首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In dissolving microneedle (DMN)-mediated therapy, complete and rapid delivery of DMNs is critical for the desired efficacy. Traditional patch-based DMN delivery, however, may fail due to incomplete delivery from insufficient skin insertion or rapid separation of microneedles due to their strong bond to the backing film. Here, we introduce the Troy microneedle, which was created by cyclic contact and drying on the pillar (CCDP), and which enabled simultaneous complete and rapid delivery of DMN. This CCDP process could be flexibly repeated to achieve a specific desired drug dose in a DMN. We evaluated DMN separation using agarose gel, and the Troy microneedle achieved more complete and rapid separation than other, more deeply dipped DMN, primarily because of the Troy’s minimal junction between the DMN and pillar. When Troy microneedles were applied to pig cadaver skin, it took only 15 s for over 90% of encapsulated rhodamine B to be delivered, compared to 2 h with application of a traditional DMN patch. In vivo skin penetration studies demonstrated rapid DMN-separation of Troy microneedles still in solid form before dissolution. The Troy microneedle overcomes critical issues associated with the low penetration efficiency of flat patch-based DMN and provides an innovative route for DMN-mediated therapy, combining patient convenience with the desire drug efficacy.  相似文献   

2.
微针阵列作为新型透皮给药技术,受到广泛关注。通常以刺入力、刺入率和刺入深度来评价微针刺入皮肤的程度和效率。皮肤是其性能评价的基础。皮肤的物理特性主要由角蛋白丝、胶原纤维、弹性纤维和皮下组织综合决定,并且从厚度、弹性、硬度和韧性等维度反映其对微针刺入的影响。机械的、渗透的、组织的和屏障的等皮肤模型被用于解读和模拟真实皮肤的该方面功能。同样,通过皮肤力学分析后建立的包括本构模型在内的各种皮肤力学模型也从物理维度解析皮肤的力学特征。真实皮肤具有复杂性,存在差异性大、不易获取和储存,以及伦理等问题,而皮肤模型可在一定程度上代替真实皮肤辅助微针递送系统设计、开发和性能评价。本文系统回顾分析了皮肤组织的物理特性、各种皮肤模型的制备及特点、真实皮肤和模拟皮肤在评价微针穿刺性能方面的应用,为开发及建立合适的皮肤模型提供借鉴。  相似文献   

3.
The human, multifunctional peptide LL-37 causes membrane disruption by distinctly different mechanisms strongly dependent on the nature of the membrane lipid composition, varying not only with lipid headgroup charge but also with hydrocarbon chain length. Specifically, LL-37 induces a peptide-associated quasi-interdigitated phase in negatively charged phosphatidylglycerol (PG) model membranes, where the hydrocarbon chains are shielded from water by the peptide. In turn, LL-37 leads to a disintegration of the lamellar organization of zwitterionic dipalmitoyl-phosphatidylcholine (DPPC) into disk-like micelles. Interestingly, interdigitation was also observed for the longer-chain C18 and C20 PCs. This dual behavior of LL-37 can be attributed to a balance between electrostatic interactions reflected in different penetration depths of the peptide and hydrocarbon chain length. Thus, our observations indicate that there is a tight coupling between the peptide properties and those of the lipid bilayer, which needs to be considered in studies of lipid/peptide interaction. Very similar effects were also observed for melittin and the frog skin peptide PGLa. Therefore, we propose a phase diagram showing different lipid/peptide arrangements as a function of hydrocarbon chain length and LL-37 concentration and suggest that this phase diagram is generally applicable to membrane-active peptides localized parallel to the membrane surface.  相似文献   

