首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
目的:比较不同细胞固定液对荧光蛋白淬灭情况以及核内、胞浆蛋白免疫荧光染色的影响。方法:分别对融合了RFP和GFP基因的鼻咽癌HK1细胞采用95%乙醇、75%乙醇、甲醇、丙酮:甲醇=1:1、5%冰乙酸、Carnoy固定液进行固定,然后采用免疫荧光法对细胞进行免疫染色。结果:六种固定液均能使荧光蛋白猝灭。免疫荧光染色方面,对于核蛋白染色,75%乙醇、95%乙醇、丙酮:甲醇=1:1、Carnoy固定液固定后核区获得明显的荧光染色,而采用甲醇、5%冰乙酸固定后荧光染色不明显。对于胞质蛋白染色,按荧光染色的清晰程度分为固定于Carnoy固定液丙酮:甲醇=1:1甲醇5%冰乙酸75%乙醇95%乙醇,前四者固定可见分布于胞质,75%乙醇或95%乙醇固定的目标蛋白定位不清。结论:六种不同的固定液在有效失活荧光蛋白的情况下对核蛋白及胞浆蛋白抗原性的影响略有不同,可根据研究目的蛋白表达的部位及特点来选用合适的固定液。  相似文献   

2.
GFP转基因鼠在医学实验中应用较广,由于这种鼠全身所有的细胞都带荧光,可取这种鼠的细胞在体外做各种处理,然后回输照射鼠,可以在照射鼠体内跟踪这些细胞的转化与分布,因此荧光鼠有着广泛的用途.我们在只有荧光雄鼠的情况下,繁殖了荧光鼠后代.由于荧光鼠全身是黑毛,为了更好地区别杂交后的子代是否是荧光鼠,我们用白色的杂交鼠与荧光雄鼠杂交,结果所生的子代全部是黑毛,经过回交,得到的荧光鼠后代,外周血中GFP阳性细胞百分比达到了95.8%,达到了做照射鼠治疗的研究要求,现报道如下.  相似文献   

3.
应用阳离子脂质体介导法,将含绿色荧光蛋白(GFP)基因的质粒pEGFP-N1转染到培养成单层的草鱼肾细胞(CIK)中,通过荧光倒置显微镜和特异性RT-PCR方法检测GFP的表达.在荧光倒置显微镜下可见CIK细胞的胞质和胞核均呈现绿色荧光,且细胞核的绿色荧光强度强于细胞质.转染细胞中的转录产物经RT-PCR扩增后,凝胶电泳鉴定出与GFP基因片段分子量大小一致的条带,经测序证明其为GFP基因序列.结果表明,GFP基因可以在草鱼CIK细胞内高效率成功表达,为构建以GFP为报告基因的真核重组质粒及研究草鱼出血病DNA疫苗奠定了重要的基础.  相似文献   

4.
绿色荧光蛋白(GFP)能够作为报告分子对活体细胞中特定基因的时空表达进行实时追踪,因此广泛应用于生物学研究领域。在用GFP对细胞活动进行追踪的实验中,常有无法在取样后及时对样品进行荧光观察的情况,此时需要先将样品进行固定以便对其进行观测。然而,不恰当的细胞固定方法会导致胞内GFP荧光信号强度减弱、位置改变等后果。甲醛是最常用的细胞固定剂,也常被用于固定表达GFP蛋白的细胞样品。但对甲醛固定GFP样品的报道多是针对于真核细胞,且固定效果也存在较大差异。文章系统地探索了甲醛浓度、固定时间、固定缓冲液种类对两种细菌(E.coli及鱼腥蓝细菌Anabaena PCC7120)胞内GFP信号的影响。结果显示,较低浓度(≤1%)的甲醛处理2h后,细胞的荧光强度在1d后仍可保持80%以上,胞内荧光点无弥散现象发生。具有相近pH的几种常见缓冲液对荧光强度的影响无显著差异。随着甲醛浓度的增加、固定时间的延长、溶液pH的增加(中性至偏碱性),细胞中的荧光强度会逐渐降低。  相似文献   

