首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Summary Actin filaments in the microridges on the surface of the fish oral mucosa taken from Cyprinus carpio were examined by electron microscopy after detergent extraction and decoration with myosin subfragment 1. After extraction with saponin, an irregular and densely packed meshwork of actin filaments was observed in the bases of the microridges, just lateral to the tight junctions with their fibrous undercoats. Actin filaments formed cores in the microridges and numerous linkages were seen between the filaments and the plasma membrane. Extraction with Triton X-100 and decoration with myosin subfragment 1 showed the ends of the actin filaments to be associated with the plasma membrane of the microridges, and in the bases of microridges the filament ends were anchored to intermediate filaments. Some actin filaments interconnected with the fibrous undercoats of the tight junctions. On the basis of these observations, the mechanism of the formation of microridges, including their pattern, is discussed.  相似文献   

2.
Sakurai N  Domoto K  Takagi S 《Planta》2005,221(1):66-74
In leaf epidermal cells of the aquatic angiosperm Vallisneria gigantea Graebner, high-intensity blue light induces the actin-dependent avoidance response of chloroplasts. By semi-quantitative motion analysis and phalloidin staining, time courses of the blue-light-induced changes in the mode of movement of individual chloroplasts and in the configuration of actin filaments were examined in the presence and absence of a flavoprotein inhibitor, diphenylene iodonium. In dark-adapted cells, short, thick actin bundles seemed to surround each chloroplast, which was kept motionless in the outer periclinal cytoplasm of the cells. After 10 min of irradiation with high-intensity blue light, a rapid, unidirectional movement of chloroplasts was induced, concomitant with the appearance of aggregated, straight actin bundles stretched over the outer periclinal cytoplasm. Diphenylene iodonium inhibited the avoidance response of chloroplasts, apparently by delaying a change in the mode of chloroplast movement from random sway to unidirectional migration, by suppressing the appearance of aggregated, straight actin bundles. In partially irradiated individual cells, redistribution of chloroplasts and reorganization of actin filaments occurred only in the areas exposed to blue light. From the results, we propose that the short, thick actin bundles in the vicinity of chloroplasts function to anchor the chloroplasts in dark-adapted cells, and that the aggregated, straight actin bundles organized under blue-light irradiation provide tracks for unidirectional movement of chloroplasts.Preliminary results of part of the local irradiation study have already been reported in abstract form [N. Sakurai et al. (2002) J Photosci 9:326–328].  相似文献   

3.
Anti-nitrate-reductase (NR) immunoglobulin-G (IgG) fragments inhibited nitrate uptake into Chlorella cells but had no affect on nitrite uptake. Intact anti-NR serum and preimmune IgG fragments had no affect on nitrate uptake. Membrane-associated NR was detected in plasma-membrane (PM) fractions isolated by aqueous two-phase partitioning. The PM-associated NR was not removed by sonicating PM vesicles in 500 mM NaCl and 1 mM ethylenediaminetetraacetic acid and represented up to 0.8% of the total Chlorella NR activity. The PM NR was solubilized by Triton X-100 and inactivated by Chlorella NR antiserum. Plasma-membrane NR was present in ammonium-grown Chlorella cells that completely lacked soluble NR activity. The subunit sizes of the PM and soluble NRs were 60 and 95 kDa, respectively, as determined by sodium-dodecyl-sulfate electrophoresis and western blotting.Abbreviations EDTA ethylenediaminetetraacetic acid - FAD flavine-adenine dinucleotide - IgG immunoglobulin G - NR nitrate reductase - PM plasma membrane - TX-100 Triton X-100  相似文献   