4.
The human, multifunctional peptide LL-37 causes membrane disruption by distinctly different mechanisms strongly dependent on the nature of the membrane lipid composition, varying not only with lipid headgroup charge but also with hydrocarbon chain length. Specifically, LL-37 induces a peptide-associated quasi-interdigitated phase in negatively charged phosphatidylglycerol (PG) model membranes, where the hydrocarbon chains are shielded from water by the peptide. In turn, LL-37 leads to a disintegration of the lamellar organization of zwitterionic dipalmitoyl-phosphatidylcholine (DPPC) into disk-like micelles. Interestingly, interdigitation was also observed for the longer-chain C18 and C20 PCs. This dual behavior of LL-37 can be attributed to a balance between electrostatic interactions reflected in different penetration depths of the peptide and hydrocarbon chain length. Thus, our observations indicate that there is a tight coupling between the peptide properties and those of the lipid bilayer, which needs to be considered in studies of lipid/peptide interaction. Very similar effects were also observed for melittin and the frog skin peptide PGLa. Therefore, we propose a phase diagram showing different lipid/peptide arrangements as a function of hydrocarbon chain length and LL-37 concentration and suggest that this phase diagram is generally applicable to membrane-active peptides localized parallel to the membrane surface.  相似文献   

5.
Cell-penetrating peptides (CPPs) are widely used as drug carriers, owing to their superior ability to cross cell membrane both alone and with cargos, such as genes and other particles. Understanding the translocation mechanism of CPP is significant for many therapeutic purposes, including targeting drug and gene delivery. In this study, we performed a coarse-grained molecular dynamics simulation to investigate the interaction mechanism between polyarginine peptides and asymmetric membranes. Results showed that peptides can penetrate through the lipid bilayer by inducing a hydrophilic hole formation in the asymmetric membrane. Furthermore, the lengthy peptide chain length (R4–R16 peptides) and high membrane asymmetry positively affect peptide penetration. Our study provides insights into the molecular-level interactions between peptides and asymmetric membranes, as well as suggestions for targeted gene and drug delivery.  相似文献   

6.
Improvement of the methods for oligonucleotide delivery into cells is necessary for the development of antisense therapy. In the present work, a new strategy for oligonucleotide delivery into cells was tested using cationic peptides as a vector. At first, to understand what structure of the peptide is required for binding with an oligonucleotide, several kinds of alpha-helical and non-alpha-helical peptides containing cationic amino acids were employed. As a result, the amphiphilic alpha-helix peptides were best for binding with the oligonucleotide, and the long chain length and large hydrophobic region in the amphiphilic structure of the peptide were necessary for the binding and forming of aggregates with the oligonucleotide. In the case of non-alpha-helical peptides, no significant binding ability was observed even if their chain lengths and number of cationic amino acid residues were equal to those of the alpha-helical peptides. The remarkable ability of oligonucleotide delivery into COS-7 cells was observed in the alpha-helical peptides with a long chain length and large hydrophobic region in the amphiphilic structure, but was not observed in the non-alpha-helical peptides. It is considered that such alpha-helical peptides could form optimum aggregates with the ODN for uptake into cells. Based on these results, the alpha-helical peptide with a long chain length and large hydrophobic region is applicable as a vector for the delivery of oligonucleotides into cells.  相似文献   

7.
S F Pearce  E Hawrot 《Biochemistry》1990,29(47):10649-10659
Synthetic peptides corresponding to sequences contained within residues 173-204 of the alpha-subunit in the nicotinic acetylcholine receptor (nAChR) of Torpedo californica bind the competitive antagonist alpha-bungarotoxin (BGTX) with relative high affinity. Since the synthetic peptide fragments of the receptor and BGTX each contain a small number of aromatic residues, intrinsic fluorescence studies were used to investigate their interaction. We examined a number of receptor-derived peptide fragments of increasing length (4-32 amino acids). Changes in the lambda max and quantum yield with increasing polypeptide chain length suggest an increase in the hydrophobicity of the tryptophan environment. When selective excitation and subtraction were used to reveal the tyrosine fluorescence of the peptides, a significant red shift in emission was observed and was found to be due to an excited-state tyrosinate. The binding of BGTX to the receptor-derived peptide fragments resulted in a large increase in fluorescence. In addition, at equilibrium, the lambda max of tryptophan fluorescence was shifted to shorter wavelengths. The. fluorescence enhancement, which was saturable with either peptide or BGTX, was used to determine the dissociation constants for the complexes. At pH 7.4, the apparent Kd for a dodecameric peptide (alpha 185-196), consisting of residues 185-196 in the alpha-subunit of the nAChR from Torpedo californica, was 1.4 microM. The Kd for an 18-mer (alpha 181-198), consisting of residues 181-198 of the Torpedo alpha-subunit, was 0.3 microM. No binding or enhanced fluorescence was observed with an irrelevant synthetic peptide of comparable composition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Transdermal drug delivery system (TDDS) may provide a more reliable method of drug delivery than oral delivery by avoiding gut absorption and first-pass metabolism, but needs a method for efficiently crossing the epidermal barrier. To enhance the delivery through the skin, we have developed a biocompatible, dissolvable microneedle array made from carboxymethyl cellulose (CMC). Using laser ablation for creating the mold greatly improved the efficiency and reduced the cost of microneedle fabrication. Mixing CMC with amylopectin (AP) enhanced the mechanical and tunable dissolution properties of the microneedle for controlled release of model compounds. Using the CMC microneedle array, we observed significant enhancement in the skin permeability of a fluorescent model compound, and also increase in the anti-oxidant activity of ascorbic acid after crossing the skin. Our dissolvable microneedle array provides a new and biocompatible method for delivery of drugs and cosmetic compounds through the skin.  相似文献   