5.
绿色荧光蛋白及其应用   总被引:24,自引:0,他引:24  
张峰  任燕 《生命科学》1999,11(2):61-65
绿色荧光蛋白是在水母中发现的新型报告分子,能在多种生物体内表达并发出荧光。对GFP中一些特定氨基酸进行突变可以产生多种类型的突变体,有利于研究蛋白之间或细胞器之间的相互作用。目前,GFP已经用于基因表达的报告、细胞动态的研究、活细胞内蛋白的定位及westernbloting检测中。GFP美好的应用前景也促进了有关GFP的研究,特别是寻找新的突变体并将之运用到细胞生物学和分子生物学的各个领域。  相似文献   

6.
目的利用绿色荧光小鼠和红色荧光蛋白标记肿瘤细胞,建立荧光标记的小鼠肿瘤模型,并建立活体荧光成像和荧光显微镜成像在整体和细胞水平直接观察肿瘤的技术。方法将小鼠B16黑色素瘤细胞接种到绿色荧光蛋白转基因小鼠皮下,建立GFP小鼠肿瘤模型。以红色荧光蛋白作为标记基因导入小鼠黑色素瘤细胞B16细胞,建立稳定表达红色荧光蛋白的细胞株。将表达红色荧光蛋白B16细胞接种到绿色荧光转基因小鼠皮下,建立双荧光小鼠肿瘤模型。用荧光显微镜和活体荧光成像系统检测小鼠肿瘤的发生发展。结果分别建立了GFP小鼠肿瘤模型和双色荧光小鼠肿瘤模型。利用活体荧光影像仪可以观察双色荧光小鼠模型中受体绿色荧光组织和红色荧光移植肿瘤相互融合。利用荧光显微镜,可以观察到肿瘤内绿色荧光标记的来源于受体小鼠的血管和免疫细胞。经香菇多糖刺激的GFP小鼠肿瘤模型的移植瘤组织中,来源于受体小鼠绿色荧光标记的免疫细胞明显多于经生理盐水刺激的对照小鼠。结论利用绿色荧光小鼠和红色荧光RFP标记肿瘤细胞建立荧光标记的小鼠肿瘤模型,采用活体荧光成像仪和荧光显微镜可在整体和细胞水平直接观察肿瘤的生长以及肿瘤与宿主的相互作用。  相似文献   

7.
为建立基于绿色荧光蛋白(GFP)的药物筛选模型,并用此模型从包括中药提取物在内的化合物中筛选新型蛋白酶体抑制剂,本研究构建了pGC-E1-ZU1-GFP融合蛋白慢病毒表达载体并感染A549细胞,筛选稳定表达细胞株,用已知蛋白酶体抑制剂PS-341处理细胞,荧光显微镜检测处理前后细胞GFP水平变化。结果获得了稳定表达pGC-E1-ZU1-GFP的A549细胞,这些细胞用PS-341处理24h后用荧光显微镜检测,发现细胞绿色荧光强度相对于对照组明显增强。利用这一模型对一些化合物进行筛查,发现了一些新的蛋白酶体抑制剂。  相似文献   

8.
目的建立稳定表达绿色荧光蛋白(GFP)的细胞株;构建短发夹RNA(shRNA)表达质粒并观察其对内源性GFP的抑制作用。方法转染pEGFP-N1至HepG2细胞,利用G418筛选获得稳定表达GFP的细胞株(HepG2.GFP);设计合成针对GFP基因的siRNA对应的DNA片段,插入转录载体pTZU6 1,构建shRNA表达载体pSHGFP,转染HepG2.GFP,荧光显微镜观察细胞荧光强度,以western blot检测GFP蛋白水平,以RT-PCR检测mRNA水平。结果利用PCR方法从HepG2.GFP细胞基因组DNA中检测到GFP基因;pSHGFP能够显著抑制该细胞中GFP的表达。结论GFP基因成功整合至HepG2细胞基因组中,pSHGFP能够显著抑制内源性GFP的表达,该系统能够用于RNA干扰机制等研究中。  相似文献   