4.
Actin cytoskeleton in intact and wounded coenocytic green algae   总被引:5,自引:0,他引:5  
J. W. La Claire II 《Planta》1989,177(1):47-57
Summary The subcellular distribution of actin was investigated in two related species of coenocytic green algae, with immunofluorescence microscopy. Either no, or fine punctate fluorescence was detected in intact cells of Ernodesmis verticillata (Kützing) Børgesen and Boergesenia forbesii (Harvey) Feldmann. A reticulate pattern of fluorescence appears throughout the cortical cytoplasm of Ernodesmis cells shortly after wounding; this silhouettes chloroplasts and small vacuoles. Slender, longitudinal bundles of actin become evident in contracting regions of the cell, superimposed over the reticulum. Thicker portions of the bundles were observed in well-contracted regions, and the highly-convoluted appearance of nearby cortical microtubules indicates contraction of the bundles in these thicker areas. Bundles are no longer evident after healing; only the reticulum remains. In Boergesenia, a wider-mesh reticulum of actin develops in the cortex of wounded cells, which widens further as contractions continue. Cells wounded in Ca2+-free medium do not contract, and although the actin reticulum is apparent, no actin bundles were ever observed in these cells. Exogenously applied cytochalasins have no effect on contractions of cut cells or extruded cytoplasm, and normal actin-bundle formation occurs in treated cells. In contrast, erythro-9-[3-(2-hydroxynonyl)]adenine (EHNA) completely inhibits longitudinal contractions in wounded cells, and few uniformly slender actin bundles develop in inhibited cells. These results indicate that wounding stimulates a Ca2+-dependent, hierarchical assembly of actin into bundles, whose assembly and functioning are inhibited by EHNA. Contraction of the bundles and concomitant wound healing are followed by cessation of motility and disassembly of the bundles. The spatial and temporal association of the bundles with regions of cytoplasmic contraction, indicates that the actin bundles are directly involved in wound-induced cytoplasmic motility in these algae.Abbreviations EHNA erythro-9-[3-(2-hydroxynonyl)]adenine - MT(s) microtubule(s)  相似文献   

5.
《The Journal of cell biology》1986,103(6):2683-2696
The cell surface proteoglycan on normal murine mammary gland mouse mammary epithelial cells consists of an ectodomain bearing heparan and chondroitin sulfate chains and a lipophilic domain that is presumed to be intercalated into the plasma membrane. Because the ectodomain binds to matrix components produced by stromal cells with specificity and high affinity, we have proposed that the cell surface proteoglycan is a matrix receptor that binds epithelial cells to their underlying basement membrane. We now show that the proteoglycan surrounds cells grown in subconfluent or newly confluent monolayers, but becomes restricted to the basolateral surface of cells that have been confluent for a week or more; Triton X-100 extraction distinguishes three fractions of cell surface proteoglycan: a fraction released by detergent and presumed to be free in the membrane, a fraction bound via a salt-labile linkage, and a nonextractable fraction; the latter two fractions co-localize with actin filament bundles at the basal cell surface; and when proteoglycans at the apical cell surface are cross- linked by antibodies, they initially assimilate into detergent- resistant, immobile clusters that are subsequently aggregated by the cytoskeleton. These findings suggest that the proteoglycan, initially present on the entire surface and free in the plane of the membrane, becomes sequestered at the basolateral cell surface and bound to the actin-rich cytoskeleton as the cells become polarized in vitro. Binding of matrix components may cross-link proteoglycans at the basal cell surface and cause them to associate with the actin cytoskeleton, providing a mechanism by which the cell surface proteoglycan acts as a matrix receptor to stabilize the morphology of epithelial sheets.  相似文献   

6.
Summary Motile unicells ofApedinella radians have the extraordinary ability to instantaneously reorient six elongate spine-scales located on the cell surface. Extracellular striated fibrous connectors (termed microligaments) attach spine-scales to discrete regions of the plasma membrane underlain by intricate cytoplasmic plaques. A complex cytoskeleton is associated with the plaques and appears responsible for spine-scale movement. Three cytoskeletal proteins have thus far been identified by immunofluorescence using anti-tubulin, anti-actin, and anti-centrin. The three-dimensional configuration of the cytoskeleton has been established and consists of filamentous bundles of actin and centrin which form stellate systems interconnecting the plaques. Additionally, there is a network of microtubular triads which originate on the surface of the nuclear envelope and subtend the plasma membrane and also support several tentacular protrusions. It is proposed that contraction of the actin and/or centrin filamentous bundles is responsible for the reorientation of the spine-scales.  相似文献   