9.
A revolutionary paradigm shift is being observed currently, towards the use of therapeutic biologics for disease management. The present research was focused on designing an efficient dosage form for transdermal delivery of α-choriogonadotropin (high molecular weight biologic), through biodegradable polymeric microneedles. Polyvinylpyrrolidone-based biodegradable microneedle arrays loaded with high molecular weight polypeptide, α-choriogonadotropin, were fabricated for its systemic delivery via transdermal route. Varied process and formulation parameters were optimized for fabricating microneedle array, which in turn was expected to temporally rupture the stratum corneum layer of the skin, acting as a major barrier to drug delivery through transdermal route. The developed polymeric microneedles were optimized on the basis of quality attributes like mechanical strength, axial strength, insertion ratio, and insertion force analysis. The optimized polymeric microneedle arrays were characterized for in vitro drug release studies, ex vivo drug permeation studies, skin resealing studies, and in vivo pharmacokinetic studies. Results depicted that fabricated polymeric microneedle arrays with mechanical strength of above 5 N and good insertion ratio exhibited similar systemic bioavailability of α-choriogonadotropin in comparison to marketed subcutaneous injection formulation of α-choriogonadotropin. Thus, it was ultimately concluded that the designed drug delivery system can serve as an efficient tool for systemic delivery of therapeutic biologics, with an added benefit of overcoming the limitations of parenteral delivery, achieving better patient acceptability and compliance.  相似文献   

10.
Maurocalcine is the first demonstrated example of an animal toxin peptide with efficient cell penetration properties. Although it is a highly competitive cell-penetrating peptide (CPP), its relatively large size of 33 amino acids and the presence of three internal disulfide bridges may hamper its development for in vitro and in vivo applications. Here, we demonstrate that several efficient CPPs can be derived from maurocalcine by replacing Cys residues by isosteric 2-aminobutyric acid residues and sequence truncation down to peptides of up to 9 residues in length. A surprising finding is that all of the truncated maurocalcine analogues possessed cell penetration properties, indicating that the maurocalcine is a highly specialized CPP. Careful examination of the cell penetration properties of the truncated analogues indicates that several maurocalcine-derived peptides should be of great interest for cell delivery applications where peptide size matters.  相似文献   

11.
Recent studies have demonstrated the effectiveness of vaccine delivery to the skin by vaccine-coated microneedles; however there is little information on the effects of adjuvants using this approach for vaccination. Here we investigate the use of TLR ligands as adjuvants with skin-based delivery of influenza subunit vaccine. BALB/c mice received 1 μg of monovalent H1N1 subunit vaccine alone or with 1 μg of imiquimod or poly(I:C) individually or in combination via coated microneedle patches inserted into the skin. Poly(I:C) adjuvanted subunit influenza vaccine induced similar antigen-specific immune responses compared to vaccine alone when delivered to the skin by microneedles. However, imiquimod-adjuvanted vaccine elicited higher levels of serum IgG2a antibodies and increased hemagglutination inhibition titers compared to vaccine alone, suggesting enhanced induction of functional antibodies. In addition, imiquimod-adjuvanted vaccine induced a robust IFN-γ cellular response. These responses correlated with improved protection compared to influenza subunit vaccine alone, as well as reduced viral replication and production of pro-inflammatory cytokines in the lungs. The finding that microneedle delivery of imiquimod with influenza subunit vaccine induces improved immune responses compared to vaccine alone supports the use of TLR7 ligands as adjuvants for skin-based influenza vaccines.  相似文献   

