首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Latent nitrate reductase activity (NRA) was detected in corn (Zea mays L., Golden Jubilee) root microsome fractions. Microsome-associated NRA was stimulated up to 20-fold by Triton X-100 (octylphenoxy polyethoxyethanol) whereas soluble NRA was only increased up to 1.2-fold. Microsome-associated NRA represented up to 19% of the total root NRA. Analysis of microsomal fractions by aqueous two-phase partitioning showed that the membrane-associated NRA was localized in the second upper phase (U2). Analysis with marker enzymes indicated that the U2 fraction was plasma membrane (PM). The PM-associated NRA was not removed by washing vesicles with up to 1.0 M NACl but was solubilized from the PM with 0.05% Triton X-100. In contrast, vanadate-sensitive ATPase activity was not solubilized from the PM by treatment with 0.1% Triton X-100. The results show that a protein capable of reducing nitrate is embedded in the hydrophobic region of the PM of corn roots.Abbreviations L1 first lower phase - NR nitrate reductase - NRA nitrate-reductase activity - PM plasma membrane - T:p Triton X-100 (octylphenoxy polyethoxyethanol) to protein ratio - U2 second upper phase  相似文献   

2.
Summary In the present study nitrate uptake by maize (Zea mays L.) roots was investigated in the presence or absence of ferricyanide (hexacyanoferrate III) or dicumarol. Nitrate uptake caused an alkalization of the medium. Nitrate uptake of intact maize seedlings was inhibited by ferricyanide while the effect of dicumarol was not very pronounced. Nitrite was not detected in the incubation medium, neither with dicumarol-treated nor with control plants after application of 100 M nitrate to the incubation solution. In a second set of experiments interactions between nitrate and ferricyanide were investigated in vivo and in vitro. Nitrate (1 or 3 mM) did neither influence ferricyanide reductase activity of intact maize roots nor NADH-ferricyanide oxidoreductase activity of isolated plasma membranes. Nitrate reductase activity of plasma-membrane-enriched fractions was slightly stimulated by 25 M dicumarol but was not altered by 100 M dicumarol, while NADH-ferricyanide oxidoreductase activity was inhibited in the presence of dicumarol. These data suggest that plasma-membrane-bound standard-ferricyanide reductase and nitrate reductase activities of maize roots may be different. A possible regulation of nitrate uptake by plasmalemma redox activity, as proposed by other groups, is discussed.Abbreviations ADH alcohol dehydrogenase - HCF III hexacyanoferrate III (ferricyanide) - ME NADP-dependent malic enzyme - NR nitrate reductase - PM plasma membrane - PM NR nitrate reductase copurifying with plasma membranes  相似文献   

3.
Nitrate uptake in Chlorella saccharophila (Krüger) Nadson was found to be stimulated by blue light, leading to a doubling of the rate. In the presence of background red light (300 mol photons · m-2 · s-1), only 15–20 mol photons · m-2 · s-1 of blue light was sufficient to saturate this increased uptake rate. Incubation of Chlorella cells with anti-nitrate-reductase immunoglobulin-G fragments inhibited blue-light stimulation. However, ferricyanide (10 M) doubled and dithiothreitol (100 M) inhibited the stimulatory effect of blue light. Among the protein-kinase inhibitors used, only staurosporine (10 M) prevented the blue-light stimulation. Phosphatase inhibitors were without effect and sodium vanadate totally inhibited nitrate uptake, pointing to an involvement of the plasma-membrane ATPase. Preincubation of the cells with calmodulin antagonists or calcium ionophores did not significantly reduce blue-light stimulation of nitrate uptake. The data are discussed with regard to transduction of the signal for blue-light stimulation of nitrate uptake and the possibility that the plasma-membrane-bound nitrate reductase is the blue-light receptor.Abbreviations Chl chlorophyll - DMSO dimethylsulfoxide - 1,2-DHG 1,2-dihexanoylglycerol - ML-9 1-(5-chloronaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine - NR nitrate reductase - H-7 1-(5-isoquinolinyl-sulfonyl)-2-methylpiperazine - IgG immunoglobulin G - PFD photon flux density - PM plasma membrane - W-7 N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide This work was supported by a grant from the Deutsche Forschungs-gemeinschaft to R.T.  相似文献   