7.
Sakai Y  Takagi S 《Planta》2005,221(6):823-830
In epidermal cells of the aquatic angiosperm Vallisneria gigantea Graebner, high-intensity blue light (BL) induces the avoidance response of chloroplasts. We examined simultaneous BL-induced changes in the configuration of actin filaments in the cytoplasmic layers that face the outer periclinal wall (P side) and the anticlinal wall (A side). The results clearly showed that dynamic reorganization of the actin cytoskeleton occurs on both sides. Upon BL irradiation, thick, long bundles of actin filaments appeared, concomitant with the directed migration of chloroplasts from the P side to the A side. After 15–20 min of BL irradiation, fine actin bundles on only the A side appeared to associate with chloroplasts that had migrated from the P side. To examine the role of the fine actin bundles, we evaluated the anchorage of chloroplasts by centrifuging living cells. Upon BL irradiation, the resistance of chloroplasts on both the P and A sides to the centrifugal force decreased remarkably. After 20 min of BL irradiation, the resistance of chloroplasts on the A side increased again, but chloroplasts on the P side could still be displaced. The BL-induced recovery of resistance of chloroplasts on the A side was sensitive to photosynthesis inhibitors but insensitive to an inhibitor of flavoproteins. The photosynthesis inhibitors also prevented the fine actin bundles from appearing on the A side under BL irradiation. These results strongly suggest that the BL-induced avoidance response of chloroplasts includes photosynthesis-dependent and actin-dependent anchorage of chloroplasts on the A side of epidermal cells.  相似文献   

8.
Summary Changes in F-actin organization following mechanical isolation ofZinnia mesophyll cells were documented by rhodamine-phalloidin staining. Immediately after isolation, most cells contained irregular cortical actin fragments of varying lengths, and less than 5% of cells contained intact cortical filaments. During the first 8 h of culture, filament fragments were replaced by actin rings, stellate actin aggregates, and bundled filament fragments. Some of these aggregates had no association with organelles (free actin aggregates). Other aggregates were associated with chloroplasts, which changed in shape and location at the same time actin aggregates appeared. F-actin was concentrated within or around the nucleus in a small percentage of cells. After 12 h in culture, the percentage of cells with free actin rings and chloroplast-associated actin aggregates began to decline and the percentage of cells having intact cortical actin filaments increased greatly. Intermediate images were recorded that strongly indicate that free actin rings, chloroplast-associated actin rings, and other actin aggregates self-assemble by successive bundling of actin filament fragments. The fragmentation and bundling of F-actin observed in mechanically isolatedZinnia cells resembles changes in F-actin distribution reported after diverse forms of cell disturbance and appears to be an example of a generalized response of the actin cytoskeleton to cell stress.Abbreviations FITC fluorescein isothiocyanate - MBS m-maleimidobenzoic acid N-hydroxysuccinimide ester - RhPh tetramethylrhodamine isothiocyanate-phalloidin  相似文献   

