首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The assimilation of 14CO2 into the C4 acids malate and aspartate by leaves of C3, C4 and C3–C4 intermediate Flaveria species was investigated near the CO2 compensation concentration * in order to determine the potential role of phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) in reducing photorespiration in the intermediates. Relative to air concentrations of CO2, the proportion of CO2 fixed by PEP carboxylase at * increased in all six C3–C4 intermediate species examined. However, F. floridana J.R. Johnston and F. ramosissima Klatt were shown to be markedly less responsive to reduced external CO2, with only about a 1.6-fold enhancement of CO2 assimilation by PEP carboxylase, as compared to a 3.0- to 3.7-fold increase for the other C3–C4 species examined, namely, F. linearis Lag., F. anomala B.L. Robinson, F. chloraefolia A. Gray and F. pubescens Rydb. The C3 species F. pringlei Gandoger and F. cronquistii A.M. Powell exhibited a 1.5- and 2.9-fold increase in labeled malate and aspartate, respectively, at *. Assimilation of CO2 by PEP carboxylase in the C4 species F. trinervia (Spreng.) C. Mohr, F. australasica Hook., and the C4-like species F. brownii A.M. Powell was relatively insensitive to subatmospheric levels of CO2. The interspecific variation among the intermediate Flaverias may signify that F. floridana and F. ramosissima possess a more C4-like compartmentation of PEP carboxylase and ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) between the mesophyll and bundle-sheath cells. Chasing recently labeled malate and aspartate with 12CO2 for 5 min at * resulted in an apparent turnover of 25% and 30% of the radiocarbon in these C4 acids for F. ramosissima and F. floridana, respectively. No substantial turnover was detected for F. linearis, F. anomala, F. chloraefolia or F. pubescens. With the exception of F. floridana and F. ramosissima, it is unlikely that enhanced CO2 fixation by PEP carboxylase at the CO2 compensation concentration is a major mechanism for reducing photorespiration in the intermediate Flaveria species. Moreover, these findings support previous related 14CO2-labeling studies at air-levels of CO2 which indicated that F. floridana and F. ramosissima were more C4-like intermediate species. This is further substantiated by the demonstration that F. floridana PEP carboxylase, like the enzyme in C4 plants, undergoes a substantial activation (2.2-fold) upon illuminating dark-adapted green leaves. In contrast, light activation was not observed for the enzyme in F. linearis or F. chloraefolia.Abbreviations and symbols PEP phosphoenolpyruvate - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - CO2 compensation concentration - * a subatmospheric level of CO2 approximating Published as Paper No. 8832, Journal Series, Nebraska Agricultural Research Division  相似文献   

2.
Peperomia has species that may be C3, show Crassulacean acid metabolism (CAM), or CAM-cycling. Species that show CAM progress from C3 to CAM through CAM-cycling during leaf development. In CAM and CAM-cycling species, CAM metabolism is predominately in the upper multiple epidermis and lower spongy mesophyll, whereas C3 metabolism is localized mostly in the palisade mesophyll. Using specific protein and cDNA probes prepared from P-enolpyruvate carboxylase (PEPc) and ribulose-1,5-bisphosphate carboxylase (Rubisco), we have now studied the differential distribution of photosynthetic metabolism in Peperomia leaves using the technique of tissue printing. The tissue printing studies detected Rubisco protein in leaves of C3 P. orba, but not PEPc. Young C3 leaves of P. scandens and P. camptotricha showed Rubisco protein, but not PEPc; however, the mature leaves of these two species that have CAM showed PEPc protein and RNAs in both the multiple epidermis and spongy mesophyll. In contrast, Rubisco protein and RNAs were present throughout the leaf. The tissue printing data are consistent with our previously published data showing the differential distribution of photosynthetic metabolism in leaves of Peperomia. Although the tissue printing technique is qualitative, coupled with quantitative data it has proven useful for the study of function related to structure.  相似文献   