9.
短双链RNA对鸡胚盘细胞外源绿荧光蛋白基因表达的影响   总被引:5,自引:0,他引:5  
RNA干扰 (RNAinterference,RNAi)作为一种特异性沉默基因表达的方法 ,正在成为研究基因功能、胚胎发育及病毒性疾病治疗的重要工具。为了了解RNA干扰在禽类中的作用情况 ,实验将体外转录合成的绿荧光蛋白短双链干扰RNA (siGFP)和 3 磷酸甘油醛脱氢酶短双链干扰RNA (siGAPDH )分别同绿荧光蛋白(Greenfluorescentprotein ,GFP)表达载体 (pEGFP C1Vector)用脂质体转染试剂LipofectamineTM2 0 0 0共转染鸡胚盘细胞 ,并于转染后 36h在荧光显微镜下观察转染和干扰效果。对细胞绿荧光蛋白表达率的方差分析结果显示 ,不同处理组间差异达极显著水准 ,其中GFP组和GFP siGAPDH组均同GFP siGFP组差异极显著 ,GFP组同GFP siGAPDH组差异不显著。实验结果说明 ,siGFP能特异、有效地敲低细胞绿荧光蛋白的表达。同线虫、真菌、拟南芥、水螅、锥虫、涡虫、果蝇、斑马鱼、小鼠等其它生物体一样 ,鸡胚盘细胞中也存在短双链干扰RNA (siRNA)特异性沉默基因表达的RNA干扰机制  相似文献   

10.
绿色荧光蛋白(green fluorescent protein,GFP)自发现以来,由于具有自发荧光等特性,在分子生物学和细胞生物学领域得到广泛应用。GFP作为一种报道分子,在研究蛋白质相互作用和构象变化、检测蛋白质表达、蛋白质和细胞荧光示踪中,起到了重要的作用。该文通过对绿色荧光蛋白特性的分析.介绍其作为荧光标记在蛋白质研究中的应用,并展望进一步的研究前景。  相似文献   

11.
Experiments with fluorescence recovery after photobleaching (FRAP) started 30 years ago to visualize the lateral mobility and dynamics of fluorescent proteins in living cells. Its popularity increased when non-invasive fluorescent tagging became possible with the green fluorescent protein (GFP). Many researchers use GFP to study the localization of fusion proteins in fixed or living cells, but the same fluorescent proteins can also be used to study protein mobility in living cells. Here we review the potential of FRAP to study protein dynamics and activity within a single living cell. These measurements can be made with most standard confocal laser-scanning microscopes equipped with photobleaching protocols.  相似文献   

12.
Spectral variants of the green fluorescent protein (GFP) have been extensively used as reporters to image molecular interactions in living cells by fluorescence resonance energy transfer (FRET). However, those GFP variants which are the most efficient donor acceptor pairs for FRET measurements show a high degree of spectral overlap which has hampered in the past their use in FRET applications. Here we use spectral imaging and subsequent un-mixing to quantitatively separate highly overlapping donor and acceptor emissions in FRET measurements. We demonstrate the method in fixed and living cells using a novel GFP based FRET pair (GFP2-YFP (yellow)), which has an increased FRET efficiency compared to the most commonly used FRET pair consisting of cyan fluorescent protein and YFP. Moreover, GFP2 has its excitation maximum at 396 nm at which the YFP acceptor is excited only below the detection level and thus this FRET pair is ideal for applications involving sensitized emission.  相似文献   

13.
We have generated embryonic stem (ES) cells and transgenic mice carrying a tau-tagged green fluorescent protein (GFP) transgene under the control of a powerful promoter active in all cell types including those of the central nervous system. GFP requires no substrate and can be detected in fixed or living cells so is an attractive genetic marker. Tau-tagged GFP labels subcellular structures, including axons and the mitotic machinery, by binding the GFP to microtubules. This allows cell morphology to be visualized in exquisite detail. We test the application of cells derived from these mice in several types of cell-mixing experiments and demonstrate that the morphology of tau-GFP-expressing cells can be readily visualized after they have integrated into unlabeled host cells or tissues. We anticipate that these ES cells and transgenic mice will prove a novel and powerful tool for a wide variety of applications including the development of neural transplantation technologies in animal models and fundamental research into axon pathfinding mechanisms. A major advantage of the tau-GFP label is that it can be detected in living cells and labeled cells and their processes can be identified and subjected to a variety of manipulations such as electrophysiological cell recording.  相似文献   