9.
Summary We report on the novel features of the actin cytoskeleton and its development in characean internodal cells. Images obtained by confocal laser scanning microscopy after microinjection of living cells with fluorescent derivatives of F-actin-specific phallotoxins, and by modified immunofluorescence methods using fixed cells, were mutually confirmatory at all stages of internodal cell growth. The microinjection method allowed capture of 3-dimensional images of high quality even though photobleaching and apparent loss of the probes through degradation and uptake into the vacuole made it difficult to record phallotoxin-labelled actin over long periods of time. When injected at appropriate concentrations, phallotoxins affected neither the rate of cytoplasmic streaming nor the long-term viability of cells. Recently formed internodal cells have relatively disorganized actin bundles that become oriented in the subcortical cytoplasm approximately parallel to the newly established long axis and traverse the cell through transvacuolar strands. In older cells with central vacuoles not traversed by cytoplasmic strands, subcortical bundles are organized in parallel groups that associate closely with stationary chloroplasts, now in files. The parallel arrangement and continuity of actin bundles is maintained where they pass round nodal regions of the cell, even in the absence of chloroplast files. This study reports on two novel structural features of the characean internodal actin cytoskeleton: a distinct array of actin strands near the plasma membrane that is oriented transversely during cell growth and rings of actin around the chloroplasts bordering the neutral line, the zone that separates opposing flows of endoplasm.  相似文献   

10.
Sheahan MB  Rose RJ  McCurdy DW 《Protoplasma》2007,230(3-4):141-152
Summary. The ability of plant cells to dedifferentiate represents an important survival strategy invoked in a range of situations from repair mechanisms following wounding to apomixis. Dedifferentiation requires that somatic cells reprogram and enter the cell division cycle. This in turn necessitates the accurate partitioning of nuclear content and organelles, such as chloroplasts, to daughter cells, thereby ensuring continuity of cellular information systems. The distribution of cytoplasm and its organelle content in mature plant cells is governed by a large, central vacuole, with connections between distant cortical and perinuclear cytoplasmic domains mediated by transvacuolar strands. Here we examined the changes to vacuolar architecture in Arabidopsis thaliana protoplasts expressing a green-fluorescent protein fusion to a δ-tonoplast-intrinsic protein (δTIP). We found that vacuolar architecture became increasingly intricate during protoplast culture with the development of numerous transvacuolar strands. The development of an intricate vacuolar architecture was an actin filament- and not microtubule-dependent process, as is the case in interphase plant cells. Furthermore, we show that myosin is required for this increased complexity of vacuolar architecture and the formation of subcortical actin filament arrays. Despite the likelihood that increased vacuolar invagination would allow better redistribution of cytoplasmic organelles, we found that repositioning of chloroplasts from cortical to perinuclear cytoplasm was not dependent on transvacuolar strands. Our findings indicate that the vacuole is a dynamic entity that develops a complex architecture before dedifferentiating plant cells enter cell division. Supplementary material to this paper is available in electronic form at Correspondence and reprints: School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.  相似文献   

11.
Treatment of 6-h differentiated Dictyostelium discoideum cells with the nonionic detergent Triton X-100 dissolves away membranes and soluble components, as judged by marker enzyme distributions, leaving intact a cytoskeletal residue that contains approximately 10% of the cell protein and 50% of the actin. Nitrobenzooxadiazo-phallacidin staining for F-actin and electron microscopy of detergent-extracted whole-mounts indicate that the cytoskeletons retain the size and shape of intact cells and contain F-actin in cortical meshworks. The cytoskeletons contain little if any remaining membrane material by morphological criteria, and the plasma membrane enzymes cyclic nucleotide phosphodiesterase and alkaline phosphatase are absent from the insoluble residue, which retains only 15% of the membrane concanavalin A-binding glycoproteins. This detergent-insoluble residue retains a specific [3H]cAMP-binding site with the nucleotide specificity, rapid kinetics and approximate affinity of the cAMP receptor on intact cells. Upon detergent extraction of cells, the number of cAMP-binding sites increases 20-70%. The binding site is attached to the insoluble residue whether or not the cAMP receptor is occupied at the time of detergent addition. The pH dependence for recovery of the insoluble cAMP-binding site is much sharper than that on intact cells or membranes with an optimum at pH 6.1. Conditions of pH and ionic composition that lead to disruption of the cytoskeleton upon detergent treatment also result in the loss of cAMP binding. During differentiation, the detergent- insoluble cAMP binding increases in parallel with cell surface cAMP receptors and chemotaxis to cAMP.  相似文献   