3.
Cheng SH  Moore BD  Wu J  Edwards GE  Ku MS 《Plant physiology》1989,89(4):1129-1135
Photosynthesis was examined in leaves of Flaveria brownii A. M. Powell, grown under either 14% or 100% full sunlight. In leaves of high light grown plants, the CO2 compensation point and the inhibition of photosynthesis by 21% O2 were significantly lower, while activities of ribulose 1,5-bisphosphate carboxylase/oxygenase and various C4 cycle enzymes were considerably higher than those in leaves grown in low light. Both the CO2 compensation point and the degree of O2 inhibition of apparent photosynthesis were relatively insensitive to the light intensity used during measurements with plants from either growth conditions. Partitioning of atmospheric CO2 between Rubisco of the C3 pathway and phosphoenolpyruvate carboxylase of the C4 cycle was determined by exposing leaves to 14CO2 for 3 to 16 seconds, and extrapolating the labeling curves of initial products to zero time. Results indicated that ~94% of the CO2 was fixed by the C4 cycle in high light grown plants, versus ~78% in low light grown plants. Thus, growth of F. brownii in high light increased the expressed level of C4 photosynthesis. Consistent with the carbon partitioning patterns, photosynthetic enzyme activities (on a chlorophyll basis) in protoplasts from leaves of high light grown plants showed a more C4-like pattern of compartmentation. Pyruvate, Pi dikinase and phosphoenolpyruvate carboxylase were more enriched in the mesophyll cells, while NADP-malic enzyme and ribulose 1,5-bisphosphate carboxylase/oxygenase were relatively more abundant in the bundle sheath cells of high light than of low light grown plants. Thus, these results indicate that F. brownii has plasticity in its utilization of different pathways of carbon assimilation, depending on the light conditions during growth.  相似文献   

4.
Brown RH  Byrd GT  Black CC 《Plant physiology》1992,100(2):947-950
Hybrids have been made between species of Flaveria exhibiting varying levels of C4 photosynthesis. The degree of C4 photosynthesis expressed in four interspecific hybrids (Flaveria trinervia [C4] × F. linearis [C3-C4], F. brownii [C4-like] × F. linearis, and two three-species hybrids from F. trinervia × [F. brownii × F. linearis]) was estimated by inhibiting phosphoenolpyruvate carboxylase in vivo with 3,3-dichloro-2-dihydroxyphosphinoylmethyl-2-propenoate (DCDP). The inhibitor was fed to detached leaves at a concentration of 4 mm, and apparent photosynthesis was measured at atmospheric levels of CO2 and at 20 and 210 mL L−1 of O2. Photosynthesis at 210 mL L−1 of O2 was inhibited 32% by DCDP in F. linearis, by 60% in F. brownii, and by 87% in F. trinervia. Inhibition in the hybrids ranged from 38 to 52%. The inhibition of photosynthesis by 210 mL L−1 of O2 was increased when DCDP was used, except in the C4 species, F. trinervia, in which photosynthesis was insensitive to O2. Except for F. trinervia, control plants with less O2 sensitivity (more C4-like) exhibited a progressively greater change in O2 inhibition of photosynthesis when treated with DCDP. This increased O2 inhibition probably resulted from decreased CO2 concentrations in bundle sheath cells due to inhibition of phosphoenolpyruvate carboxylase. The inhibition of photosynthesis by DCDP is concluded to underestimate the degree of C4 photosynthesis in the interspecific hybrids because increased direct assimilation of atmospheric CO2 by ribulose bisphosphate carboxylase may compensate for inhibition of phosphoenolpyruvate carboxylase.  相似文献   