4.
Membrane associated nitrate reductase (NR) was detected in plasma membrane (PM) fractions isolated by aqueous two-phase partitioning from barley (Hordeum vulgare L. var CM 72) roots. The PM associated NR was not removed by washing vesicles with 500 millimolar NaCl and 1 millimolar EDTA and represented up to 4% of the total root NR activity. PM associated NR was stimulated up to 20-fold by Triton X-100 whereas soluble NR was only increased 1.7-fold. The latency was a function of the solubilization of NR from the membrane. NR, solubilized from the PM fraction by Triton X-100 was inactivated by antiserum to Chlorella sorokiniana NR. Anti-NR immunoglobulin G fragments purified from the anti-NR serum inhibited NO3 uptake by more than 90% but had no effect on NO2 uptake. The inhibitory effect was only partially reversible; uptake recovered to 50% of the control after thorough rinsing of roots. Preimmune serum immunoglobulin G fragments inhibited NO3 uptake 36% but the effect was completely reversible by rinsing. Intact NR antiserum had no effect on NO3 uptake. The results present the possibility that NO3 uptake and NO3 reduction in the PM of barley roots may be related.  相似文献   

5.
The plasma membranes of Chlorella saccharophila (Krüger) Nadson cells contained a membrane-bound nitrate reductase. This form of nitrate reductase was purified and characterized. Several differences from the soluble form of nitrate reductase were apparent, the most important being: (i) the greater hydrophobicity, as proven using Triton X-114 phase separation, hydrophobic interaction chromatography and stimulation by phosphilipids; (ii) the differences in the native molecular mass compared with Chlorella sorokiniana (Krüger) Nadson; and (iii) the different polypeptide pattern obtained by two-dimensional polyacrylamide gel electrophoresis. Only the plasma-membrane-bound nitrate reductase could be found in both inside-out and right-side-out plasma-membrane vesicles.Abbreviations HIC hydrophobic interaction chromatography - IEF isoelectric focusing - MV methyl viologen - NR nitrate reductase - PM plasma membrane - PMNR plasma-membrane-bound nitrate reductase - SDS-PAGE sodium dodecyl sulfatepolyacrylamide gel electrophoresis This work is part of the Ph.D. Thesis of Christine Stöohr, University of Göttingen. This work was supported by the Deutsche Forschungsgemeinschaft.  相似文献   

6.
Nitrate reductase (NR) activity was identified in the right-side-out and inside-out of high purity plasma membrane (PM) vesicles in maize (Zea mays L. ) roots which was obtained by aqueous two-phase partitioning. The inducement property of the NR activity in PM could be confirmed through culturing the meterial with or without nitrate component. Analysis from experimentation with external electron donor indicated that the maize root NR in PM could utilize not only NADH but also NADPH directly or indirectly as its electron donor. Treatment with Triton X-100 combining with trypsin and inhibitor demonstrated that NR protein was a trans-PM protein mainly facing the apoplastic side, being specially sensitive to trypsin. The possible function of the NR in PM is also discussed.  相似文献   

7.
Activity of nitrate reductase (NR), the first enzyme in the nitrate-assimilation pathway, was estimated in the cotyledons of the sunflower( Helianthus annuus) using a standardized in-vivo method. Seedlings were grown in the light on a nitrate medium. Various factors that affect NR activity were optimized, including the molarity and pH of the reaction buffer, nitrate concentration, and use of a surfactant. We also determined whether NADH was required for nitrate reduction. The surfactant propanol (2%) gave the best results, and no NADH supplement was necessary: In a separate study, we compared the effect of various culturing components on in-vivo NR activity among monocot and dicot species, and found that Triton X-100 was the best surfactant for monocots whereas dicots performed better with n-propanol. Monocot species also required additional NADH as an external energy source. Moreover, specific purification procedures were needed to enhance NR activity in dicotyledons. Finally, we also assessed the efficacy of in-vivo versus in-vitro procedures for assaying monocots versus dicots.  相似文献   

