首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the occurrence of methylated adenine residues in the macronuclear ribosomal RNA genes of Tetrahymena thermophila. It has been shown previously that macronuclear DNA, including the palindromic ribosomal RNA genes (rDNA), of Tetrahymena thermophila contains the modified base N-6-methyladenine, but no 5-methylcytosine. Purified rDNA was digested with restriction enzymes Sau 3AI, MboI and DpnI to map the positions and levels of N-6-methyladenine in the sequence 5' GATC 3'. A specific pattern of doubly methylated GATC sequences was found; hemimethylated sites were not detected. The patterns and levels of methylation of these sites did not change significantly in different physiological states. A molecular form of the rDNA found in the newly developing macronucleus and for several generations following the sexual process, conjugation, contained no detectably methylated GATC sites. However, both the bulk macronuclear DNA and palindromic rDNA from the same macronuclei were methylated. Possible roles for N-6-methyladenine in macronuclear DNA are discussed in light of these findings.  相似文献   

2.
We have cloned two DNA fragments containing 5'-GATC-3' sites at which the adenine is methylated in the macronucleus of the ciliate Tetrahymena thermophila. Using these cloned fragments as molecular probes, we analyzed the maintenance of methylation patterns at two partially and two uniformly methylated sites. Our results suggest that a semiconservative copying model for maintenance of methylation is not sufficient to account for the methylation patterns we found during somatic growth of Tetrahymena. Although we detected hemimethylated molecules in macronuclear DNA, they were present in both replicating and nonreplicating DNA. In addition, we observed that a complex methylation pattern including partially methylated sites was maintained during vegetative growth. This required the activity of a methylase capable of recognizing and modifying sites specified by something other than hemimethylation. We suggest that a eucaryotic maintenance methylase may be capable of discriminating between potential methylation sites to ensure the inheritance of methylation patterns.  相似文献   

3.
4.
Two pairs of restriction enzyme isoschizomers were used to study in vivo methylation of E. coli and extrachromosomal DNA. By use of the restriction enzymes MboI (which cleaves only the unmethylated GATC sequence) and its isoschizomer Sau3A (indifferent to methylated adenine at this sequence), we found that all the GATC sites in E. coli and in extrachromosomal DNAs are symmetrically methylated on both strands. The calculated number of GATC sites in E. coli DNA can account for all its m6Ade residues. Foreign DNA, like mouse mtDNA, which is not methylated at GATC sites became fully methylated at these sequences when introduced by transfection into E. coli cells. This experiment provides the first evidence for the operation of a de novo methylation mechanism for E. coli methylases not involved in restriction modification. When the two restriction enzyme isoschizomers, EcoRII and ApyI, were used to analyze the methylation pattern of CCTAGG sequences in E. coli C and phi X174 DNA, it was found that all these sites are methylated. The number of CCTAGG sites in E. coli C DNA does not account for all m5Cyt residues.  相似文献   

5.
6.
DNA in the polyploid macronucleus of the ciliated protozoan Tetrahymena thermophila contains the modified base N6-methyladenine. We identified two GATC sites which are methylated in most or all of the 45 copies of the macronuclear genome. One site is 2 kilobases 5' to the histone H4-I gene, and the other is 5 kilobases 3' to the 73-kilodalton heat shock protein gene. These sites are de novo methylated between 10 and 16 h after initiation of conjugation, during macronuclear anlage development. The methylation states of these two GATC sites and four other unmethylated GATC sites do not change in the DNA of cells cultured under conditions which change the activity of the genes, including logarithmic growth, starvation, and heat shock.  相似文献   

7.
The dam gene of Escherichia coli encodes a DNA methyltransferase that methylates the N6 position of adenine in the sequence GATC. It was stably expressed from a shuttle vector in a repair- and recombination-proficient strain of Bacillus subtilis. In this strain the majority of plasmid DNA molecules was modified at dam sites whereas most chromosomal DNA remained unmethylated during exponential growth. During stationary phase the amount of unmethylated DNA increased, suggesting that methylated bases were being removed. An ultraviolet damage repair-deficient mutant (uvrB) contained highly methylated chromosomal and plasmid DNA. High levels of Dam methylation were detrimental to growth and viability of this mutant strain and some features of the SOS response were also induced. A mutant defective in the synthesis of adaptive DNA alkyltransferases and induction of the adaptive response (ada) also showed high methylation and properties similar to that of the dam gene expressing uvrB strain. When protein extracts from B. subtilis expressing the Dam methyltransferase or treated with N-methyl-N'-nitro-N-nitroso-guanidine were incubated with [3H]-labelled Dam methylated DNA, the methyl label was bound to two proteins of 14 and 9 kD. Some free N6-methyladenine was also detected in the supernatant of the incubation mixture. We propose that N6-methyladenine residues are excised by proteins involved in both excision (uvrB) and the adaptive response (ada) DNA repair pathways in B. subtilis.  相似文献   