5.
Abstract The pattern of photosynthetic carbon fixation by leaves of Amaranthus paniculatus L. (a C4 plant) and Oryza sativa L. (a C3 plant) varied with age. Younger leaves of A. paniculatus incorporated 14CO2 into malate and aspartate while senescent leaves fixed predominantly into phosphoglycerate (PGA) and sugar phosphates. Only developing leaves of O. sativa formed malate/aspartate whereas mature and senescent leaves produced PGA/sugar phosphates as the initial labelled products. Correspondingly the ratio of phosphoenolpyruvate/ribulose bisphosphate (RuBP) carboxylase activities was higher in younger leaves of A. paniculatus and developing leaves of O. sativa than in older leaves. However, pulse chase experiments revealed that the main donors of carbon to end products, irrespective of leaf stage, were C4 acids and PGA in A. paniculatus and O. sativa respectively. The results suggest that although an apparent change from initial β-carboxylation to RuBP carboxylation occurs during leaf ontogeny in both the plants, the overall leaf photosynthesis remains C4 or C3. The high rate of 14CO2 incorporation into PGA/sugar phosphates by senescent leaves of A. paniculatus is suggested to be partly due to the increased intercellular spaces in their mesophyll, allowing greater access of CO2 directly to RuBP carboxylase in the bundle sheath.  相似文献   

6.
Recent work has suggested that the photosynthetic rate of certain C4 species can be stimulated by increasing CO2 concentration, [CO2], even under optimal water and nutrients. To determine the basis for the observed photosynthetic stimulation, we tested the hypothesis that the CO2 leak rate from the bundle sheath would be directly related to any observed stimulation in single leaf photosynthesis at double the current [CO2]. Three C4 species that differed in the reported degree of bundle sheath leakiness to CO2, Flaveria trinervia, Panicum miliaceum, and Panicum maximum, were grown for 31–48 days after sowing at a [CO2] of 350 μl l?1 (ambient) or 700 μl l?1 (elevated). Assimilation as a function of increasing [CO2] at high photosynthetic photon flux density (PPFD, 1 600 μmol m?2 s?1) indicated that leaf photosynthesis was not saturated under current ambient [CO2] for any of the three C4 species. Assimilation as a function of increasing PPFD also indicated that the response of leaf photosynthesis to elevated [CO2] was light dependent for all three C4 species. The stimulation of leaf photosynthesis at elevated [CO2] was not associated with previously published values of CO2 leak rates from the bundle sheath, changes in the ratio of activities of PEP-carboxylase to RuBP carboxylase/oxgenase, or any improvement in daytime leaf water potential for the species tested in this experiment. In spite of the simulation of leaf photosynthesis, a significant increase in growth at elevated [CO2] was only observed for one species, F. trinervia. Results from this study indicate that leaf photosynthetic rates of certain C4 species can respond directly to increased [CO2] under optimal growth conditions, but that the stimulation of whole plant growth at elevated carbon dioxide cannot be predicted solely on the response of individual leaves.  相似文献   

7.

Background  

The key enzymes of photosynthetic carbon assimilation in C4 plants have evolved independently several times from C3 isoforms that were present in the C3 ancestral species. The C4 isoform of phosphoenolpyruvate carboxylase (PEPC), the primary CO2-fixing enzyme of the C4 cycle, is specifically expressed at high levels in mesophyll cells of the leaves of C4 species. We are interested in understanding the molecular changes that are responsible for the evolution of this C4-characteristic PEPC expression pattern, and we are using the genus Flaveria (Asteraceae) as a model system. It is known that cis-regulatory sequences for mesophyll-specific expression of the ppcA1 gene of F. trinervia (C4) are located within a distal promoter region (DR).  相似文献   