8.
The nitrate reductase activity (NR) of selected uptake hydrogenase-positive (hup +) and uptake hydrogenase-negative (hup -) strains of Bradyrhizobium japonicum were examined both in free-living cells and in symbioses with Glycine max L. (Marr.) cv. Williams. Bacteria were cultured in a defined medium containing either 10 mM glutamate or nitrate as the sole nitrogen source. Nodules and bacteriods were isolated from plants that were only N2-dependent or grown in the presence of 2 mM KNO3. Rates of activity in nodules were determined by an in vivo assay, and those of cultured cells and bacteriods were assayed after permeabilization of the cells with alkyltrimethyl ammonium bromide. All seven strains examined expressed NR activity as free-living cells and as symbiotic forms, regardless of the hup genotype of the strain used for inoculation. Although the presence of nitrate increased nitrate reduction by cultures cells and nodules, no differences in NR activity were observed between bacteroids isolated from nodules of plants fed with nitrate or grown on N2-fixation exclusively. Cultured cells, nodules and bacteriods of strains with hup - genotype (USDA 138, L-236, 3. 15B3 and PJ17) had higher rates of NR activity than those with hup + genotype (USDA 110, USDA 122 DES and CB1003). These results suggest that NR activity is reduced in the presence of a genetic determinant associated with the hup region of B. japonicum.Abbreviations EDTA ethylene-diamine tetraacetic acid - Hup hydrogen uptake - MOPS 3-(N-morpholino)-propane sulfonic acid - NR nitrate reductase - PVP polyvinyl-polypyrrolidone - Tris Tris(hydroxymethyl)-aminomethane  相似文献   

9.
The influence of varying levels of salinity (0, 100, 200 and 400 mM) on the activities of nitrate reductase (NR, E.C. 1.6.6.1), acid phosphatase (ACP, E.C. 3.1.3.2), and alkaline phosphatase (ALP, EC 3.1. 3.1) as well as on nitrate and phosphate uptake and total nitrogen levels in leaves of a true mangrove Bruguiera parviflora was investigated under hydroponic culture conditions. NR activity increased in 100 mM NaCl treated plants, whereas it decreased gradually in 200 and 400 mM treated plants, relative to the controls. Decreased activity of NR by NaCl stress was also accompanied by a decrease in total nitrogen level and nitrate uptake. Decreases in NR activity, nitrate (NO3), and total nitrogen level due to high salinity may be responsible for a decrease in growth and biomass production in this plant. However, salinity caused an increase in both ACP and ALP activity. Activity staining of ACP by native polyacrylamide gel electrophoresis revealed three isoforms: ACP-1, ACP-2, and ACP-3. We observed a preferential enhancement in the ACP-3 isoform by salinity. In order to understand whether the salinity-induced increase in phosphatase activity was due to inhibition in phosphate uptake, we monitored phosphate (Pi) levels in leaves and noted that phosphate levels decreased significantly under salinity. These results suggest that the induction of acid and ALP under salt stress may be due to a phosphorous deficiency.  相似文献   

10.
Plasma-membrane (PM) vesicles isolated from 6-d-old corn roots by sucrose gradient centrifugation or two-phase partitioning showed an NADH-dependent nitrate reductase (NR) activity averaging at 40 nmol per milligram PM protein per hour. This membrane-associated NR activity could not be removed from two-phase-partitioned PM vesicles by salt washing, osmotic shock treatment, sonication, or freeze-thawing to reverse vesicle sidedness. Therefore, it could not be attributed to contamination of membrane vesicles by the soluble, cytosolic NR. Plasma-membrane vesicles reduced NO 3 - in the presence of the electron donors NADH or NADPH at an activity ratio of 2.2. The NADH- and NADPH-dependent NR activities of outside-out oriented PM vesicles differed in their sensitivity toward the detergent Brij 58, leading to a latency of 65% or 29% using NADH or NADPH as electron donor, respectively. The activities of NO 3 - reduction in the presence of saturating concentrations of NADH and NADPH were additive. Furthermore, both activities were characterized by a different pH dependence with a pH optimum of 7.5 for the NADH-dependent activity and of 6.8 for the NADPH-dependent activity. The membrane-associated NAD(P)H-dependent NR activities responded to different nitrogen nutrition of plants in a manner different from the soluble forms of the enzyme. The data confirm the existence of a corn PM NR and suggest that there may be two different NO 3 - -reducing enzymes located at the PM of corn roots.Abbreviations PM Plasma membrane - NR nitrate reductase This research was supported by grants from the National Research Council of Italy (bilateral project between Italy and Germany to Z.V. and U.L.), by the Ministero dell' Università e Ricera Scientifice e Tecnologica (MURST 40%) and by the Deutsche Forschungsgemeinschaft.  相似文献   