12.
Sensory neurons from chick embryos were cultured on substrata that support neurite growth, and were fixed and prepared for both cytochemical localization of actin and electron microscopic observation of actin filaments in whole-mounted specimens. Samples of cells were treated with the detergent Triton X-100 before, during, or after fixation with glutaraldehyde to determine the organization of actin in simpler preparations of extracted cytoskeletons. Antibodies to actin and a fluorescent derivative of phallacidin bound strongly to the leading margins of growth cones, but in neurites the binding of these markers for actin was very weak. This was true in all cases of Triton X- 100 treatment, even when cells were extracted for 4 min before fixation. In whole-mounted cytoskeletons there were bundles and networks of 6-7-nm filaments in leading edges of growth cones but very few 6-7-n filaments were present among the microtubules and neurofilaments in the cytoskeletons of neurites. These filaments, which are prominent in growth cones, were identified as actin because they were stabilized against detergent extraction by the presence of phallacidin or the heavy meromyosin and S1 fragments of myosin. In addition, heavy meromyosin and S1 decorated these filaments as expected for binding to F-actin. Microtubules extended into growth cone margins and terminated within the network of actin filaments and bundles. Interactions between microtubule ends and these actin filaments may account for the frequently observed alignment of microtubules with filopodia at the growth cone margins.  相似文献   

13.
Summary The ultrastructure of chloroplasts from two genera of coenocytic green algae,Codium andCaulerpa, were examined after suspension in hypotonic solution and in detergent at various concentrations. The capacity of the suspensions to carry out CO2-dependent and ferricyanide-dependent O2 evolution was measured under the same conditions of osmotic strength and detergent concentration.The chloroplasts in the preparations were in the form of cytoplasts and gave rates of O2 evolution comparable with those expected from undamaged chloroplasts. Suspension in hypotonic solution depressed the rate of CO2-dependent O2 evolution in both species, but this was partially restored in theCodium chloroplasts when these were re-suspended in iso-osmotic solutions. Major structural changes were observed only after suspension in buffer when theCodium chloroplasts lost their outer envelope, most of their stroma, and the thylakoids became swollen.Caulerpa chloroplasts were more variable in their response and, even when suspended in buffer only, the proportion of the plastids which had lost all of their stroma and thylakoid swelling was never as common as inCodium chloroplasts. However, once suspended in hyper-osmotic medium below 700 mosmolar,Caulerpa chloroplasts could not regain their capacity for CO2-dependent O2 evolution.Detergent treatment removed the cytoplast membrane but not the cytoplasmic material adhering to the chloroplast envelope. High concentrations of detergent were needed to cause loss of the chloroplast envelope, loss of stromal contents and unstacking of the thylakoids.Caulerpa chloroplasts were less sensitive to detergent than those ofCodium. There was no indication that specific structures such as the thylakoid organizing body were resistant to detergent action. The results show that exposure to hypotonic solutions and to detergent results in less damage to these chloroplasts than it would to those of higher plants. It is proposed that the basis of this unusual resistance is not due to the properties of the chloroplast membranes but to the presence of material which coats the organelles during isolation. This material is likely to be identical with the sulphated xylo-mannogalactan isolated from the vacuole contents of these algae and which has the visco-elastic properties essential to allow the organelles to resist disruption by osmotic forces and disintegration by detergents.  相似文献   

14.
The addition of polystyrene latex spheres to the induced lamellae of Concanavalin A (ConA)-treated neuroblastoma cells results in a preferential association and inward movement of particles along the membrane surrounding and overlying the microfilament bundles. After extraction of cell monolayers with low concentrations of Triton X-100, followed by negative staining, both the actin filaments within the bundles and the peripheral membrane with attached particles could be visualized in the electron microscope. In such preparations, no direct association was detected between membrane-particle attachment sites and the actin filaments within the bundles.  相似文献   