12.
Microneedle arrays have been developed to deliver a range of biomolecules including vaccines into the skin. These microneedles have been designed with a wide range of geometries and arrangements within an array. However, little is known about the effect of the geometry on the potency of the induced immune response. The aim of this study was to develop a computational model to predict the optimal design of the microneedles and their arrangement within an array. The three-dimensional finite element model described the diffusion and kinetics in the skin following antigen delivery with a microneedle array. The results revealed an optimum distance between microneedles based on the number of activated antigen presenting cells, which was assumed to be related to the induced immune response. This optimum depends on the delivered dose. In addition, the microneedle length affects the number of cells that will be involved in either the epidermis or dermis. By contrast, the radius at the base of the microneedle and release rate only minimally influenced the number of cells that were activated. The model revealed the importance of various geometric parameters to enhance the induced immune response. The model can be developed further to determine the optimal design of an array by adjusting its various parameters to a specific situation.  相似文献   

13.
在临床应用上,一种能够持续递送药物的微针(microneedle,MN)系统对于一些疫苗、激素类药物的递送具有重要价值。本文研究设计了一种基于壳聚糖的可控缓释型微针阵列(PVA/CS-MN),将微针贴片与药物相结合用于药物的可控长效缓释。重点研究了PVA/CS-MN的制备优化工艺,并对MN阵列外观形貌、力学性能、溶解与溶胀性能以及体外刺入性能进行了表征。实验结果表明,使用最优工艺制备的PVA/CS-MN具有良好的形貌以及力学性能,可以顺利在皮肤上打开微通道,并实现可控的溶解与溶胀功能。同时,体外透皮扩散实验表明,以抗坏血酸(l-ascorbic acid)为模型药物制备的Vc-PVA/CS-MN在1 h内即释放了约57%的药物,随后12 h内缓慢释放了约66.7%的药物,7 d后最终释放了92%的药物。PVA/CS-MN具备可控的缓释特性以及优良的药物递送效率,为药物的持续透皮递送提供了一个新选择。  相似文献   

14.
Cell penetrating peptides are useful tools for intracellular delivery of nucleic acids. Delivery of plasmid DNA, a large nucleic acid, poses a challenge for peptide mediated transport. The paper investigates and compares efficacy of five novel peptide designs for complexation of plasmid DNA and subsequent delivery into cells. The peptides were designed to contain reported DNA condensing agents and basic cell penetrating sequences, octa‐arginine (R8) and CHK6HC coupled to cell penetration accelerating peptides such as Bax inhibitory mutant peptide (KLPVM) and a peptide derived from the Kaposi fibroblast growth factor (kFGF) membrane translocating sequence. A tryptophan rich peptide, an analogue of Pep‐3, flanked with CH3 on either ends was also a part of the study. The peptides were analysed for plasmid DNA complexation, protection of peptide–plasmid DNA complexes against DNase I, serum components and competitive ligands by simple agarose gel electrophoresis techniques. Hemolysis of rat red blood corpuscles (RBCs) in the presence of the peptides was used as a measure of peptide cytotoxicity. Plasmid DNA delivery through the designed peptides was evaluated in two cell lines, human cervical cancer cell line (HeLa) and (NIH/3 T3) mouse embryonic fibroblasts via expression of the secreted alkaline phosphatase (SEAP) reporter gene. The importance of hydrophobic sequences in addition to cationic sequences in peptides for non‐covalent plasmid DNA complexation and delivery has been illustrated. An alternative to the employment of fatty acid moieties for enhanced gene transfer has been proposed. Comparison of peptides for plasmid DNA complexation and delivery of peptide–plasmid DNA complexes to cells estimated by expression of a reporter gene, SEAP. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
Microneedle devices are a promising minimally invasive means of delivering drugs/vaccines across or into the skin. However, there is currently a diversity of microneedle designs and application methods that have, primarily, been intuitively developed by the research community. To enable the rational design of optimised microneedle devices, a greater understanding of human skin biomechanics under small deformations is required. This study aims to develop a representative stratified model of human skin, informed by in vivo data. A multilayer finite element model incorporating the epidermis, dermis and hypodermis was established. This was correlated with a series of in-vivo indentation measurements, and the Ogden material coefficients were optimised using a material parameter extraction algorithm. The finite element simulation was subsequently used to model microneedle application to human skin before penetration and was validated by comparing these predictions with the in-vivo measurements. Our model has provided an excellent tool to predict micron-scale human skin deformation in vivo and is currently being used to inform optimised microneedle designs.  相似文献   

