首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 836 毫秒
1.
It is plausible that the nutritional quality of C3 plants will decline more under elevated atmospheric CO2 than will the nutritional quality of C4 plants, causing herbivorous insects to increase their feeding on C3 plants relative to C4 plants. We tested this hypothesis with a C3 and C4 grass and two caterpillar species with different diet breadths. Lolium multiflorum (C3) and Bouteloua curtipendula (C4) were grown in outdoor open top chambers at ambient (370 ppm) or elevated (740 ppm) CO2. Bioassays compared the performance and digestive efficiencies of Pseudaletia unipuncta (a grass-specialist noctuid) and Spodoptera frugiperda (a generalist noctuid). As expected, the nutritional quality of L. multiflorum changed to a greater extent than did that of B. curtipendula when grown in elevated CO2; levels of protein (considered growth limiting) declined in the C3 grass, while levels of carbohydrates (sugar, starch and fructan) increased. However, neither insect species increased its feeding rate on the C3 grass to compensate for its lower nutritional quality when grown in an elevated CO2 atmosphere. Consumption rates of P. unipuncta and S. frugiperda were higher on the C3 grass than the C4 grass, the opposite of the result expected for a compensatory response to the lower nutritional quality of the C4 grass. Although our results do not support the hypothesis that grass-specialist insects compensate for lower nutritional quality by increasing their consumption rates more than do generalist insects, the performance of the specialist was greater than that of the generalist on each grass species and at both CO2 levels. Mechanisms other than compensatory feeding, such as increased nutrient assimilation efficiency, appear to determine the relative performance of these herbivores. Our results also provide further evidence against the hypothesis that C4 grasses would be avoided by insect herbivores because a large fraction of their nutrients is unavailable to herbivores. Instead, our results are consistent with the hypothesis that C4 grasses are poorer host plants primarily because of their lower nutrient levels, higher fiber levels, and greater toughness.  相似文献   

2.
The activity of enzymes characteristic for C4-type photosynthesis was determined in different organs of two herbaceous plants: Reynoutria japonica Houtt. and Helianthus tuberosus L. The activity of phosphoenolpyruvate carboxylase (PEPC) was usually higher in the roots, some of the stem tissues and petioles in comparison to the leaf blades. The highest activity of malic enzymes (NAD-ME, NADP-ME) and phosphoenolpyruvate carboxykinase (PEPCK) was in the petioles and stem tissues of both plants and the lowest in the leaf blades and the pith of Helianthus tuberosus L.  相似文献   

3.
The effects of the diurnal variations in ambient temperature on some C3 and C4 enzymes in the Salsola dendroides and Suaeda altissima species of Chenopodiaceae family were studied during the intensive vegetation period. Activities of phosphoenolpyruvate carboxylase (PEPC) and cytosolic aspartate aminotransferase (AsAT) were shown to decrease in both species in the afternoon and evening. The activity of the mitochondrial AsAT decreased in S. altissima, remained relatively constant in S. dendroides during the day. The activity of alanine aminotransferase was high in the S. dendroides species in the morning and evening and decreased in the S. altissima species by the evening. Glucose-6-phosphate activated PEPC in both species throughout the day. The study of the redox status-regulated C3 enzymes showed temperature-related increases in NADP-glyceraldehyde 3-phosphate dehydrogenase activity in both plants, in fructose-2,6-bisphosphatase activity in the S. altissima species, and in NADP-MDH activity in the S. dendroides species in the afternoon.  相似文献   