15.
Summary Indirect immunofluorescence, using monoclonal antibodies to actin and tubulin, applied to sections of root tips ofLepidium, Lycopersicon, Phleum, andZea, revealed features of the cytoskeleton that were unique to the statocytes of their root caps. Although the cortical microtubules (CMTs) lay in dense arrays against the periphery of the statocytes, these same cells showed depleted complements of endoplasmic microtubules (EMTs) and of actin microfilament (AMF) bundles, both of which are characteristic of the cytoskeleton of other post-mitotic cells in the proximal portion of the root apex. The scarcity of the usual cytoskeletal components within the statocytes is considered responsible for the exclusion of the larger organelles (e.g., nucleus, plastids, ER elements) from the interior of the cell and for the absence of cytoplasmic streaming. Furthermore, the depletion of dense EMT networks and AMF bundles in statocyte cytoplasm is suggested as being closely related to the elevated cytoplasmic calcium content of these cells which, in turn, may also favour the formation of the large sedimentable amyloplasts by not permitting plastid divisions. These latter organelles are proposed to act as statoliths due to their dynamic interactions with very fine and highly unstable AMFs which enmesh the statoliths and merge into peripheral AMFs-CMTs-ER-plasma membrane complexes. Rather indirect evidence for these interactions was provided by showing enhanced rates of statolith sedimentation after chemically-induced disintegration of CMTs. All these unique properties of the root cap statocytes are supposed to effectively enhance the gravity-perceptive function of these highly specialized cells.Dedicated to Prof. Dr. Benno Parthier on the occasion of his retirement  相似文献   

16.
The plant organelles, chloroplast and nucleus, change their position in response to light. In Arabidopsis thaliana leaf cells, chloroplasts and nuclei are distributed along the inner periclinal wall in darkness. In strong blue light, they become positioned along the anticlinal wall, while in weak blue light, only chloroplasts are accumulated along the inner and outer periclinal walls. Blue-light dependent positioning of both organelles is mediated by the blue-light receptor phototropin and controlled by the actin cytoskeleton. Interestingly, however, it seems that chloroplast movement requires short, fine actin filaments organized at the chloroplast edge, whereas nuclear movement does cytoplasmic, thick actin bundles intimately associated with the nucleus. Although there are many similarities between photo-relocation movements of chloroplasts and nuclei, plant cells appear to have evolved distinct mechanisms to regulate actin organization required for driving the movements of these organelles.Key words: actin, Arabidopsis, blue light, chloroplast positioning, phototropin, nuclear positioning  相似文献   

17.
Summary. In palisade mesophyll cells of spinach (Spinacia oleracea L.) kept under low-intensity white light, chloroplasts were apparently immobile and seemed to be surrounded by fine bundles of actin filaments. High-intensity blue light induced actin-dependent chloroplast movement concomitant with the appearance of a couple of long, straight bundles of actin filaments in each cell, whereas high-intensity red light was essentially ineffective in inducing these responses. The actin organization observed under low-intensity white light has been postulated to function in anchoring chloroplasts at proper intracellular positions through direct interaction with the chloroplasts. Intact chloroplasts, which retained their outer envelopes, were isolated after homogenization of leaves and Percoll centrifugation. No endogenous actin was detected by immunoblotting in the final intact-chloroplast fraction prepared from the leaves kept under low-intensity white light or in darkness. In cosedimentation assays with exogenously added skeletal muscle filamentous actin, however, actin was detected in the intact-chloroplast fraction precipitated after low-speed centrifugation. The association of actin with chloroplasts was apparently dependent on incubation time and chloroplast density. After partial disruption of the outer envelope of isolated chloroplasts by treatment with trypsin, actin was no longer coprecipitated. The results suggest that chloroplasts in spinach leaves can directly interact with actin, and that this interaction may be involved in the regulation of intracellular positioning of chloroplasts. Correspondence and reprints: Department of Biology, Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan. Present address: Tsukuba Research and Development Center, Fuji Oil Co., Ltd., Tsukuba-gun, Ibaraki, Japan.  相似文献   