8.
In C3 plants, part of the CO2 fixed during photosynthesis in chloroplasts is released from mitochondria during photorespiration by decarboxylation of glycine via glycine decarboxylase (GDC), thereby reducing photosynthetic efficiency. The apparent positioning of most mitochondria in the interior (vacuole side of chloroplasts) of mesophyll cells in C3 grasses would increase the efficiency of refixation of CO2 released from mitochondria by ribulose 1,5-bisphosphate carboxylase/?oxygenase (Rubisco) in chloroplasts. Therefore, in mesophyll cells of C4 grasses, which lack both GDC and Rubisco, the mitochondria ought not to be positioned the same way as in C3 mesophyll cells. To test this hypothesis, we investigated the intracellular position of mitochondria in mesophyll cells of 14 C4 grasses of different C4 subtypes and subfamilies (Chloridoideae, Micrairoideae, and Panicoideae) and a C3–C4 intermediate grass, Steinchisma hians, under an electron microscope. In C4 mesophyll cells, most mitochondria were positioned adjacent to the cell wall, which clearly differs from the positioning in C3 mesophyll cells. In S. hians mesophyll cells, the positioning was similar to that in C3 cells. These results suggest that the mitochondrial positioning in C4 mesophyll cells reflects the absence of both GDC and Rubisco in the mesophyll cells and the high activity of phosphoenolpyruvate carboxylase. In contrast, the relationship between the mitochondrial positioning and enzyme distribution in S. hians is complex, but the positioning may be related to the capture of respiratory CO2 by Rubisco. Our study provides new possible insight into the physiological role of mitochondrial positioning in photosynthetic cells.  相似文献   

9.
As is the case with spinach ribulose bisphosphate carboxylase/oxygenase (Rubisco), [14C]carboxyarabinitol bisphosphate (CABP) bound to purified Chlorella Rubisco with a molar ratio of unity to large subunit of the enzyme. The concentration of binding sites in extracts of photosynthetic organisms was determined by reacting the extracts with [14C]-carboxypentitol bisphosphate (CPBP) and precipitating the resultant Rubisco-[14C]CABP complex with a combination of polyethylene glycol-4000 and MgCl2. Plots of the relationship between concentrations of [14C] CPBP in the reaction mixture and the precipitated [14C]CPBP gave a straight line and the concentration of binding sites were estimated by extrapolation to zero [14C]CPBP since the dissociation constant of CABP with Rubisco is 10−11 molar. Spinach, pea, and soybean leaves contained 6.4 to 6.8 milligrams Rubisco per milligram chlorophyll, corresponding to 92 to 97 ribulose bisphosphate-binding sites per milligram chlorophyll. The Rubisco content of sunflower and wheat leaves was 5.3 to 5.5 milligrams per milligram chlorophyll. The concentrations in C4 plants were not uniform and corn and Panicum miliaceum leaves contained 3 and 7 milligrams Rubisco per milligram chlorophyll. The Rubisco content of green algae was one-fifth to one-sixth that of C3 plant leaves and was affected by the CO2 concentration during growth. The content of Euglena and blue-green algae is also reported.  相似文献   

10.
A ) depend not only on photosynthetic biochemistry but also on mesophyll structure. Because resistance to CO2 diffusion from the substomatal cavity to the stroma is substantial, it is likely that mesophyll structure affects A through affecting diffusion of CO2 in the leaf. To evaluate effects of various aspects of mesophyll structure on photosynthesis, we constructed a one-dimensional model of CO2 diffusion in the leaf. When mesophyll thickness of the leaf is changed with the Rubisco content per unit leaf area kept constant, the maximum A occurs at an almost identical mesophyll thickness irrespective of the Rubisco contents per leaf area. On the other hand, with an increase in Rubisco content per leaf area, the mesophyll thickness that realizes a given photosynthetic gain per mesophyll thickness (or per leaf cost) increases. This probably explains the strong relationship between A and mesephyll thickness. In these simulations, an increase in mesophyll thickness simultaneously means an increase in the diffusional resistance in the intercellular spaces (R ias), an increase in the total surface area of chloroplasts facing the intercellular spaces per unit leaf area (S c ), and an increase in construction and maintenance cost of the leaf. Leaves can increase S c and decrease R ias also by decreasing cell size. Leaves with smaller cells are mechanically stronger. However, actual leaves do not have very small cells. This could be because actual leaves exhibiting considerable rates of leaf area expansion, adequate heat capacitance, high efficiency of N and/or P use, etc, are favoured. Relationships between leaf longevity and mesophyll structure are also discussed. Received 20 September 2000/ Accepted in revised form 4 January 2001  相似文献   