4.
C4 photosynthetic pathway and morphological functional types were determined for 104 species in 45 genera and 10 families from the deserts of China. 67 C4 species (64.4 %) were found in Dicotyledoneae (e.g. Chenopodiaceae, Polygonaceae, and Amaranthaceae), the other 37 species were in Monocotyledoneae (e.g. Gramineae, Cyperaceae, and Commelinaceae). 36.5 % of the Chenopodiaceae species (predominantly members of the genera Anabasis, Atriplex, Kochia, Salsola, and Suaeda) identified in the desert regions were found with C4 photosynthesis, which was about 48 % of the total C4 species. Many C4 species (58.7 %) were annuals (e.g. Amaranthus, Atriplex, Digitaria, Eragrostis, Kochia, and Salsola) and experienced long-term droughts, high temperature, and high irradiance. Relatively more shrub C4 species (28 species of 104) were found in Chenopodiaceae (e.g. Anabasis, Camphorosma, Haloxylon, and Salsola) and Polygonaceae (e.g. Calligonum) in the desert regions. Most of shrub C4 species with small leaf area were no more than 1 m in height and distributed in sandy soils. Composition of relatively more annual species, shrubs, and Chenopodiaceae C4 species was the primary characteristic for the C4 species occurrence in deserts, and this was remarkably related with the arid environmental conditions.  相似文献   

5.
The effect of drought stress (DS) on photosynthesis and photosynthesis-related enzyme activities was investigated in F. pringlei (C3), F. floridana (C3–C4), F. brownii (C4-like), and F. trinervia (C4) species. Stomatal closure was observed in all species, probably being the main cause for the decline in photosynthesis in the C3 species under ambient conditions. In vitro ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) and stromal fructose 1,6-bisphosphatase (sFBP) activities were sufficient to interpret the net photosynthetic rates (P N), but, from the decreases in P N values under high CO2 (C a = 700 μmol mol− 1) it is concluded that a decrease in the in vivo rate of the RuBPCO reaction may be an additional limiting factor under DS in the C3 species. The observed decline in the photosynthesis capacity of the C3–C4 species is suggested to be associated both to in vivo decreases of RuBPCO activity and of the RuBP regeneration rate. The decline of the maximum P N observed in the C4-like species under DS was probably attributed to a decrease in maximum RuBPCO activity and/or to decrease of enzyme substrate (RuBP or PEP) regeneration rates. In the C4 species, the decline of both in vivo photosynthesis and photosynthetic capacity could be due to in vivo inhibition of the phosphoenolpyruvate carboxylase (PEPC) by a twofold increase of the malate concentration observed in mesophyll cell extracts from DS plants.  相似文献   

6.
C4 plants can more efficiently fix carbon in drought, high temperatures, and limitations of nitrogen or CO2. Primary carboxylation is mediated by phosphoenolpyruvate carboxylase (PEPC, 4.1.1.31) in mesophyll cytosol of C4 plants. Studies on hormonal regulation of C4 PEPC have been quite limited. We have examined the activity/regulation of PEPC by abscisic acid (ABA), a plant hormone, in the leaves of Amaranthus hypochondriacus. PEPC activity was enhanced upon 1-h incubation with 20 μM ABA by about 30% in dark and more than 2-fold in light. Glucose-6-phosphate activation of PEPC was enhanced, and sensitivity to l-malate was decreased after ABA treatment. Butyric acid (a weak acid) decreased PEPC activity and restricted the stimulation by ABA. In contrast, methylamine (an alkalinizing agent) increased the PEPC activity and enhanced the effect of ABA. ABA increased the levels of PEPC protein as well as its mRNA. Butyric acid/methylamine modulated the changes induced by ABA of PEPC protein and mRNA levels, indicating that acidification/alkalinization of leaf disks was very important. Our results emphasize the marked modulation of PEPC in C4 plants, by ABA. Such modulation by ABA could be significant when C4 plants are under water stress, when ABA is known to accumulate. When present, cycloheximide decreased the PEPC protein levels and restricted the extent of activation by ABA. We conclude that the enhancement by ABA of PEPC activity depends on cellular alkalinization as well as elevated PEPC protein levels.  相似文献   

7.
Water deficit, when rapidly imposed on three C4 grasses of the different metabolic subtypes, Paspalum dilatatum Poiret (NADP-malic enzyme), Cynodon dactylon (L.) Pers (NAD-malic enzyme) and Zoysia japonica Steudel (phosphoenolpyruvate carboxykinase), caused decreases in photosynthetic rates, in the quantum yield of PS II and photochemical quenching, and in the activities of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPC). The results provide evidence for non-stomatal limitations of photosynthesis differing in nature between the three species.  相似文献   