11.
Nitrogen fixation and nitrate-reduction activities were determined in photoautotrophic cultures of two wild-type strains of cyanobacterium Nodularia, spp. M1 and M2. Air could support growth of the two strains at a similar rate in the presence or absence of exogenous nitrate, ammonium and/or bicarbonate. Nitrogenase activity in air-grown cultures varied with culture age, and totally disappeared after 6 h of darkness. Recovery took place upon culture re-illumination. Ammonium at a concentration of 1 mM resulted in the total disappearance of nitrogenase activity and of heterocysts. In contrast, 20 mM nitrate hardly affected nitrogenase activity and heterocyst formation after ten generations. Under the same conditions, either ammonium or nitrate completely abolished nitrogenase activity and heterocyst formation in Anabaena sp. PCC 7119, a typical heterocystous strain. The inefficiency of nitrate in inhibiting nitrogen fixation in Nodularia M1 and M2 seemed to be caused by a low nitrate-reductase activity, and not by an impairment of nitrate-uptake activity. On the other hand, the presence of nitrate was not required for uptake activity to be expressed in Nodularia.Abbreviation NR nitrate reductase We thank C. Fernández-Cabrera (Consejo Superior de Investigaciones Científicas, CSIC, Madrid, Spain) for technical assistance, and Dr. G. Pérez-Silva (CSIC) for his collaboration in the Anabaena NR assays. This work was supported by grants from Spanish CI-CyT (PB 87-0204 and PB 92-0497).  相似文献   

12.
Nitrate reductase (NR) (EC 1.6.6.2) from Chlorella variegata 211/10d has been purified by blue sepharose affinity chromatography. The enzyme can utilise NADH or NADPH for nitrate reduction with apparent K m values of 11.5 M and 14.5 M, respectively. Apparent K m values for nitrate are 0.13 mM (NADH-NR) and 0.14 mM (NADPH-NR). The diaphorase activity of the enzyme is inhibited strongly by parachloromercuribenzoic acid; NADH or NADPH protects the enzyme against this inhibition. NR proper activity of the enzyme is partially inactive after extraction and may be activated after the addition of ferricyanide. The addition of NAD(P)H and cyanide causes a reversible inactivation of the NR proper activity although preincubation with either NADH or NADH and ADP has no significant effect.Abbreviations NR Nitrate reductase - FAD Flavin-adenine dinucleotide - FMN Riboflavin 5-phosphate - p-CMB para-Chloromercuribenzoic - BV Benzyl viologen  相似文献   

13.
Cytoplasmic membranes were isolated from wild type and mutants strain M-1 of Paracoccus denitrificans grown with low aeration to promote synthesis of nitrate reductase protein and cytochrome b. The presence of 10-100-fold excess of nitrate reductase in the wild type or the corresponding enzymically inactive protein in the mutant did not significantly affect respiratory oxidase activities with NADH, succinate or TMPD-ascorbate as electron donor. A cytochrome b-nitrate reductase complex was resolved by isoelectric focussing of Triton X-100 solubilized membranes from the wild type grown with azide and from the mutant, whereas the enzyme complex from nitrate-grown wild type was not resolved from cytochrome c. Preparations from azideinduced wild type or from the mutant could be a suitable source of the cytochrome b associated with nitrate reductase for more detailed studies.Non standard abbreviations IEF isoelectric focussing - TMPD N, N, N, N-tetramethylphenylenediamine - SDS-PAGE Sodium dodecyl sulphate polyacrylamide gel electrophoresis  相似文献   