18.
We applied the endocytic markers FM1-43, FM4-64 and filipin to internodal cells of the green alga Chara corallina. Both FM dyes stained stable, long-living plasma membrane patches with a diameter of up to 1 microm. After 5 min, FM dyes labeled cortical, trembling structures up to 500 nm in size. After 15 min, FM dyes localized to endoplasmic organelles up to 1 microm in diameter, which migrated actively along actin bundles or participated in cytoplasmic mass streaming. After 30-60 min, FM fluorescence appeared in the membrane of small, endoplasmic vacuoles but not in that of the central vacuole. Some of the FM-labeled organelles were also stained by neutral red and lysotracker yellow, indicative of acidic compartments. Filipin, a sterol-specific marker, likewise labeled plasma membrane domains which co-localized with the FM patches. However, internalization of filipin could not be observed. KCN, cytochalasin D, latrunculin B and oryzalin had no effect on size, shape and distribution of FM- and filipin-labeled plasma membrane domains. Internalization of FM dyes was inhibited by KCN but not by drugs which interfere with the actin or microtubule cytoskeleton. Our data indicate that the plasma membrane of characean internodal cells contains discrete domains which are enriched in sterols and probably correspond to clusters of lipid rafts. The inhibitor experiments suggest that FM uptake is active but independent of actin filaments, actin polymerization and microtubules. The possible function of the sterol-rich, FM labeled plasma membrane areas and the significance of actin-independent FM internalization (via endocytosis or energy-dependent flippases) are discussed.  相似文献   

19.
The role of the cytoskeleton in the regulation of chloroplast motility and positioning has been investigated by studying: (1) structural relationship of actin microfilaments, microtubules, and chloroplasts in cryofixed and freeze-substituted leaf cells of Arabidopsis; and (2) the effects of anti-actin (Latrunculin B; LAT-B) and anti-microtubule (Oryzalin) drugs on intracellular distribution of chloroplasts. Immunolabeling of leaf cells with two plant-actin specific antibodies, which react equivalently with all the expressed Arabidopsis actins, revealed two arrangements of actin microfilaments: longitudinal arrays of thick actin bundles and randomly oriented thin actin filaments that extended from the bundles. Chloroplasts were either aligned along the actin bundles or closely associated with the fine filaments. Baskets of actin microfilaments were also observed around the chloroplasts. The leaf cells labeled with an anti-tubulin antibody showed dense transverse arrays of cortical microtubules that exhibited no apparent association with chloroplasts. The application of LAT-B severely disrupted actin filaments and their association with chloroplasts. In addition, LAT-B induced aberrant aggregation of chloroplasts in the mesophyll and bundle sheath cells. Double labeling of LAT-B treated cells with anti-actin and anti-tubulin antibodies revealed that the microtubules in these cells were unaffected. Moreover, depolymerization of microtubules with Oryzalin did not affect the distribution of chloroplasts. These results provide evidence for the involvement of actin, but not tubulin, in the movement and positioning of chloroplasts in leaf cells. We propose that using motor molecules, some chloroplasts migrate along the actin cables directly, while others are pulled along the cables by the fine actin filaments. The baskets of microfilaments may anchor the chloroplasts during streaming and allow control over proper three-dimensional orientation to light.  相似文献   

20.
Summary A three-dimensional network of structural filaments was visible with common electron microscopes in the cytoplasm ofEuglena gracilis green cells extracted with buffers containing the nonionic detergent Triton X-100. A similar filamentous web was detected at the periphery of critical point dried cells cleaved on grids by means of an adhesive tape. SDS-polyacrylamide gel electrophoresis of the detergent-resistent cytoskeleton showed that actin or actin-like proteins of molecular weight in the range of 43–45 K are not among the components having a structural role inEuglena. The significance of these findings was discussed in relation to the capability of the alga to change the cell shape.The study was supported by grants from Consiglio Nazionale delle Ricerche (CNR) and Ministero della Pubblica Istruzione of Italy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号