, the activities were noted in both proximal convoluted and proximal straight tubules. On the other hand, the activities were not detected in segments including the cortical thick ascending limb of Henle's loop, the distal convoluted tubule, the connecting tubule, and the cortical collecting tubule. It is concluded that both the convoluted and the straight tubules are the sites of T3 production in the kidney.  相似文献   

12.
Numerous studies have investigated specific pathways that link diabetes and high extracellular glucose exposure to glomerulosclerosis and mesangial cell extracellular matrix production. However, only in the past ten years has a role for glucose transporters in this process been addressed. Many different glucose transporters are expressed in glomeruli; of these, the GLUT1 facilitative glucose transporter is upregulated in the diabetic renal cortex and in response to glomerular hypertension, as well as in cultured mesangial cells exposed to high glucose. Transgenic mouse and cell models have recently been developed to test the role of GLUT1 in the pathogenesis of glomerulosclerosis with and without diabetes. Clinical studies of GLUT1 alleles performed in humans have identified GLUT1 susceptibility alleles for diabetic nephropathy. Studies are also currently under way to assess the potential role of GLUT1 in nondiabetic renal disorders.  相似文献   

13.
Renal complications in diabetes are severe and may lead to renal insufficiency. Early alterations in tight junction (TJ) proteins in diabetic nephropathy (DN) have not been explored and the role of oxidative stress in their disassembly has been poorly characterized. We investigated the expression and distribution of TJ proteins: claudin-5 in glomeruli (GL), occludin and claudin-2 in proximal tubules (PTs), and ZO-1 and claudin-1, -4, and -8 in distal tubules (DTs) of rats 21 days after streptozotocin injection. Redox status along the nephron segments was evaluated. Diabetes increased kidney injury molecule-1 expression. Expression of sodium glucose cotransporters (SGLT1 and SGLT2) and facilitative glucose transporter (GLUT2) was induced. Increased oxidative stress was present in GL and PTs and to a lesser extent in DTs (measured by superoxide production and PKCβ2 expression), owing to NADPH oxidase activation and uncoupling of the endothelial nitric oxide synthase-dependent pathway. Claudin-5, occludin, and claudin-2 expression was decreased, whereas claudin-4 and -8 expression increased. ZO-1 was redistributed from membrane to cytosol. Increased nitration of tyrosine residues in claudin-2 was found, which might contribute to decrement of this protein in proximal tubule. In contrast, occludin was not nitrated. We suggest that loss of claudin-2 is associated with increased natriuresis and that loss of glomerular claudin-5 might explain early presence of proteinuria. These findings suggest that oxidative stress is related to alterations in TJ proteins in the kidney that are relevant to the pathogenesis and progression of DN and for altered sodium regulation in diabetes.  相似文献   

14.
Two forms of superoxide dismutase, CuZn-SOD and MnSOD, have been investigated in the kidneys of streptozotocin-induced diabetic rats using both radio-immunoassay and immunoenzyme staining. The rats were killed 2, 8 and 12 weeks after the induction of diabetes mellitus and the kidneys excised. Two weeks after the induction of diabetes, the kidneys were hypertrophied because of the proliferation of renal tubular epithelium. However, the total CuZnSOD content of the kidneys did not increase and, because of the epithelial proliferation, the CuZnSOD concentration in each proximal tubular cell was decreased. Armanni-Ebstein lesions were found in the distal tubules 8 and 12 weeks after the induction of diabetes. The cells in these lesions were intensely stained for CuZnSOD, suggesting an adaptive response to the enhanced oxidative stress. The MnSOD staining in the thick ascending limbs of Henle's loops was enhanced in the diabetic kidneys, while that in the cortical tubules was unaltered. MnSOD was assumed to increase in response to hypermetabolism associated with the proliferation of renal tubules. This was most marked in the cells which were rich in mitochondria, again suggesting an adaptive response to enhanced oxidative stress induced by diabetes mellitus. The glomeruli of both the diabetic and control groups were not stained for SODs, and no significant microscopic change was found even 12 weeks after the induction of diabetes mellitus.  相似文献   