11.
Leaf gas exchange parameters and the content of ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) in the leaves of two 2‐year‐old aspen (Populus tremuloides Michx.) clones (no. 216, ozone tolerant and no. 259, ozone sensitive) were determined to estimate the relative stomatal and mesophyll limitations to photosynthesis and to determine how these limitations were altered by exposure to elevated CO2 and/or O3. The plants were exposed either to ambient air (control), elevated CO2 (560 p.p.m.) elevated O3 (55 p.p.b.) or a mixture of elevated CO2 and O3 in a free air CO2 enrichment (FACE) facility located near Rhinelander, Wisconsin, USA. Light‐saturated photosynthesis and stomatal conductance were measured in all leaves of the current terminal and of two lateral branches (one from the upper and one from the lower canopy) to detect possible age‐related variation in relative stomatal limitation (leaf age is described as a function of leaf plastochron index). Photosynthesis was increased by elevated CO2 and decreased by O3 at both control and elevated CO2. The relative stomatal limitation to photosynthesis (ls) was in both clones about 10% under control and elevated O3. Exposure to elevated CO2 + O3 in both clones and to elevated CO2 in clone 259, decreased ls even further – to about 5%. The corresponding changes in Rubisco content and the stability of Ci/Ca ratio suggest that the changes in photosynthesis in response to elevated CO2 and O3 were primarily triggered by altered mesophyll processes in the two aspen clones of contrasting O3 tolerance. The changes in stomatal conductance seem to be a secondary response, maintaining stable Ci under the given treatment, that indicates close coupling between stomatal and mesophyll processes.  相似文献   

12.
The initial products of photosynthesis by the C3 species Flaveria cronquistii, the C4 species F. trinervia, and the C3-C4 intermediate species F. ramosissima were determined using a pulse-chase technique with 14CO2-12CO2. The intermediate species F. ramosissima incorporated at least 42% of the total soluble 14C fixed into malate and aspartate after 10 seconds of photosynthesis in 14CO2, as compared with 90% for the C4 species F. trinervia and 5% for the C3 species F. cronquistii. In both F. ramosissima and F. trinervia, turnover of labeled malate and aspartate occurred during a chase period in 12CO2, although the rate of turnover was slower in the intermediate species. Relative to F. cronquistii, F. ramosissima showed a reduced incorporation of radioactivity into serine and glycine during the pulse period. These results indicate that a functional C4 pathway of photosynthesis is operating in F. ramosissima which can account for its reduced level of photorespiration, and that this species is a true biochemical intermediate between C3 and C4 plants.  相似文献   