8.
9.
甲基化特异性PCR检测FMR1 和XIST基因甲基化实验方法的建立   总被引:1,自引:0,他引:1  
建立一种快速、灵敏的检测脆性X智障基因(Fragile X mental retardation, FMR1)和X染色体失活基因(X chromosome inactivation,XIST)甲基化的方法,用亚硫酸氢钠和对苯二酚对基因组DNA进行脱氨基修饰。以修饰后的DNA为模板,用两套不同的引物对:1对甲基化特异性引物和1对非甲基化特异性引物扩增FMR1基因(CGG)n重复序列区、FMR1 和XIST 基因的启动子区。PCR产物进一步克隆、测序。以亚硫酸氢钠和对苯二酚脱氨基修饰后的DNA为模板,进行PCR扩增后的产物与预期基因目的基因片段大小相符合,无非特异性扩增产物。测序结果表明,FMR1、XIST基因中的非甲基化的C碱基转变为U碱基,而CpG岛被甲基化的C碱基不改变。成功地建立了检测FMR1、XIST甲基化的方法,为实验室诊断脆性X综合征提供了新的方法。  相似文献   

10.
We have investigated the timing of DNA synthesis, methylation and degradation during macronuclear development in the ciliate, Tetrahymena thermophila. DNA synthesis was first detected in the anlagen early in macronuclear development, but the majority of DNA synthesis occurred later, after pair separation. Anlagen DNA was first detectably methylated at GATC sites 3-5 hours after its synthesis. Once initiated, de novo methylation was rapid and complete, occurring between 13.5 and 15 hours of conjugation. The level of methylation of GATC sites was constant throughout the remainder of conjugation, and was similar to that in mock-conjugated cells. Degradation of DNA in the old macronucleus and DNA synthesis in the anlagen began at about the same time. Upon pair separation, less than 20% of old macronuclear DNA remained. A small percentage of nucleotides prelabeled prior to conjugation were recycled in the developing anlagen.  相似文献   

11.
12.
In vitro methylation of DNA with Hpa II methylase.   总被引:9,自引:6,他引:9       下载免费PDF全文
The enzyme Hpa II methylase extracted and partially purified from Haemophilus parainfluenza catalyzes the methylation of the tetranucleotide sequence CCGG at the internal cytosine. The enzyme will methylate this sequence if both DNA strands are unmethylated or if only one strand is unmethylated. Conditions have been developed for producing fully methylated DNA from various sources. In vitro methylation of this site protects the DNA against digestion by the restriction enzyme Hpa II as well as the enzyme Sma I which recognizes the hexanucleotide sequence CCCGGG. These properties make this enzyme a valuable tool for analyzing methylation in eukaryotic DNA where the sequence CCGG is highly methylated. The activity of this methylase on such DNA indicates the degree of undermethylation of the CCGG sequence. Several examples show that this technique can be used to detect small changes in the methylation state of eukaryotic DNA.  相似文献   

13.
14.
Q Liu  X Chen  X Zhao  Y Chen  D Chen 《Gene》1992,113(1):89-93
This study is to extend our earlier observation that Dam and Dcm methylation outside the PvuII recognition sequence inhibited PvuII cleavage in one of the three PvuII sites of pGEM4Z-ras DNA. In this paper, a new recombinant plasmid DNA, pGEM4-SV40ori-anti-ras, was constructed which has only two PvuII sites, I and II. The Dam and Dcm-methylated and unmethylated DNAs were produced in Escherichia coli and linearized by ScaI. The DNA molecules were digested with different amounts of PvuII. The results show that by comparing the DNA fragment number and intensity of the partial and final products in agarose gel, PvuII site I on the methylated DNA molecule was digested four- to eight-fold more slowly than site II. In the unmethylated plasmid DNA, the two PvuII sites were cleaved at about the same rate. The difference was caused only by methylation of Dam and Dcm sites outside the PvuII recognition sequence. A methylated Dam site immediately adjacent to the less efficiently cut PvuII site I may be responsible for the inhibitory effect. We suggest that a new parameter, involving methylation of sites outside the recognition sequence, be considered in kinetic experiments on cleavage.  相似文献   

15.
J P Zehr  K Ohki  Y Fujita    D Landry 《Journal of bacteriology》1991,173(21):7059-7062
The genomic DNA of the marine nonheterocystous nitrogen-fixing cyanobacterium Trichodesmium sp. strain NIBB 1067 was found to be highly resistant to DNA restriction endonucleases. The DNA was digested extensively by the restriction enzyme DpnI, which requires adenine methylation for activity. The DNA composition, determined by high-performance liquid chromatography (HPLC), was found to be 69% AT. Surprisingly, it was found that a modified adenine which was not methylated at the usual N6 position was present and made up 4.7 mol% of the nucleosides in Trichodesmium DNA (15 mol% of deoxyadenosine). In order for adenine residues to be modified at this many positions, there must be many modifying enzymes or at least one of the modifying enzymes must have a degenerate recognition site. The reason(s) for this extensive methylation has not yet been determined but may have implications for the ecological success of this microorganism in nature.  相似文献   

