首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Control of steady-state photosynthesis in sunflowers growing in enhanced CO2
Authors:I E WOODROW
Institution:Botany Department, James Cook University of North Queensland, Townsville, Queensland 4811, Australia
Abstract:Control coefficients were used to describe the degree to which ribulose bisphosphate carboxylase/oxygenase (Rubisco) limits the steady-state rate of CO2 assimilation in sunflower leaves from plants grown at high (800 μmol mol−1) and low (350 μmol mol−1) CO2. The magnitude of a control coefficient is approximately the percentage change in the flux that would result from a 1% rise in enzyme active site concentration. In plants grown at low CO2, leaves of different ages varied considerably in their photosynthetic capacities. In a saturating light flux and an ambient CO2 concentration of 350 μmol mol−1, the Rubisco control coefficient was about 0.7 in all leaves, indicating that Rubisco activity largely limited the assimilation flux. The Rubisco control coefficient for leaves grown at 350 μmol mol−1 CO2 dropped to about zero when the ambient CO2 concentration was raised to 800 μmol mol−1. In relatively young, fully expanded leaves of plants grown at high CO2, the Rubisco control coefficient was also about 0.7 at a saturating light flux and at the CO2 concentration at which the plants were grown (800 μmol mol−1). This apparently resulted from a decrease in the concentration of Rubisco active sites. In older leaves, however, the control coefficient was about 0.2. Because, on the whole, Rubisco activity still largely limits the assimilation flux in plants grown at high CO2, the kinetics of this enzyme can still be used to model photosynthesis under these conditions. The relatively high Rubisco control coefficient under enhanced CO2 indicates that the young sunflower leaves have the capacity to acclimate their photosynthetic biochemistry in a way consistent with an optimal use of protein resources.
Keywords:sunflower  sensitivity analysis  flux control  high CO2              Helianthus annuus            photosynthesis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号