14.
Transient transfection of HeLa cells with a plasmid encoding the full-length human fibrillarin fused to a green fluorescent protein (GFP) resulted in two major patterns of intensity of the nucleolar labeling for the chimeric protein: weak and strong. Both patterns were maintained in fibrillarin-GFP expressing cells after fixation with formaldehyde. When the fixed fibrillarin-GFP expressing cells were used for immunolabeling with antibodies to fibrillarin, only the nucleoli with a weak GFP-signal became strongly labeled, whereas those with the heavy signals were only lightly stained, if at all. A similar pattern was observed if the cells were immunolabeled with antibodies to GFP. These observations suggest that an increase in antigen accumulation within the nucleolus, which could take place under various physiological or experimental conditions, could prevent the antigen from being recognized by specific antibodies. These results have implications regarding contradictory data on localization of various nucleolar antigens obtained by conventional immunocytochemistry.  相似文献   

15.
Brock R  Hamelers IH  Jovin TM 《Cytometry》1999,35(4):353-362
BACKGROUND: The analysis of the subcellular distribution of proteins is essential for the understanding of processes such as signal transduction. In most cases, the parallel analysis of multiple components requires fixation and immunofluorescence labeling. Therefore, one has to ascertain that the fixation procedure preserves the in vivo protein distribution. Fusion proteins with the green fluorescent protein (GFP) are ideal tools for this purpose. However, one must consider specific aspects of the fluorophore formation or degradation, i.e. reactions that may interfere with the detection of GFP fusion proteins. METHODS: Fusion proteins of the epidermal growth factor receptor (EGFR) with GFP as well as free, soluble GFP stably or transiently expressed in adherent cultured cells served as test cases for comparing the distribution in vivo with that after fixation by conventional epifluorescence and laser scanning microscopy. Indirect immunofluorescence was employed to compare the distributions of the GFP signal and of the GFP polypeptide in the fusion protein. RESULTS: Paraformaldehyde (PFA) fixation with subsequent mounting in the antifading agent Mowiol, but not in Tris- or HEPES buffered saline, led to a partial redistribution of the EGFR from the plasma membrane to the perinuclear region. The redistribution was confirmed with the GFP and EGFR immunofluorescence. The in vivo distribution in Mowiol mounted cells was preserved if cells were treated with a combined PFA/methanol fixation procedure, which also retained the fluorescence of soluble GFP. The anti-GFP antiserum was negative for the N-terminal fusion protein. CONCLUSIONS: The combined PFA/methanol protocol is universally applicable for the fixation of transmembrane and soluble cytoplasmic proteins and preserves the fluorescence of GFP.  相似文献   

16.
The discovery of the green fluorescent protein (GFP) and its use as a marker for proteins in cells revolutionised cell biology. Among its applications are the intracellular localisation of proteins and the investigation of the organisation, regulation and dynamics of the cytoskeleton. GFP itself is considered to be an inert protein, homogeneously distributed within the cytoplasm. Here we investigated the intracellular distribution of GFP in an amphibian and in various mammalian cell lines (XTH2, CHO-K1, HaCaT, MDCK, NIH-3T3) by confocal laser scanning microscopy. After paraformaldehyde fixation GFP became associated with microfilaments in all the cell lines investigated. This interaction was not impaired by detergent treatment (1% Brij 58 for 10 min). In contrast to the F-actin binding of GFP in fixed cells, association of GFP with stress fibres was not detectable in living cells. The actin-binding property of GFP might contribute also to the interaction of fusion proteins with microfilaments. Thus, careful controls are unavoidable in investigating (weak) actin-binding proteins in fixed cells. Because no association of GFP with microfilaments was detectable in living cells, it is recommended to monitor the intracellular distribution of GFP-tagged proteins in vivo.  相似文献   