8.
R.Z. Wang 《Photosynthetica》2005,43(4):535-549
Of the total 570 species, 194 species in 116 genera and 52 families were found with C3 photosynthesis, 24 species in 17 genera and 6 families with C4 photosynthesis, and 2 species in 1 genera and 1 family with CAM photosynthesis. 90 % of the total species can be found in Changbai Mountain flora, more a half (69 %) in North China flora, and about 1/3 in Mongolian flora and Xinan flora, respectively. The occurrence of C4 species was not as common as that in adjacent grasslands and deserts, but relatively more than in the adjacent forests. Of the total 24 C4 species, 63 % C4 species (15 of 24) was found in Gramineae. Nine life form types can be found, reflecting the moist climate in the region, especially the occurrence of epiphyte and liana forms. Relatively more geophyte life form plants suggested the winter in the region was much colder than in grasslands. These indicated that both ecological studies and land management decisions must take into account plant photosynthetic pathway and life form patterns, for both of them are closely related to climatic changes and land use.  相似文献   

9.
Increase in both atmospheric CO2 concentration [CO2] and associated warming are likely to alter Earths’ carbon balance and photosynthetic carbon fixation of dominant plant species in a given biome. An experiment was conducted in sunlit, controlled environment chambers to determine effects of atmospheric [CO2] and temperature on net photosynthetic rate (P N) and fluorescence (F) in response to internal CO2 concentration (C i) and photosynthetically active radiation (PAR) of the C4 species, big bluestem (Andropogon gerardii Vitman). Ten treatments were comprised of two [CO2] of 360 (ambient, AC) and 720 (elevated, EC) μmol mol−1 and five day/night temperature of 20/12, 25/17, 30/22, 35/27 and 40/32 °C. Treatments were imposed from 15 d after sowing (DAS) through 130 DAS. Both F-P N/C i and F-P N/PAR response curves were measured on top most fully expanded leaves between 55 and 75 DAS. Plants grown in EC exhibited significantly higher CO2-saturated net photosynthesis (P sat), phosphoenolpyruvate carboxylase (PEPC) efficiency, and electron transport rate (ETR). At a given [CO2], increase in temperature increased P sat, PEPC efficiency, and ETR. Plants grown at EC did not differ for dark respiration rate (R D), but had significantly higher maximum photosynthesis (P max) than plants grown in AC. Increase in temperature increased Pmax, R D, and ETR, irrespective of the [CO2]. The ability of PEPC, ribulose-1,5-bisphosphate carboxylase/oxygenase, and photosystem components, derived from response curves to tolerate higher temperatures (>35 °C), particularly under EC, indicates the ability of C4 species to sustain photosynthetic capacity in future climates.  相似文献   

10.
Barbehenn RV  Karowe DN  Chen Z 《Oecologia》2004,140(1):96-103
The increasing CO2 concentration in Earths atmosphere is expected to cause a greater decline in the nutritional quality of C3 than C4 plants. As a compensatory response, herbivorous insects may increase their feeding disproportionately on C3 plants. These hypotheses were tested by growing the grasses Lolium multiflorum C3) and Bouteloua curtipendula C4) at ambient (370 ppm) and elevated (740 ppm) CO2 levels in open top chambers in the field, and comparing the growth and digestive efficiencies of the generalist grasshopper Melanoplus sanguinipes on each of the four plant × CO2 treatment combinations. As expected, the nutritional quality of the C3 grass declined to a greater extent than did that of the C4 grass at elevated CO2; protein levels declined in the C3 grass, while levels of carbohydrates (sugar, fructan and starch) increased. However, M. sanguinipes did not significantly increase its consumption rate to compensate for the lower nutritional quality of the C3 grass grown under elevated CO2. Instead, these grasshoppers appear to use post-ingestive mechanisms to maintain their growth rates on the C3 grass under elevated CO2. Consumption rates of the C3 and C4 grasses were also similar, demonstrating a lack of compensatory feeding on the C4 grass. We also examined the relative efficiencies of nutrient utilization from a C3 and C4 grass by M. sanguinipes to test the basis for the C4 plant avoidance hypothesis. Contrary to this hypothesis, neither protein nor sugar was digested with a lower efficiency from the C4 grass than from the C3 grass. A novel finding of this study is that fructan, a potentially large carbohydrate source in C3 grasses, is utilized by grasshoppers. Based on the higher nutrient levels in the C3 grass and the better growth performance of M. sanguinipes on this grass at both CO2 levels, we conclude that C3 grasses are likely to remain better host plants than C4 grasses in future CO2 conditions.  相似文献   