13.
Abstract. The photosynthetic responses to temperature in C3, C3-C4 intermediate, and C4 species in the genus Flaveria were examined in an effort to identify whether the reduced photorespiration rates characteristic of C3-C4 intermediate photosynthesis result in adaptive advantages at warm leaf temperatures. Reduced photorespiration rates were reflected in lower CO2 compensation points at all temperatures examined in the C3-C4 intermediate, Flaveria floridana, compared to the C3 species, F. cronquistii. The C3-C4 intermediate, F. floridana, exhibited a C3-like photosynthetic temperature dependence, except for relatively higher photosynthesis rates at warm leaf temperatures compared to the C3 species, F. cronquistii. Using models of C3 and C3-C4 intermediate photosynthesis, it was predicted that by recycling photorespired CO2 in bundle-sheath cells, as occurs in many C3-C4 intermediates, photosynthesis rates at 35°C could be increased by 28%, compared to a C3 plant. Without recycling photorespired CO2, it was calculated that in order to improve photosynthesis rates at 35°C by this amount in C3 plants, (1) intercellular CO2 partial pressures would have to be increased from 25 to 31 Pa, resulting in a 57% decrease in water-use efficiency, or (2) the activity of RuBP carboxylase would have to be increased by 32%, resulting in a 22% decrease in nitrogen-use efficiency. In addition to the recycling of photorespired CO2, leaves of F. floridana appear to effectively concentrate CO2 at the active site of RuBP carboxylase, increasing the apparent carboxylation efficiency per unit of in vitro RuBP carboxylase activity. The CO2-concentrating activity also appears to reduce the temperature sensitivity of the carboxylation efficiency in F. floridana compared to F. cronquistii. The carboxylation efficiency per unit of RuBP carboxylase activity decreased by only 38% in F. floridana, compared to 50% in F. cronquistii, as leaf temperature was raised from 25 to 35°C. The C3-C4 intermediate, F. ramosissima, exhibited a photosynthetic temperature temperature response curve that was more similar to the C4 species, F. trinervia, than the C3 species, F. cronquistii. The C4-like pattern is probably related to the advanced nature of C4-like biochemical traits in F. ramosissima The results demonstrate that reductions in photorespiration rates in C3-C4 intermediate plants create photosynthetic advantages at warm leaf temperatures that in C3 plants could only be achieved through substantial costs to water-use efficiency and/or nitrogen-use efficiency.  相似文献   

14.
The mechanisms controlling the photosynthetic performance of C4 plants at low temperature were investigated using ecotypes of Bouteloua gracilis Lag. from high (3000 m) and low (1500 m) elevation sites in the Rocky Mountains of Colorado. Plants were grown in controlled‐environment cabinets at a photon flux density of 700 μ mol m?2 s?1 and day/night temperatures of 26/16 °C or 14/7 °C. The thermal response of the net CO2 assimilation rate (A) was evaluated using leaf gas‐exchange analysis and activity assays of ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco), phosphoenolpyruvate carboxylase (PEPCase) and pyruvate,orthophosphate dikinase (PPDK). In both ecotypes, a reduction in measurement temperature caused the CO2‐saturated rate of photosynthesis to decline to a greater degree than the initial slope of A versus the intercellular CO2 response, thereby reducing the photosynthetic CO2 saturation point. As a consequence, A in normal air was CO2‐saturated at sub‐optimal temperatures. Ecotypic variation was low when grown at 26/16 °C, with the major difference between the ecotypes being that the low‐elevation plants had higher A; however, the ecotypes responded differently when grown at cool temperature. At temperatures below the thermal optimum, A in high‐elevation plants grown at 14/7 °C was enhanced relative to plants grown at 26/16 °C, while A in low‐elevation plants grown at 14/7 °C was reduced compared to 26/16 °C‐grown plants. Photoinhibition at low growth temperature was minor in both ecotypes as indicated by small reductions in dark‐adapted Fv/Fm. In both ecotypes, the activity of Rubisco was equivalent to A below 17 °C but well in excess of A above 25 °C. Activities of PEPCase and PPDK responded to temperature in a similar proportion relative to Rubisco, and showed no evidence for dissociation that would cause them to become principal limitations at low temperature. Because of the similar temperature response of Rubisco and A, we propose that Rubisco is a major limitation on C4 photosynthesis in B. gracilis below 17 °C. Based on these results and for theoretical reasons associated with how C4 plants use Rubisco, we further suggest that Rubisco capacity may be a widespread limitation upon C4 photosynthesis at low temperature.  相似文献   