16.
D Yahalom  Y Koch  N Ben-Aroya  M Fridkin 《Life sciences》1999,64(17):1543-1552
Transdermal delivery of peptidic drugs is usually inefficient, notably due to their hydrophilic character which makes it difficult to cross the hydrophobic layers of the skin. In order to obtain transdermally deliverable analogs of gonadotropin releasing hormone (GnRH), we have synthesized related hydrophobic derivatives by attaching various aliphatic acids to the N(epsilon)-amino side chain of [D-Lys]6GnRH, a superactive GnRH agonist. It was found that the affinity toward the GnRH receptor gradually decrease with increased hydrophobicity, i.e. increase in chain length of the attached aliphatic acid. Nevertheless, analogs with 12-carbon or shorter aliphatic acids were shown to be GnRH superagonists, with in vitro and in vivo potencies similar to that of [D-Lys]6GnRH. [D-Lys-lauryl]6GnRH was shown to have a longer duration of action in vivo, as compared to [D-Lys]6GnRH. The transdermal penetration of the peptides was evaluated by in vivo functional experiments in rats. According to these studies the efficiency of penetration is gradually lowered in increasingly hydrophobic analogs. These results are discussed with respect to the circular dichroism spectra of the peptides in trifluoroethanol. The spectra of the aliphatic acid-conjugated superagonists examined do not express a significant tendency towards a beta-turn conformation, typical of GnRH and its agonists. This finding contradict previous publications which suggested a correlation between the conformations of GnRH analogs in trifluoroethanol and their biological activities.  相似文献   

17.
Peptidyl-glycine-leucine-carboxyamide (PGLa), isolated from granular skin glands of Xenopus laevis, is practically devoid of secondary structure in aqueous solution and in the presence of zwitterionic phospholipids, when added exogenously, but adopts an α-helix in the presence of anionic lipids. The peptide was shown to exhibit antifungal activity and to have antimicrobial activity towards both Gram-negative and Gram-positive bacteria. As a broad variety of peptides is found in the secretions of amphibian skin combinatorial treatment of PGLa and magainin 2 was studied showing enhanced activity by a heterodimer formation. Thus production of mutually recognizing peptides seems to be an effective way in nature to increase selective membrane activity. Biophysical studies on membrane mimics demonstrated that PGLa can discriminate between different lipid species, preferentially interacting with negatively charged lipids, which are major components of bacterial but not mammalian cell membranes. This emphasizes the role of electrostatic interactions as a major determinant to trigger the affinity of antimicrobial peptides towards bacterial membranes. PGLa induced the formation of a quasi-interdigitated phase in phosphatidylglycerol bilayers below their chain melting transition, which is due to the creation of voids below the peptide being aligned parallel to the membrane surface. In the fluid phase of phosphatidylglycerol the peptide inserts perpendicularly into the bilayer above a threshold concentration, which results in a hydrophobic mismatch of the peptide length and bilayer core for lipids ≤ C16. This mismatch is compensated by stretching of the acyl chains and in turn thickening of the bilayer demonstrating that membrane thinning cannot be taken generally as the hallmark of pore formation by antimicrobial peptides. Furthermore, PGLa was shown to affect membrane curvature strain of phosphatidylethanolamine, another main lipid component of bacterial membranes, where a cubic phase coexists with the fluid bilayer phase. Investigations on living Escherichia coli showed distinct changes in cell envelope morphology, when treated with the peptide. In a first stage loss of surface stiffness and consequently of topographic features was observed, followed in a second stage by permeabilization of the outer membrane and rupture of the inner (cytoplasmic) membrane supposedly by the mechanism(s) derived from model studies.  相似文献   