11.
In C3 plants, part of the CO2 fixed during photosynthesis in chloroplasts is released from mitochondria during photorespiration by decarboxylation of glycine via glycine decarboxylase (GDC), thereby reducing photosynthetic efficiency. The apparent positioning of most mitochondria in the interior (vacuole side of chloroplasts) of mesophyll cells in C3 grasses would increase the efficiency of refixation of CO2 released from mitochondria by ribulose 1,5-bisphosphate carboxylase/?oxygenase (Rubisco) in chloroplasts. Therefore, in mesophyll cells of C4 grasses, which lack both GDC and Rubisco, the mitochondria ought not to be positioned the same way as in C3 mesophyll cells. To test this hypothesis, we investigated the intracellular position of mitochondria in mesophyll cells of 14 C4 grasses of different C4 subtypes and subfamilies (Chloridoideae, Micrairoideae, and Panicoideae) and a C3–C4 intermediate grass, Steinchisma hians, under an electron microscope. In C4 mesophyll cells, most mitochondria were positioned adjacent to the cell wall, which clearly differs from the positioning in C3 mesophyll cells. In S. hians mesophyll cells, the positioning was similar to that in C3 cells. These results suggest that the mitochondrial positioning in C4 mesophyll cells reflects the absence of both GDC and Rubisco in the mesophyll cells and the high activity of phosphoenolpyruvate carboxylase. In contrast, the relationship between the mitochondrial positioning and enzyme distribution in S. hians is complex, but the positioning may be related to the capture of respiratory CO2 by Rubisco. Our study provides new possible insight into the physiological role of mitochondrial positioning in photosynthetic cells.  相似文献   

12.
13.
Sulfate assimilation and glutathione synthesis were traditionally believed to be differentially compartmentalised in C4 plants with the synthesis of cysteine and glutathione restricted to bundle sheath and mesophyll cells, respectively. Recent studies, however, showed that although ATP sulfurylase and adenosine 5′ phosphosulfate reductase, the key enzymes of sulfate assimilation, are localised exclusively in bundle sheath in maize and other C4 monocot species, this is not true for the dicot C4 species of Flaveria. On the other hand, enzymes of glutathione biosynthesis were demonstrated to be active in both types of maize cells. Therefore, in this review the recent findings on compartmentation of sulfate assimilation and glutathione metabolism in C4 plants will be summarised and the consequences for our understanding of sulfate metabolism and C4 photosynthesis will be discussed.  相似文献   

14.
The C2 fragmentation energies of the most stable isolated-pentagon-rule (IPR) isomers of the C80 and C82 fullerenes were evaluated with second-order Møller-Plesset (MP2) theory, density-functional theory (DFT) and the semiempirical self-consistent charge density-functional tight-binding (SCC-DFTB) method. Zero-point energy, ionization energy and empirical C2 corrections were included in the calculation of fragmentation energies for comparison with experimental C2 fragmentation energies of the fullerene cations. In the case of the most probable Stone-Wales pathway of C2 fragmentation of C80, the calculated \(D_{0} {\left( {{\text{C}}_{{{\text{80}}}} ^{ + } } \right)}\) agree well with experimental data, whereas in the case of C82 fragmentation, the calculated \(D_{0} {\left( {{\text{C}}_{{{\text{82}}}} ^{ + } } \right)}\) exceed by up to 1.2 eV the experimental ones, which suggests that other IPR isomers may be present in sufficient amounts in experimental samples. Computer-intensive MP2 calculations and DFT calculations with larger basis sets do not yield much improved C2 fragmentation energies, compared to those reported earlier with B3LYP/3-21G. On the other hand, semiempirical approaches such as SCC-DFTB, which are orders of magnitude less intensive, yield satisfactory fragmentation energies for higher fullerenes and may become a method of choice for routine calculations of fullerenes and carbon nanotubes.
Figure C2 fragmentation energies of C80 and C82 fullerenes have been calculated with B3LYP/6-31G* model chemistry, with semiempirical self-consistent-charge density-functional tight-binding (SCC-DFTB) method and with the more rigorous MP2 method. The influence of basis set extension and level of theory on the resulting fragmentation energies is discussed
  相似文献   