15.
Carbon isotope discrimination in C3-C4 intermediates   总被引:1,自引:1,他引:0  
Carbon isotope discrimination in C3–C4 intermediates is determined by fractionations during diffusion and the biochemical fractionations occurring during CO2 fixation. These biochemical fractionations in turn depend on the fractionation by Rubisco in the mesophyll, the amount of CO2 fixation. These biochemical fractionations in turn depend on the fractionation by Rubisco in the mesophyll, the amount of CO2 fixation occurring in the bundle sheath, the extent of bundle-sheath leakiness and the contribution which C4-cycle activity makes to the CO2 pool there. In most instances, carbon isotope discrimination in C3–C4 intermediates is C3-like because only a small fraction of the total carbon fixed is fixed in the bundle sheath. In particular, this must be the case for Flaveria intermediates which initially fix substantial amounts of CO2 into C4-acids. In C3–C4 intermediates that refix photorespiratory CO2 alone, it is possible for carbon isotope discrimination to be greater than in C3-species, particularly at low CO2 pressures or at high leaf temperatures. Short-term measurements of carbon isotope discrimination and gas exchange of leaves can be used to study the photosynthetic pathways of C3-C4 intermediates and their hybrids as has recently been done for C3 and C4 species.  相似文献   

16.
Mature leaves of a variegated cultivar of Coleus blumei Benth. with a green border and central albino region constitute a source-sink system suitable for studies on assimilate partitioning. Leaves treated with 14CO2 on a small part of the intact green border export assimilate via the shortest path into the stem. Leaves with all but a small lobe of the green border removed show different partitioning of labeled assimilates when the leaf is exposed to 14CO2 (Fisher and Eschrich, 1985): The whole albino region of the leaf is supplied but no tracer is exported into the stem. When the green border is completely removed, 14CO2-treatment of the albino region leads to the fixation of CO2, obviously by PEP carboxylase, as indicated by the occurrence of labeled malate. Results show that the albino region of the variegated leaf constitutes a potential sink when deprived of its green border. In addition, CO2-fixation by PEP carboxylase in albino tissue seems to indicate a common capacity of leaves which is normally masked by photosynthesis. The difference of assimilate partitioning between leaves with intact and leaves with partly removed green borders demonstrates that the unlabeled assimilates control the movement of labeled assimilates.  相似文献   

17.
The specificity factor of Rubisco (S f) was estimated in intact leaves from the carboxylation of ribulose-1,5-bisphosphate (RuBP) at various CO2/O2 ratios. As oxygenation is calculated by the difference of the 14CO2 uptake by RuBP in the absence and presence of oxygen, it is important to choose the optimum CO2/O2 ratios. At high CO2 concentration (1,000 cm3 m?3 and higher) oxygenation consumes less than 50% RuBP but the difference of concentrations of CO2 at cell walls (C w) and at the carboxylation centers (C c) is 2?C5% and the influence of mesophyll resistance (r md) is of minor importance. To accumulate large endogenous pool of RuBP, the leaves were preilluminated in the CO2- and O2-free gas environments for 8 to 10 s. Thereafter the light was switched off and the leaves were flushed with the gas containing different concentrations of 14CO2 and O2. The specificity factor of Rubisco was calculated from the amount of the tracer taken up under different 14CO2/O2 ratios by the exhaustion of the RuBP pool. Application of 14CO2 allowed us to discriminate between the CO2 uptake and the concurrent respiratory CO2 release which proceeded at the expense of unlabelled intermediates.  相似文献   