18.
Ren J  Lew S  Wang J  London E 《Biochemistry》1999,38(18):5905-5912
We examined the effect of the length of the hydrophobic core of Lys-flanked poly(Leu) peptides on their behavior when inserted into model membranes. Peptide structure and membrane location were assessed by the fluorescence emission lambdamax of a Trp residue in the center of the peptide sequence, the quenching of Trp fluorescence by nitroxide-labeled lipids (parallax analysis), and circular dichroism. Peptides in which the hydrophobic core varied in length from 11 to 23 residues were found to be largely alpha-helical when inserted into the bilayer. In dioleoylphosphatidylcholine (diC18:1PC) bilayers, a peptide with a 19-residue hydrophobic core exhibited highly blue-shifted fluorescence, an indication of Trp location in a nonpolar environment, and quenching localized the Trp to the bilayer center, an indication of transmembrane structure. A peptide with an 11-residue hydrophobic core exhibited emission that was red-shifted, suggesting a more polar Trp environment, and quenching showed the Trp was significantly displaced from the bilayer center, indicating that this peptide formed a nontransmembranous structure. A peptide with a 23-residue hydrophobic core gave somewhat red-shifted fluorescence, but quenching demonstrated the Trp was still close to the bilayer center, consistent with a transmembrane structure. Analogous behavior was observed when the behavior of individual peptides was examined in model membranes with various bilayer widths. Other experiments demonstrated that in diC18:1PC bilayers the dilution of the membrane concentration of the peptide with a 23-residue hydrophobic core resulted in a blue shift of fluorescence, suggesting the red-shifted fluorescence at higher peptide concentrations was due to helix oligomerization. The intermolecular self-quenching of rhodamine observed when the peptide was rhodamine-labeled, and the concentration dependence of self-quenching, supported this conclusion. These studies indicate that the mismatch between helix length and bilayer width can control membrane location, orientation, and helix-helix interactions, and thus may mismatch control both membrane protein folding and the interactions between membrane proteins.  相似文献   

19.
Structural homologues of vertebrate regulatory peptides found in defensive skin secretions of anuran amphibians often display enhanced bioactivity and receptor binding when compared with endogenous mammalian peptide ligands. Maximakinin, a novel N-terminally extended bradykinin (DLPKINRKGPRPPGFSPFR) from the skin venom of a Chinese toad (Bombina maxima), displays such activity enhancement when compared with bradykinin but is additionally highly selective for mammalian arterial smooth muscle bradykinin receptors displaying a 50-fold increase in molar potency in this smooth muscle type. In contrast, a 100-fold decrease in molar potency was observed at bradykinin receptors in intestinal and uterine smooth muscle preparations. Maximakinin has thus evolved as a "smart" defensive weapon in the toad with receptor/tissue selective targeting. Natural selection of amphibian skin venom peptides for antipredator defence, through inter-species delivery by an exogenous secretory mode, produces subtle structural stabilisation modifications that can potentially provide new insights for the design of selectively targeted peptide therapeutics.  相似文献   

20.
Drug delivery into tumors and metastases is a major challenge in the eradication of cancers such as epithelial ovarian carcinoma. Cationic cell-penetrating peptides (CPPs) are a promising group of delivery vehicles to mediate cellular entry of molecules that otherwise poorly enter cells. However, little is known about their penetration behavior in tissues. Here, we investigated penetration of cationic CPPs in 3D ovarian cancer spheroids and patient-derived 3D tumor explants. Penetration kinetics and distribution after long-term incubation were imaged by confocal microscopy. In addition, spheroids and tumor explants were dissociated and cell-associated fluorescence determined by flow cytometry. CPPs with high uptake activity showed enhanced sequestration in the periphery of the spheroid, whereas less active CPPs were able to penetrate deeper into the tissue. CPPs consisting of d-amino acids were advantageous over l-amino acid CPPs as they showed less but long lasting cellular uptake activity, which benefitted penetration and retention over time. In primary tumor cultures, in contrast to nonaarginine, the amphipathic CPP penetratin was strongly sequestered by cell debris and matrix components pointing towards arginine-rich CPPs as a preferred choice. Overall, the data show that testing in 3D models leads to a different choice of the preferred peptide in comparison to a standard 2D cell culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号