15.
Recent research on the photosynthetic mechanisms of plant species in the Chenopodiaceae family revealed that three species, including Bienertia sinuspersici, can carry out C4 photosynthesis within individual photosynthetic cells, through the development of two cytoplasmic domains having dimorphic chloroplasts. These unusual single-cell C4 species grow in semi-arid saline conditions and have semi-terete succulent leaves. The effects of salinity on growth and photosynthesis of B. sinuspersici were studied. The results show that NaCl is not required for development of the single-cell C4 system. There is a large enhancement of growth in culture with 50–200 mM NaCl, while there is severe inhibition at 400 mM NaCl. With increasing salinity, the carbon isotope values (δ13C) of leaves increased from −17.3o/oo (C4-like) without NaCl to −14.6o/oo (C4) with 200 mM NaCl, possibly due to increased capture of CO2 from the C4 cycle by Rubisco and reduced leakiness. Compared to growth without NaCl, leaves of plants grown under saline conditions were much larger (~2 fold) and more succulent, and the leaf solute levels increased up to ~2000 mmol kg solvent−1. Photosynthesis on an incident leaf area basis (CO2 saturated rates, and carboxylation efficiency under limiting CO2) and stomatal conductance declined with increasing salinity. On a leaf area basis, there was some decline in Rubisco content with increasing salinity up to 200 mM NaCl, but there was a marked increase in the levels of pyruvate, Pi dikinase, and phosphoenolpyruvate carboxylase (possibly in response to sensitivity of these enzymes and C4 cycle function to increasing salinity). The decline in photosynthesis on a leaf area basis was compensated for on a per leaf basis, up to 200 mM NaCl, by the increase in leaf size. The influence of salinity on plant development and the C4 system in Bienertia is discussed.  相似文献   

16.
The C3-CAM intermediate Clusia minor L. and the C3 obligate Clusia multiflora H.B.K. plants were exposed for 7 d to a combination of drought stress and high irradiance of about 1200 μmol m−2 s−1 for 12 h per day. In both species under these conditions a strong decrease in stomatal conductance was observed at dawn and dusk. Changes in stomatal behaviour of C. minor were accompanied by only a low nocturnal accumulation of malate and citrate. Thus, in C. minor drought stress applied in combination with high irradiance limited CAM expression, and possibly this is the main reason why C. minor prefers semi-shaded sites in the field. The mitochondrial MnSOD, in both well watered and stressed plants of two species showed strong diurnal oscillations with maximum activity at dusk. These oscillations can be explained by the engagement of mitochondria in dissipation of an excess of reducing equivalents. In plants which are able to carry out CAM metabolism tricarboxylic acid cycle is expected to be down regulated in the dark period to prevent breakdown of the entire malate and citrate.  相似文献   

17.
Physical, chemical, and regulatory properties of glycolate oxidase (GO) isolated from the leaves of C4 and C3 plants (Zea mays L., cv. Voronezhskaya 76 and Glycine max (L.) Merr., cv. Pripyat’, respectively) were studied. The homogenous preparations were obtained by multistage enzyme purification from soybean leaves and maize mesophyll and bundle sheath. The glycolate oxidase (GO) preparations obtained consisted of two types of subunits, 37 and 44 kD. The GO isolated from C3 plant leaves had many in common with that extracted from C4 plant bundle sheath as regards physical, chemical, and catalytic properties. The primary function of GO in both plant types is metabolism of glycolate, which is a product of ribulosebisphosphate oxalacetic acid oxidation and is used by plants for biosynthesis of hydrocarbons and amino acids.  相似文献   