16.
Dramatic DNA reorganization and elimination processes occur during macronuclear differentiation in ciliates. In this study we analyzed whether cytosine methylation of specific sequences plays a functional role during DNA rearrangement. Three classes of sequences, macronuclear-destined sequences (MDSs, pCE7), members from a large family of transposon-like elements and micronuclear-specific sequences (pLJ01), differing in their structure and future destiny during nuclear differentiation, were studied in the micronucleus, the developing macronucleus and, when present, in the mature macronucleus. While the MDSs become processed to a 1.1 and 1.3 kb gene-sized macronuclear DNA molecule, the family of transposon-like elements represented by MaA81 becomes removed late in the course of polytene chromosome formation. The micronuclear-specific sequence pLJ01 is eliminated together with bulk micronuclear DNA during degradation of polytene chromosomes. No methylated cytosine could be detected in the vegetative macronucleus and no difference in methylation pattern was observed either between micronucleus and developing macronucleus in MDSs or in a micronuclear-specific sequence. However, a significant percentage of the cytosines contained in the transposon-like element becomes methylated de novo in the course of macronuclear differentiation. This is the first demonstration that cytosine methylation in specific sequences occurs during macronuclear differentiation and may provide a first step towards understanding epigenetic factors involved in DNA processing.  相似文献   

17.
Two methods were used in an attempt to increase the efficiency and strand selectivity of methyl-directed mismatch repair of bacteriophage lambda heteroduplexes in E. coli. Previous studies of such repair used lambda DNA that was only partially methylated as the source of methylated chains. Also, transfection was carried out in methylating strains. Either of these factors might have been responsible for the incompleteness of the strand selectivity observed previously. In the first approach to increasing strand selectivity, heteroduplexes were transfected into a host deficient in methylation, but no changes in repair frequencies were observed. In the second approach, heteroduplexes were prepared using DNA that had been highly methylated in vitro with purified DNA adenine methylase as the source of methylated chains. In heteroduplexes having a repairable cI/+ mismatch, strand selectivity was indeed enhanced. In heteroduplexes with one chain highly methylated and the complementary chain unmethylated, the frequency of repair on the unmethylated chain increased to nearly 100%. Heteroduplexes with both chains highly methylated were not repaired at a detectable frequency. Thus, chains highly methylated by DNA adenine methylase were refractory to mismatch repair by this system, regardless of the methylation of the complementary chain. These results support the hypothesis that methyl-directed mismatch repair acts to correct errors of replication, thus lowering the mutation rate.  相似文献   

18.
Plasmodium falciparum: evidence for a DNA methylation pattern   总被引:3,自引:0,他引:3  
The methylation status of the adenine and cytosine residues in the genome of Plasmodium falciparum was studied using restriction enzymes exhibiting differential activity dependent on the methylation state of these residues in their recognition site. The gene coding for the enzyme dihydrofolate reductase-thymidylate synthase was studied for that purpose. No methylated adenine residues were observed in this gene in four strains tested. However, partial methylation of cytosine residues was observed in all strains. This methylation occurred at a specific site of the gene and was of the eukaryotic type, namely at a CpG sequence.  相似文献   

19.
20.
Variable methylation of the ribosomal RNA genes of the rat.   总被引:11,自引:5,他引:11       下载免费PDF全文
Both the pattern and level of rRNA gene methylation vary in the rat. This variation reflects stages in the maturation process and perhaps the level of gene expression in different tissues. We studied methylation at a common site, the inner cytosine of the sequence CCGG, by hybridizing 32P-rRNA to DNA digests obtained with endonuclease Msp I (which cleaves CCGG and CMCGG) and its isochizomer, HpaII (which cleaves only CCGG). In the liver, the changing pattern of rRNA gene methylation reflected the late stages of development: the rRNA genes were mostly unmethylated at 14 days gestation; by 18 days gestation, about 30% of them were methylated, and this level persisted into adulthood. In 18-day DNA, the methylation was uniform, but in adult DNA, the methylation pattern was discontinuous, because otherwise methylated genes contained a demethylated region. Similar developmental changes were observed in brain DNA. In a tissue culture cell line, the change from the continuous to the discontinuous pattern of the methylation could be induced by transformation with Kirsten sarcoma virus. And, in adult tissues, the lowest level of rRNA gene methylation was found in rapidly growing jejunal epithelium, and the highest level, in non-growing spermatozoa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号