14.
The regulation of the development of nitrate reductase (NR) activity in Chlamydomonas reinhardii has been compared in a wild-type strain and in a mutant (nit-A) which possesses a modified nitrate reductase enzyme that is non-functional in vivo. The modified enzyme cannot use NAD(P)H as an electron donor for nitrate reduction and it differs from wild-type enzyme in that NR activity is not inactivated in vitro by incubation with NAD(P)H and small quantities of cyanide; it is inactivated when reduced benzyl viologen or flavin mononucleotide is present. After short periods of nitrogen starvation mutant organisms contain much higher levels of terminal-NR activity than do similarly treated wild-type ones. Despite the inability of the mutant to utilize nitrate, no nitrate or nitrite was found in nitrogen-starved cultures; it is therefore concluded that the appearance of NR activity is not a consequence of nitrification. After prolonged nitrogen starvation (22 h) the NR level in the mutant is low. It increases rapidly if nitrate is then added and this increase in activity does not occur in the presence of ammonium, tungstate or cycloheximide. Disappearance of preformed NR activity is stimulated by addition of tungstate and even more by addition of ammonium. The results are interpreted as evidence for a continuous turnover of NR in cells of the mutant with ammonium both stimulating NR breakdown and stopping NR synthesis. Nitrate protects the enzyme from breakdown. Reversible inactivation of NR activity is thought to play an insignificant rôle in the mutant.Abbreviations NR nitrate reductase - BV benzyl viologen  相似文献   

15.
Despite the large number of studies of nitrate metabolism in plants, it remains undetermined to what extent this key plant system is controlled by overall plant N nutrition on the one hand, and by the nitrate ion itself on the other hand. To investigate these questions, V max for nitrate uptake (high-affinity range), and nitrate reductase (NR) mRNA and activity, were measured in roots of N-limited barley (Hordeum vulgare L. cv. Golf) grown under conditions of constant relative addition of nitrate, with the seminal roots split between two culture compartments. The total amount of nitrate added per unit time (0.09·d-1) was distributed between the two root parts (subroots) in ratios of 1000, 982, 955, 9010, 8020, and 5050. These nitrate-addition ratios resulted in nitrate fluxes ranging from 0 to 23 mol nitrate·g-1 DW root·h-1, while the external nitrate concentrations varied between 0 and 1.2 M. The apparent V max for net nitrate uptake showed saturation-type responses to nitrate flux maintained during preceding growth. The flux resulting in half-maximal induction of nitrate uptake was approximately 4 mol nitrate·g-1 DW root·h-1, corresponding to an external nitrate concentration of 0.7 M. The activity of NR and levels of NR mRNA did not saturate within the range of nitrate fluxes studied. None of the parameters studied saturated with respect to the steady-state external nitrate concentration. At the zero nitrate addition — the 0%-root — initial uptake activity as determined in short-term 15N-labelling experiments was insignificant, and NR activity and NR mRNA were not detectable. However, nitrate uptake was rapidly induced, showing that the 0%-root had retained the capacity to respond to nitrate. These results suggest that local nitrate availability has a significant impact on the nitrate uptake and reducing systems of a split-root part when the total plant nitrate nutrition is held constant and limiting.Abbreviation NR nitrate reductase This work was supported by the Lars Hierta Memory Foundation, the Royal Swedish Academy of Sciences, and by the Swedish Natural Science Research Council via project grants (to C.-M.L. and B.I.) and visiting scientist grant (to W.H.C.). We thank Mrs. Ellen Campbell for technical advice, and Mrs. Judith V. Purves, Long Ashton Research Station, Long Ashton, UK, for analyses of 15N-labelling in tissue samples.  相似文献   

16.
Using pulses of nitrate, instead of the permanent presence of external nitrate, to induce the nitrate-assimilating system in Hordeum vulgare L., we demonstrated that nitrate can be considered as a trigger or signal for the induction of nitrate uptake, the appearance of nitratereductase activity and the synthesis of mRNA coding for nitrate reductase. Nitrate pulses stimulated the initial rate of nitrate uptake, even after subsequent cultivation in N-free medium, and resulted in a higher acceleration of the uptake rate in the presence of nitrate than in its absence.Abbreviations NR nitrate reductase  相似文献   

17.
玉米根细胞质膜硝酸还原酶的研究   总被引:5,自引:0,他引:5  
以水双相分配分离法从玉米(Zea m aysL.)根细胞中提取的高纯度正面向外和内面向外的质膜囊泡为材料,鉴定出质膜上存在有硝酸还原酶(NR)。通过缺氮和加氮培养,证明质膜NR具有诱导性。外源电子供体实验表明,质膜NR除了能利用NADH 作为电子供体外, 也能直接或间接利用NADPH 作为电子供体。通过Triton X-100, 结合胰蛋白酶及其抑制剂实验证明了质膜NR是偏于膜外侧的跨膜蛋白,它对胰蛋白酶具有特异的敏感性。讨论了质膜NR的功能  相似文献   