15.
The toll-like receptor (TLR) has been suggested as a candidate cause for diabetic nephropathy. Recently, we have reported the TLR4 expression in diabetic mouse glomerular endothelium. The study here investigates the effects of the periodontal pathogen Porphyromonas gingivalis lipopolysaccharide (LPS) which is a ligand for TLR2 and TLR4 in diabetic nephropathy. In laser-scanning microscopy of glomeruli of streptozotocin- and a high fat diet feed-induced type I and type II diabetic mice, TLR2 localized on the glomerular endothelium and proximal tubule epithelium. The TLR2 mRNA was detected in diabetic mouse glomeruli by in situ hybridization and in real-time PCR of the renal cortex, the TLR2 mRNA amounts were larger in diabetic mice than in non-diabetic mice. All diabetic mice subjected to repeated LPS administrations died within the survival period of all of the diabetic mice not administered LPS and of all of the non-diabetic LPS-administered mice. The LPS administration promoted the production of urinary protein, the accumulation of type I collagen in the glomeruli, and the increases in IL-6, TNF-α, and TGF-β in the renal cortex of the glomeruli of the diabetic mice. It is thought that blood TLR ligands like Porphyromonas gingivalis LPS induce the glomerular endothelium to produce cytokines which aid glomerulosclerosis. Periodontitis may promote diabetic nephropathy.  相似文献   

16.
The glomerular filtration rate (GFR) normally increases during glycine infusion, which is a test of "renal reserve." Renal reserve is absent in diabetes mellitus. GFR increases after protein feeding because of increased tubular reabsorption, which reduces the signal for tubuloglomerular feedback (TGF). Dietary protein restriction normalizes some aspects of glomerular function in diabetes. Renal micropuncture was performed in rats 4-5 wk after diabetes was induced by streptozotocin to determine whether renal reserve is lost as a result of altered tubular function and activation of TGF, whether 10 days of dietary protein restriction could restore renal reserve, and whether this results from effects of glycine on the tubule. TGF activation was determined by locating single-nephron GFR (SNGFR) in the early distal tubule along the TGF curve. The TGF signal was determined from the ionic content of the early distal tubule. In nondiabetic rats, SNGFR in the early distal tubule increased during glycine infusion because of primary vasodilation augmented by increased tubular reabsorption, which stabilized the TGF signal. In diabetic rats, glycine reduced reabsorption, thereby activating TGF, which was largely responsible for the lack of renal reserve. In protein-restricted diabetic rats, the tubular response to glycine remained abnormal, but renal reserve was restored by a vascular mechanism. Glycine affects GFR directly and via the tubule. In diabetes, reduced tubular reabsorption dominates. In low-protein diabetes, the vascular effect is enhanced and overrides the effect of reduced tubular reabsorption.  相似文献   

17.
This study was designed to investigate the effects of moderate zinc deficiency during growth on renal morphology and function in adult life. Weaned male Wistar rats were divided into two groups and fed either a moderately zinc-deficient diet (zinc: 8 mg/kg, n=12) or a control diet (zinc: 30 mg/kg, n=12) for 60 days. We evaluated: renal parameters, NADPH-diaphorase and nitric oxide synthase activity in kidney, renal morphology and apoptotic cells in renal cortex. Zinc-deficient rats showed a decrease in glomerular filtration rate and no changes in sodium and potassium urinary excretion. Zinc deficiency decreased NADPH diaphorase activity in glomeruli and tubular segment of nephrons, and reduced activity of nitric oxide synthase in the renal medulla and cortex, showing that zinc plays an important role in preservation of the renal nitric oxide system. A reduction in nephron number, glomerular capillary area and number of glomerular nuclei in cortical and juxtamedullary areas was observed in zinc deficient kidneys. Sirius red staining and immunostaining for alpha-smooth muscle-actin and collagen III showed no signs of fibrosis in the renal cortex and medulla. An increase in the number of apoptotic cells in distal tubules and cortical collecting ducts neighboring glomeruli and, to a lesser extent, in the glomeruli was observed in zinc deficient rats. The major finding of our study is the emergence of moderate zinc deficiency during growth as a potential nutritional factor related to abnormalities in renal morphology and function that facilitates the development of cardiovascular and renal diseases in adult life.  相似文献   