17.
Small regions called protein transduction domains (PTDs), identified in cellular and viral proteins, have been reported to efficiently cross biological membranes. Here we show that the structural Gag protein of the prototypic foamy virus (PFV) is apparently able to move from cell to cell and to transport the green fluorescent protein (GFP) from few transfected cells to the nuclei of the entire monolayer. Deletion studies showed that this property lies within the second glycine/arginine (GRII) box in the C-terminus of the protein. We also found that uptake and nuclear accumulation of Gag GRII expressed as GFP-fusion protein in recipient cells was observed only following methanol fixation, but never in living cells or when cells were fixed with glutaraldehyde or treated with trichloroacetic acid prior to methanol fixation. Absence of intercellular spreading in vivo was further confirmed using a sensitive luciferase activity assay based on transactivation of the PFV long terminal repeats. Thus, we conclude that intercellular spreading of PFV Gag represents an artificial diffusion event occurring during cell fixation, followed by nuclear retention mediated by the chromatin-binding sequence within the Gag GRII box. In light of these results, we advise caution before defining a peptide as PTD on the basis of intercellular spreading observed by fluorescence microscopy.  相似文献   

18.
Zhang S  Ma C  Chalfie M 《Cell》2004,119(1):137-144
Expression of GFP and other fluorescent proteins depends on cis-regulatory elements. Because these elements rarely direct expression to specific cell types, GFP production cannot always be sufficiently limited. Here we show that reconstitution of GFP, YFP, and CFP previously split into two polypeptides yields fluorescent products when coexpressed in C. elegans. Because this reconstitution involves two components, it can confirm cellular coexpression and identify cells expressing a previously uncharacterized promoter. By choosing promoters whose expression patterns overlap for a single cell type, we can produce animals with fluorescence only in those cells. Furthermore, when one partial GFP polypeptide is fused with a subcellularly localized protein or peptide, this restricted expression leads to the fluorescent marking of cellular components in a subset of cells.  相似文献   

19.
Green fluorescent protein (GFP) is a highly useful fluorescent tag for studying the localization, structure, and dynamics of macromolecules in living cells, and has quickly become a primary tool for analysis of DNA and protein localization in prokaryotes. Several properties of GFP make it an attractive and versatile reporter. It is fluorescent and soluble in a wide variety of species, can be monitored noninvasively by external illumination, and needs no external substrates. Localization of GFP fusion proteins can be analyzed in live bacteria, therefore eliminating potential fixation artifacts and enabling real-time monitoring of dynamics in situ. Such real-time studies have been facilitated by brighter, more soluble GFP variants. In addition, red-shifted GFPs that can be excited by blue light have lessened the problem of UV-induced toxicity and photobleaching. The self-contained domain structure of GFP reduces the chance of major perturbations to GFP fluorescence by fused proteins and, conversely, to the activities of the proteins to which it is fused. As a result, many proteins fused to GFP retain their activities. The stability of GFP also allows detection of its fluorescence in vitro during protein purification and in cells fixed for indirect immunofluorescence and other staining protocols. Finally, the different properties of GFP variants have given rise to several technological innovations in the study of cellular physiology that should prove useful for studies in live bacteria. These include fluorescence resonance energy transfer (FRET) for studying protein-protein interactions and specially engineered GFP constructs for direct determination of cellular ion fluxes.  相似文献   

20.
Evaluation of VP22 spread in tissue culture   总被引:9,自引:0,他引:9       下载免费PDF全文
We compare methods of detection of intercellular transport of the herpes simplex virus protein VP22 and of a green fluorescent protein (GFP)-VP22 fusion protein. Spread of both proteins was observed by immunofluorescence (IF) using organic fixatives. Spread of both proteins was also detected by IF after paraformaldehyde (PFA) fixation and detergent permeabilization, albeit at reduced levels. However, while spread of GFP-VP22 was observed by examining intrinsic GFP fluorescence after methanol fixation, little spread was observed after PFA fixation, suggesting that the levels of the fusion protein in recipient cells were below the detection limits of intrinsic-fluorescence or that PFA fixation quenches the fluorescence of GFP-VP22. We further considered whether elution of VP22 from methanol-fixed cells and postfixation binding to surrounding cells contributed to the increased detection of spread observed after methanol fixation. The results show that while this could occur, it appeared to be a minor effect not accounting for the observed VP22 cell-to-cell spread in culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号