18.
B. Schmerder  H. Borriss 《Planta》1986,169(4):589-593
In dark-grown, isolated embryos of Agrostemma githago, a transient period of nitrate-reductase (NR) (NADH: nitrate oxidoreductase, EC 1.6.6.1) activity occurred from 6 to 36 h after the start of imbibition. During this period, NR activity was enhanced by nitrate, 6-benzylamino-purine and ethylene. Ethylene and 6-benzylamino-purine acted synergistically, whereas ethylene had no effect on nitrate induction. Aminoethoxyvinyl-glycine, an inhibitor of ethylene biosynthesis, inhibited the cytokinin-induced increase of NR activity, but had no effect on the nitrate-induced increase. The inhibition by aminoethoxyvinylglycine was overcome completely by ethylene. The ethylene precursor 1-aminocyclopropane-1-carboxylic acid had the same effect on NR activity as ethylene. Our data indicate that NR induction by cytokinins only occurs in the presence of ethylene, and that nitrate enhances NR activity through a mechanism which is distinct from the induction by hormones.Abbreviations ACC 1-aminocycloproparte-1-carboxylic acid - AVG aminoethoxyvinylglycine - BAP 6-benzylaminopurine - c.p. cotyledonary pair - NR nitrate reductase This article was finalized by the second author two weeks before his death. It was translated and adapted by Dr. G.J. de Klerk, Research School of Biological Sciences, Australian National University, Canberra. Reprint requests should be sent to Dr. de Klerk at his present address: Bulb Research Centre, Vennestraat 22, 2160 AB Lisse, The NetherlandsDeceased 4 September 1985  相似文献   

19.
Nitrate is one of the most important stimuli in nitrate reductase (NR) induction, while ammonium is usually an inhibitor. We evaluated the influence of nitrate, ammonium or urea as nitrogen sources on NR activity of the agarophyte Gracilaria chilensis. The addition of nitrate rapidly (2 min) induced NR activity, suggesting a fast post-translational regulation. In contrast, nitrate addition to starved algae stimulated rapid nitrate uptake without a concomitant induction of NR activity. These results show that in the absence of nitrate, NR activity is negatively affected, while the nitrate uptake system is active and ready to operate as soon as nitrate is available in the external medium, indicating that nitrate uptake and assimilation are differentially regulated. The addition of ammonium or urea as nitrogen sources stimulated NR activity after 24 h, different from that observed for other algae. However, a decrease in NR activity was observed after the third day under ammonium or urea. During the dark phase, G. chilensis NR activity was low when compared to the light phase. A light pulse of 15 min during the dark phase induced NR activity 1.5-fold suggesting also fast post-translational regulation. Nitrate reductase regulation by phosphorylation and dephosphorylation, and by protein synthesis and degradation, were evaluated using inhibitors. The results obtained for G. chilensis show a post-translational regulation as a rapid response mechanism by phosphorylation and dephosphorylation, and a slower mechanism by regulation of RNA synthesis coupled to de novo NR protein synthesis.  相似文献   

20.
The diurnal pattern of nitrate uptake by Capsicum annuum L. cv. California Wonder in a constant environment is described by a Fourier harmonic, with the maximum uptake in the middle of the photoperiod and the minimum in the middle of the dark period. Comparison of the uptake pattern with that of nitrate reductase (EC 1.6.6.1.) activity suggests against a direct control of one process by the other. This was confirmed by the observation that the pattern of nitrate reductase activity was not altered by restricting nitrate uptake to one hour per day. Translocation of 15N from the roots is much greater in the lightperiod than in the dark period. Reduction of 15N in the leaves occurs in the lightperiod but very little is reduced in the dark period. Amino acid levels showed marked daily fluctuations but in the roots neither amino acids, sucrose, fructose, glucose nor malate showed fluctuations. The amino acid composition of roots and leaves differed: glutamine+glutamate were relatively more important in leaves than in roots whereas alanine was a more important constituent of roots than of leaves.Abbreviation NR nitrate reductase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号