18.
We measured glycine release from ([2-3H]glycine)-labelled GSH and glucose formation from maltose incubated with rat kidney whole cortex homogenate, thin cortex slices or collagenase-treated tubule fragments. Liberation of glycine was inhibited (74-83%) by serine borate (20 mM), indicating a gamma-glutamyltransferase-dependent hydrolysis of GSH. In whole cortex homogenate, the GSH cleavage activity was 17.4 +/- 0.6 nmol GSH degraded/mg protein per min (mean +/- S.D.); cleavage activity by intact slices was 3.5 +/- 0.7 (P less than 0.001 relative to whole cortex homogenate) and in tubule fragments 9.4 +/- 0.8 (P less than 0.001). Homogenizing the tissue preparation increased cleavage rate in slices about 4-fold (12.4 +/- 2.9; P less than 0.005 relative to intact slice) but did not change the rate in tubule fragments (9.8 +/- 0.5). Maltose cleavage activity in whole cortex homogenate was 512 +/- 22 nmol glucose formed/mg protein per min, in slices 162 +/- 12, and in tubules 884 +/- 48. These findings imply that substrate in the incubation medium has a limited access to the luminal membrane of cortex slices but not of tubule fragments. They further imply that basolateral membrane is preferentially exposed in the slice preparation.  相似文献   

19.
The accumulation and subcellular distribution of copper in the kidney of streptozotocin-diabetic rats were investigated. Male Sprague-Dawley rats received streptozotocin (50 mg/kg body wt on two consecutive days) intraperitoneally and were fed either commercial or purified diet. The concentrations of copper, zinc, iron, and manganese present in intact kidney, renal cortex, and renal medulla were compared at various times. Chow-fed diabetic rats had a renal copper concentration 2.6 times greater than age-matched controls after 2 weeks. The concentration of zinc was only 30% higher in diabetic kidney than in control tissue, whereas the iron and manganese concentrations were similar for both groups. The additional complement of renal copper was localized entirely in the cortex and was significantly reduced by oral treatment with penicillamine, a copper chelating agent. When diabetic rats were fed purified diet (15-20 ppm Cu), the quantity of copper accumulated in the renal cortex increased from 2.3 to 8.7-fold higher than in control tissue from 1 to 4 weeks, respectively, after injection with streptozotocin. Copper levels in. both the soluble and particulate (165, 000g pellet) fractions of diabetic renal cortex were similarly increased at each time. Gel filtration Chromatographic analysis of the cytosol showed that all of the copper accumulated in the soluble fraction was associated with metallothionein. The distribution of excess copper in the particulate fraction was determined by differential centrifugation. The additional quantity of metal was localized in the crude nuclear fraction of renal cortex in the diabetic rat. Further analysis revealed that the lysosomal fraction from 3-weeek diabetic rats had a copper level 16-fold higher than in the controls. The possibility that accumulation of excessive levels of copper in the streptozotocin-diabetic kidney may contribute to the development of diabetic nephropathy is discussed.  相似文献   

20.
Suspensions of renal cortical tubules were incubated with 33Pi and exposed to parathyroid hormone (40 μg/ml) or 1 mM dibutyryl cyclic AMP. In other experiments homogenates of renal cortex were assayed for protein kinase and phosphoprotein phosphatase activity using [γ-32P]ATP with or without 5 mM cyclic AMP. Proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and phosphorylation of proteins measured by liquid scintillation counting of gel slices. The pattern of protein phosphorylation was similar in control tissue from both tubule suspensions and homogenates. In intact tubules, parathyroid hormone stimulated the phosphorylation of four proteins with molecular weights of approx. 1500 000, 125 000, 100 000 and 50 000 by 28%, 24%, 13%, and 20%, respectively. Results with dibutyryl cyclic AMP were comparable but more variable. Stimulation of phosphorylation by cyclic AMP in homogenates was more generalized with the major effect on a 50 000 dalton protein (50% stimulation). No effect of cyclic AMP on dephosphorylation of proteins was observed. The results are interpreted as indicating that increased phosphorylation of cell proteins is part of the cyclic AMP-mediated response of the renal cortex to parathyroid hormone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号