18.
The natural occurrence and altitudinal pattern of species with C4 photosynthesis were investigated on Qinghai Plateau, Qinghai province by using stable carbon isotopes in plant leaves and using additional data from references. A total of 58 species belonging to 10 families and 34 genera were identified using C4 photosynthetic pathway, which is only 1.66 % of total 3 500 plant species in Qinghai province. The leading two families, i.e. Gramineae (23 species) and Chenopodiaceae (22 species) contain 77.6 % of all C4 plants in the studied area. The number of C4 species increased from 1 600 to 2 400 m a.s.l. and then decreases quickly till 4 400 m a.s.l. with one half of C4 species distributing from 2 200 to 2 800 m a.s.l. (48 %). Eight plant species were found above 4 000 m a.s.l., but the distribution of these species is limited to the south of Qinghai province (low latitude area) where annual mean temperature is above 0 °C, suggesting that low temperature may generally limit the distribution of C4 plants.  相似文献   

19.
Hydrilla verticillata has a facultative single-cell system that changes from C3 to C4 photosynthesis. A NADP+-dependent malic enzyme (NADP-ME) provides a high [CO2] for Rubisco fixation in the C4 leaf chloroplasts. Of three NADP-ME genes identified, only hvme1 was up-regulated in the C4 leaf, during the light period, and it possessed a putative transit peptide. Unlike obligate C4 species, H. verticillata exhibited only one plastidic isoform that may perform housekeeping functions, but is up-regulated as the photosynthetic decarboxylase. Of the two cytosolic forms, hvme2 and hvme3, the latter exhibited the greatest expression, but was not light-regulated. The mature isoform of hvme1 had a pI of 6.0 and a molecular mass of 64 kD, as did the recombinant rHVME1m, and it formed a tetramer in the chloroplast. The recombinant photosynthetic isoform showed intermediate characteristics between isoforms in terrestrial C3 and C4 species. The catalytic efficiency of rHVME1m was four-fold higher than the cytosolic rHVME3 and two-fold higher than recombinant cytosolic isoforms of rice, but lower than plastidic forms of maize. The K m (malate) of 0.6 mM for rHVME1 was higher than maize plastid isoforms, but four-fold lower than found with rice. A comprehensive phylogenetic analysis of 25 taxa suggested that chloroplastic NADP-ME isoforms arose from four duplication events, and hvme1 was derived from cytosolic hvme3. The chloroplastic eudicot sequences were a monophyletic group derived from a cytosolic clade after the eudicot and monocot lineages separated, while the monocots formed a polyphyletic group. The findings support the hypothesis that a NADP-ME isoform with specific and unusual regulatory properties facilitates the functioning of the single-cell C4 system in H. verticillata. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Kubien DS  Sage RF 《Oecologia》2003,137(3):330-337
C4 plants are rare in cool climates, an ecological pattern attributable to their poor photosynthetic performance at low temperatures relative to C3 species. However, some C4 species are able to persist at high latitudes and high elevations, possibly due to the characteristics of the particular microsites they inhabit in these otherwise unfavourable environments. One such species is Muhlenbergia glomerata, which occurs above 60°N in Canada and is found in the atypical C4 habitat of boreal fens. In this study, we evaluate how microsite features affect the success of M. glomerata in boreal fens. We surveyed 19 populations across northern Ontario during the summers of 1999 and 2000. The ground coverage by woody vegetation was the most important parameter affecting the presence or absence of M. glomerata. Woody plants covered over 50% of the ground area in plots where M. glomerata is absent, but less than 20% where it is present. The minimum light intensity threshold for the presence of the C4 species was about 32% of full-sunlight at plant height. Surprisingly, in boreal fens M. glomerata was largely restricted to the wetter moss hollows, rather than occurring on the dry hummocks where its greater water use efficiency might have been advantageous. Woody species dominated the hummocks, but were uncommon in the hollows. In these cool northern climates M. glomerata apparently persists because sufficient periods of temperatures favourable to C4 photosynthesis occur, but this persistence likely requires some factor that suppresses the woody vegetation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号