18.
Light microscopic examination of leaf cross-sections showed that Flaveria brownii A. M. Powell exhibits Kranz anatomy, in which distinct, chloroplast-containing bundle sheath cells are surrounded by two types of mesophyll cells. Smaller mesophyll cells containing many chloroplasts are arranged around the bundle sheath cells. Larger, spongy mesophyll cells, having fewer chloroplasts, are located between the smaller mesophyll cells and the epidermis. F. brownii has very low CO2 compensation points at different O2 levels, which is typical of C4 plants, yet it does show about 4% inhibition of net photosynthesis by 21% O2 at 30°C. Protoplasts of the three photosynthetic leaf cell types were isolated according to relative differences in their buoyant densities. On a chlorophyll basis, the activities of phosphoenolpyruvate carboxylase and pyruvate, Pi dikinase (carboxylation phase of C4 pathway) were highest in the larger mesophyll protoplasts, intermediate in the smaller mesophyll protoplasts, and lowest, but still present, in the bundle sheath protoplasts. In contrast, activities of ribulose 1,5-bisphosphate carboxylase, other C3 cycle enzymes, and NADP-malic enzyme showed a reverse gradation, although there were significant activities of these enzymes in mesophyll cells. As indicated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the banding pattern of certain polypeptides of the total soluble proteins from the three cell types also supported the distribution pattern obtained by activity assays of these enzymes. Analysis of initial 14C products in whole leaves and extrapolation of pulse-labeling curves to zero time indicated that about 80% of the CO2 is fixed into C4 acids (malate and aspartate), whereas about 20% of the CO2 directly enters the C3 cycle. This is consistent with the high activity of enzymes for CO2 fixation by the C4 pathway and the substantial activity of enzymes of the C3 cycle in the mesophyll cells. Therefore, F. brownii appears to have some capacity for C3 photosynthesis in the mesophyll cells and should be considered a C4-like species.  相似文献   

19.
Winter wheat (Triticum aestivum L., cv. Mercia) was grown at two different atmospheric CO2 concentrations (350 and 700 μmol mol−1), two temperatures [ambient temperature (i.e. tracking the open air) and ambient +4°C] and two rates of nitrogen supply (equivalent to 489 kg ha−1 and 87 kg ha−1). Leaves grown at 700 μmol mol−1 CO2 had slightly greater photosynthetic capacity (10% mean increase over the experiment) than those grown at ambient CO2 concentration, but there were no differences in carboxylation efficiency or apparent quantum yield. The amounts of chlorophyll, soluble protein and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) per unit leaf area did not change with long-term exposure to elevated CO2 concentration. Thus winter wheat, grown under simulated field conditions, for which total biomass was large compared to normal field production, did not experience loss of components of the photosynthetic system or loss of photosynthetic competence with elevated CO2 concentration. However, nitrogen supply and temperature had large effects on photosynthetic characteristics but did not interact with elevated CO2 concentration. Nitrogen deficiency resulted in decreases in the contents of protein, including Rubisco, and chlorophyll, and decreased photosynthetic capacity and carboxylation efficiency. An increase in temperature also reduced these components and shortened the effective life of the leaves, reducing the duration of high photosynthetic capacity.  相似文献   

20.
Control coefficients were used to describe the degree to which ribulose bisphosphate carboxylase/oxygenase (Rubisco) limits the steady-state rate of CO2 assimilation in sunflower leaves from plants grown at high (800 μmol mol−1) and low (350 μmol mol−1) CO2. The magnitude of a control coefficient is approximately the percentage change in the flux that would result from a 1% rise in enzyme active site concentration. In plants grown at low CO2, leaves of different ages varied considerably in their photosynthetic capacities. In a saturating light flux and an ambient CO2 concentration of 350 μmol mol−1, the Rubisco control coefficient was about 0.7 in all leaves, indicating that Rubisco activity largely limited the assimilation flux. The Rubisco control coefficient for leaves grown at 350 μmol mol−1 CO2 dropped to about zero when the ambient CO2 concentration was raised to 800 μmol mol−1. In relatively young, fully expanded leaves of plants grown at high CO2, the Rubisco control coefficient was also about 0.7 at a saturating light flux and at the CO2 concentration at which the plants were grown (800 μmol mol−1). This apparently resulted from a decrease in the concentration of Rubisco active sites. In older leaves, however, the control coefficient was about 0.2. Because, on the whole, Rubisco activity still largely limits the assimilation flux in plants grown at high CO2, the kinetics of this enzyme can still be used to model photosynthesis under these conditions. The relatively high Rubisco control coefficient under enhanced CO2 indicates that the young sunflower leaves have the capacity to acclimate their photosynthetic biochemistry in a way consistent with an optimal use of protein resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号